LibreVNA/Software/PC_Application/Traces/Math/parser/mpOprtCmplx.cpp

322 lines
11 KiB
C++
Raw Normal View History

/*
__________ ____ ___
_____ __ _\______ \_____ _______ ______ __________\ \/ /
/ \| | \ ___/\__ \\_ __ \/ ___// __ \_ __ \ /
| Y Y \ | / | / __ \| | \/\___ \\ ___/| | \/ \
|__|_| /____/|____| (____ /__| /____ >\___ >__| /___/\ \
\/ \/ \/ \/ \_/
Copyright (C) 2016 Ingo Berg
All rights reserved.
muParserX - A C++ math parser library with array and string support
Copyright (c) 2016, Ingo Berg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "mpOprtCmplx.h"
#include <iomanip>
#include <limits>
MUP_NAMESPACE_START
//-------------------------------------------------------------------------------------------------
//
// class OprtSignCmplx
//
//-------------------------------------------------------------------------------------------------
OprtSignCmplx::OprtSignCmplx()
:IOprtInfix(_T("-"), prINFIX)
{}
//-----------------------------------------------------------------------------------------------
void OprtSignCmplx::Eval(ptr_val_type &ret, const ptr_val_type *a_pArg, int a_iArgc)
{
MUP_VERIFY(a_iArgc == 1);
if (a_pArg[0]->IsScalar())
{
float_type re = a_pArg[0]->GetFloat();
float_type im = a_pArg[0]->GetImag();
// Do not omit the test for zero! Multiplying 0 with -1
// will yield -0 on IEEE754 compliant implementations!
// This would change the result of complex calculations:
//
// i.e. sqrt(-1 + (-0)i) != sqrt(-1 + 0i)
// -i != i
cmplx_type v((re == 0) ? 0 : -re, (im == 0) ? 0 : -im);
*ret = v;
}
else if (a_pArg[0]->GetType() == 'm')
{
Value v(a_pArg[0]->GetRows(), 0);
for (int i = 0; i < a_pArg[0]->GetRows(); ++i)
{
v.At(i) = a_pArg[0]->At(i).GetComplex() * (float_type)-1.0;
}
*ret = v;
}
else
{
ErrorContext err;
err.Errc = ecINVALID_TYPE;
err.Type1 = a_pArg[0]->GetType();
err.Type2 = 's';
throw ParserError(err);
}
}
//-----------------------------------------------------------------------------------------------
const char_type* OprtSignCmplx::GetDesc() const
{
return _T("negative sign operator");
}
//-----------------------------------------------------------------------------------------------
IToken* OprtSignCmplx::Clone() const
{
return new OprtSignCmplx(*this);
}
//-------------------------------------------------------------------------------------------------
//
// class OprtAddCmplx
//
//-------------------------------------------------------------------------------------------------
OprtAddCmplx::OprtAddCmplx()
:IOprtBin(_T("+"), (int)prADD_SUB, oaLEFT)
{}
//-----------------------------------------------------------------------------------------------
void OprtAddCmplx::Eval(ptr_val_type& ret, const ptr_val_type *a_pArg, int num)
{
assert(num == 2);
const IValue *arg1 = a_pArg[0].Get();
const IValue *arg2 = a_pArg[1].Get();
if (arg1->IsNonComplexScalar() && arg2->IsNonComplexScalar())
{
*ret = arg1->GetFloat() + arg2->GetFloat();
}
else if (arg1->GetType() == 'm' && arg2->GetType() == 'm')
{
// Matrix + Matrix
*ret = arg1->GetArray() + arg2->GetArray();
}
else
{
if (!arg1->IsScalar())
throw ParserError(ErrorContext(ecTYPE_CONFLICT_FUN, GetExprPos(), GetIdent(), arg1->GetType(), 'c', 1));
if (!arg2->IsScalar())
throw ParserError(ErrorContext(ecTYPE_CONFLICT_FUN, GetExprPos(), GetIdent(), arg2->GetType(), 'c', 2));
*ret = cmplx_type(arg1->GetFloat() + arg2->GetFloat(),
arg1->GetImag() + arg2->GetImag());
}
}
//-----------------------------------------------------------------------------------------------
const char_type* OprtAddCmplx::GetDesc() const
{
return _T("addition");
}
//-----------------------------------------------------------------------------------------------
IToken* OprtAddCmplx::Clone() const
{
return new OprtAddCmplx(*this);
}
//-------------------------------------------------------------------------------------------------
//
// class OprtSubCmplx
//
//-------------------------------------------------------------------------------------------------
OprtSubCmplx::OprtSubCmplx()
:IOprtBin(_T("-"), (int)prADD_SUB, oaLEFT)
{}
//-----------------------------------------------------------------------------------------------
void OprtSubCmplx::Eval(ptr_val_type &ret, const ptr_val_type *a_pArg, int num)
{
assert(num == 2);
const IValue *arg1 = a_pArg[0].Get();
const IValue *arg2 = a_pArg[1].Get();
if (a_pArg[0]->IsNonComplexScalar() && a_pArg[1]->IsNonComplexScalar())
{
*ret = arg1->GetFloat() - arg2->GetFloat();
}
else if (a_pArg[0]->GetType() == 'm' && a_pArg[1]->GetType() == 'm')
{
// Matrix + Matrix
*ret = arg1->GetArray() - arg2->GetArray();
}
else
{
if (!a_pArg[0]->IsScalar())
throw ParserError(ErrorContext(ecTYPE_CONFLICT_FUN, GetExprPos(), GetIdent(), a_pArg[0]->GetType(), 'c', 1));
if (!a_pArg[1]->IsScalar())
throw ParserError(ErrorContext(ecTYPE_CONFLICT_FUN, GetExprPos(), GetIdent(), a_pArg[1]->GetType(), 'c', 2));
*ret = cmplx_type(a_pArg[0]->GetFloat() - a_pArg[1]->GetFloat(),
a_pArg[0]->GetImag() - a_pArg[1]->GetImag());
}
}
//-----------------------------------------------------------------------------------------------
const char_type* OprtSubCmplx::GetDesc() const
{
return _T("subtraction");
}
//-----------------------------------------------------------------------------------------------
IToken* OprtSubCmplx::Clone() const
{
return new OprtSubCmplx(*this);
}
//-------------------------------------------------------------------------------------------------
//
// class OprtMulCmplx
//
//-------------------------------------------------------------------------------------------------
OprtMulCmplx::OprtMulCmplx()
:IOprtBin(_T("*"), (int)prMUL_DIV, oaLEFT)
{}
//-----------------------------------------------------------------------------------------------
void OprtMulCmplx::Eval(ptr_val_type &ret, const ptr_val_type *a_pArg, int num)
{
assert(num == 2);
IValue *arg1 = a_pArg[0].Get();
IValue *arg2 = a_pArg[1].Get();
*ret = (*arg1) * (*arg2);
}
//-----------------------------------------------------------------------------------------------
const char_type* OprtMulCmplx::GetDesc() const
{
return _T("foo*bar - multiplication");
}
//-----------------------------------------------------------------------------------------------
IToken* OprtMulCmplx::Clone() const
{
return new OprtMulCmplx(*this);
}
//-------------------------------------------------------------------------------------------------
//
// class OprtDivCmplx
//
//-------------------------------------------------------------------------------------------------
OprtDivCmplx::OprtDivCmplx()
:IOprtBin(_T("/"), (int)prMUL_DIV, oaLEFT)
{}
//-----------------------------------------------------------------------------------------------
/** \brief Implements the Division operator.
\throw ParserError in case one of the arguments if
nonnumeric or an array.
*/
void OprtDivCmplx::Eval(ptr_val_type &ret, const ptr_val_type *a_pArg, int num)
{
assert(num == 2);
if (a_pArg[0]->IsNonComplexScalar() && a_pArg[1]->IsNonComplexScalar())
{
*ret = a_pArg[0]->GetFloat() / a_pArg[1]->GetFloat();
}
else
{
// multiplication of two imaginary numbers
float_type a = a_pArg[0]->GetFloat(),
b = a_pArg[0]->GetImag(),
c = a_pArg[1]->GetFloat(),
d = a_pArg[1]->GetImag(),
n = c*c + d*d;
*ret = cmplx_type((a*c + b*d) / n, (b*c - a*d) / n);
}
}
//-----------------------------------------------------------------------------------------------
const char_type* OprtDivCmplx::GetDesc() const
{
return _T("division");
}
//-----------------------------------------------------------------------------------------------
IToken* OprtDivCmplx::Clone() const
{
return new OprtDivCmplx(*this);
}
//-------------------------------------------------------------------------------------------------
//
// class OprtPowCmplx
//
//-------------------------------------------------------------------------------------------------
OprtPowCmplx::OprtPowCmplx()
:IOprtBin(_T("^"), (int)prPOW, oaRIGHT)
{}
//-----------------------------------------------------------------------------------------------
void OprtPowCmplx::Eval(ptr_val_type& ret, const ptr_val_type *arg, int argc)
{
assert(argc == 2);
if (arg[0]->IsComplex() || arg[1]->IsComplex() || (arg[0]->GetFloat() < 0 && !arg[1]->IsInteger()))
{
*ret = std::pow(arg[0]->GetComplex(), arg[1]->GetComplex());;
}
else
{
*ret = std::pow(arg[0]->GetFloat(), arg[1]->GetFloat());
}
}
//-----------------------------------------------------------------------------------------------
const char_type* OprtPowCmplx::GetDesc() const
{
return _T("raise x to the power of y");
}
//-----------------------------------------------------------------------------------------------
IToken* OprtPowCmplx::Clone() const
{
return new OprtPowCmplx(*this);
}
} // namespace