LibreVNA/Software/PC_Application/Calibration/calibrationmeasurement.cpp

332 lines
8.8 KiB
C++
Raw Normal View History

2022-08-27 21:28:45 +08:00
#include "calibrationmeasurement.h"
#include "unit.h"
#include "calibration2.h"
#include <QDateTime>
using namespace std;
CalibrationMeasurement::Base::Base(Calibration2 *cal)
: cal(cal)
{
standard = nullptr;
timestamp = QDateTime();
}
bool CalibrationMeasurement::Base::setFirstSupportedStandard()
{
// assign first valid standard
for(auto s : cal->getKit().getStandards()) {
if(supportedStandards().count(s->getType())) {
setStandard(s);
break;
}
}
}
bool CalibrationMeasurement::Base::setStandard(CalStandard::Virtual *standard)
{
if(standard) {
if(supportedStandards().count(standard->getType())) {
// can use this standard
this->standard = standard;
return true;
} else {
// can't use this standard, leave unchanged
return false;
}
} else {
// nullptr passed, remove currently used standard
this->standard = nullptr;
return true;
}
}
QString CalibrationMeasurement::Base::getStatistics()
{
if(numPoints() > 0) {
QString data = QString::number(numPoints());
data.append(" points from ");
data.append(Unit::ToString(minFreq(), "Hz", " kMG"));
data.append(" to ");
data.append(Unit::ToString(maxFreq(), "Hz", " kMG"));
return data;
} else {
return "Not available";
}
}
std::vector<CalibrationMeasurement::Base::Type> CalibrationMeasurement::Base::availableTypes()
{
std::vector<Type> ret;
for(int i=0;i<(int) Type::Last;i++) {
ret.push_back((Type) i);
}
return ret;
}
QString CalibrationMeasurement::Base::TypeToString(CalibrationMeasurement::Base::Type type)
{
switch(type) {
case Type::Open: return "Open";
case Type::Short: return "Short";
case Type::Load: return "Load";
case Type::Through: return "Through";
case Type::Last: return "Invalid";
}
}
CalibrationMeasurement::Base::Type CalibrationMeasurement::Base::TypeFromString(QString s)
{
for(int i=0;i<(int) Type::Last;i++) {
if(TypeToString((Type) i) == s) {
return (Type) i;
}
}
return Type::Last;
}
nlohmann::json CalibrationMeasurement::Base::toJSON()
{
nlohmann::json j;
if(standard) {
j["standard"] = standard->getID();
}
j["timestamp"] = timestamp.toSecsSinceEpoch();
return j;
}
void CalibrationMeasurement::Base::fromJSON(nlohmann::json j)
{
if(j.contains("standard")) {
// TODO find standard from ID
}
timestamp = QDateTime::fromSecsSinceEpoch(j.value("timestamp", 0));
}
bool CalibrationMeasurement::Base::canMeasureSimultaneously(std::vector<CalibrationMeasurement::Base *> measurements)
{
std::set<int> usedPorts;
for(auto m : measurements) {
std::vector<int> ports;
switch(m->getType()) {
case Type::Open:
case Type::Short:
case Type::Load:
// Uses one port
ports.push_back(static_cast<OnePort*>(m)->getPort());
break;
case Type::Through:
// Uses two ports
ports.push_back(static_cast<TwoPort*>(m)->getPort1());
ports.push_back(static_cast<TwoPort*>(m)->getPort2());
break;
}
for(auto p : ports) {
if(usedPorts.count(p)) {
// port already used for another measurement
return false;
} else {
usedPorts.insert(p);
}
}
}
// if we get here, no port collisions occurred
return true;
}
double CalibrationMeasurement::OnePort::minFreq()
{
if(points.size() > 0) {
return points.front().frequency;
} else {
return numeric_limits<double>::max();
}
}
double CalibrationMeasurement::OnePort::maxFreq()
{
if(points.size() > 0) {
return points.back().frequency;
} else {
return 0;
}
}
void CalibrationMeasurement::OnePort::clearPoints()
{
points.clear();
timestamp = QDateTime();
}
void CalibrationMeasurement::OnePort::addPoint(const VirtualDevice::VNAMeasurement &m)
{
QString measurementName = "S"+QString::number(port)+QString::number(port);
if(m.measurements.count(measurementName) > 0) {
Point p;
p.frequency = m.frequency;
p.S = m.measurements.at(measurementName);
points.push_back(p);
timestamp = QDateTime::currentDateTimeUtc();
}
}
nlohmann::json CalibrationMeasurement::OnePort::toJSON()
{
auto j = Base::toJSON();
j["port"] = port;
nlohmann::json jpoints;
for(auto &p : points) {
nlohmann::json jpoint;
jpoint["frequency"] = p.frequency;
jpoint["real"] = p.S.real();
jpoint["imag"] = p.S.imag();
jpoints.push_back(jpoint);
}
j["points"] = jpoints;
return j;
}
void CalibrationMeasurement::OnePort::fromJSON(nlohmann::json j)
{
clearPoints();
Base::fromJSON(j);
port = j.value("port", 0);
if(j.contains("points")) {
for(auto jpoint : j["points"]) {
Point p;
p.frequency = jpoint.value("frequency", 0.0);
p.S = complex<double>(jpoint.value("real", 0.0), jpoint.value("imag", 0.0));
points.push_back(p);
}
}
}
std::complex<double> CalibrationMeasurement::OnePort::getMeasured(double frequency)
{
if(points.size() == 0 || frequency < points.front().frequency || frequency > points.back().frequency) {
return numeric_limits<complex<double>>::quiet_NaN();
}
// frequency within points, interpolate
auto lower = lower_bound(points.begin(), points.end(), frequency, [](const Point &lhs, double rhs) -> bool {
return lhs.frequency < rhs;
});
auto lowPoint = *lower;
advance(lower, 1);
auto highPoint = *lower;
double alpha = (frequency - lowPoint.frequency) / (highPoint.frequency - lowPoint.frequency);
complex<double> ret;
return lowPoint.S * (1.0 - alpha) + highPoint.S * alpha;
}
std::complex<double> CalibrationMeasurement::OnePort::getActual(double frequency)
{
return static_cast<CalStandard::OnePort*>(standard)->toS11(frequency);
}
int CalibrationMeasurement::OnePort::getPort() const
{
return port;
}
double CalibrationMeasurement::TwoPort::minFreq()
{
if(points.size() > 0) {
return points.front().frequency;
} else {
return numeric_limits<double>::max();
}
}
double CalibrationMeasurement::TwoPort::maxFreq()
{
if(points.size() > 0) {
return points.back().frequency;
} else {
return 0;
}
}
void CalibrationMeasurement::TwoPort::clearPoints()
{
points.clear();
timestamp = QDateTime();
}
void CalibrationMeasurement::TwoPort::addPoint(const VirtualDevice::VNAMeasurement &m)
{
Point p;
p.frequency = m.frequency;
p.S = m.toSparam(port1, port2);
points.push_back(p);
timestamp = QDateTime::currentDateTimeUtc();
}
nlohmann::json CalibrationMeasurement::TwoPort::toJSON()
{
auto j = Base::toJSON();
j["port1"] = port1;
j["port2"] = port2;
nlohmann::json jpoints;
for(auto &p : points) {
nlohmann::json jpoint;
jpoint["frequency"] = p.frequency;
jpoint["Sparam"] = p.S.toJSON();
jpoints.push_back(jpoint);
}
j["points"] = jpoints;
return j;
}
void CalibrationMeasurement::TwoPort::fromJSON(nlohmann::json j)
{
clearPoints();
Base::fromJSON(j);
port1 = j.value("port1", 0);
port2 = j.value("port2", 0);
if(j.contains("points")) {
for(auto jpoint : j["points"]) {
Point p;
p.frequency = jpoint.value("frequency", 0.0);
p.S.fromJSON(j["Sparam"]);
points.push_back(p);
}
}
}
Sparam CalibrationMeasurement::TwoPort::getMeasured(double frequency)
{
if(points.size() == 0 || frequency < points.front().frequency || frequency > points.back().frequency) {
return Sparam();
}
// frequency within points, interpolate
auto lower = lower_bound(points.begin(), points.end(), frequency, [](const Point &lhs, double rhs) -> bool {
return lhs.frequency < rhs;
});
auto lowPoint = *lower;
advance(lower, 1);
auto highPoint = *lower;
double alpha = (frequency - lowPoint.frequency) / (highPoint.frequency - lowPoint.frequency);
Sparam ret;
ret.m11 = lowPoint.S.m11 * (1.0 - alpha) + highPoint.S.m11 * alpha;
ret.m12 = lowPoint.S.m12 * (1.0 - alpha) + highPoint.S.m12 * alpha;
ret.m21 = lowPoint.S.m21 * (1.0 - alpha) + highPoint.S.m21 * alpha;
ret.m22 = lowPoint.S.m22 * (1.0 - alpha) + highPoint.S.m22 * alpha;
return ret;
}
Sparam CalibrationMeasurement::TwoPort::getActual(double frequency)
{
return static_cast<CalStandard::TwoPort*>(standard)->toSparam(frequency);
}
int CalibrationMeasurement::TwoPort::getPort2() const
{
return port2;
}
int CalibrationMeasurement::TwoPort::getPort1() const
{
return port1;
}