27 lines
838 B
C++
27 lines
838 B
C++
![]() |
#include "util.h"
|
||
|
|
||
|
void Util::unwrapPhase(std::vector<double> &phase)
|
||
|
{
|
||
|
for (unsigned int i = 1; i < phase.size(); i++) {
|
||
|
double d = phase[i] - phase[i-1];
|
||
|
d = d > M_PI ? d - 2 * M_PI : (d < -M_PI ? d + 2 * M_PI : d);
|
||
|
phase[i] = phase[i-1] + d;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Util::linearRegression(const std::vector<double> &input, double &B_0, double &B_1)
|
||
|
{
|
||
|
double x_mean = (input.size() - 1.0) / 2.0;
|
||
|
double y_mean = std::accumulate(input.begin(), input.end(), 0.0) / input.size();
|
||
|
double ss_xy = 0.0;
|
||
|
for(unsigned int i=0;i<input.size();i++) {
|
||
|
ss_xy += input[i] * i;
|
||
|
}
|
||
|
ss_xy -= input.size() * x_mean * y_mean;
|
||
|
int n = input.size() - 1;
|
||
|
double ss_xx = (1.0/6.0) * n * (n + 1) * (2*n + 1) - input.size() * x_mean * x_mean;
|
||
|
|
||
|
B_1 = ss_xy / ss_xx;
|
||
|
B_0 = y_mean - B_1 * x_mean;
|
||
|
}
|