optional 2xthru impedance correction

This commit is contained in:
Jan Käberich 2021-02-11 16:59:59 +01:00
parent 0f7c397a8a
commit 7352ad07b5
14 changed files with 1265 additions and 367 deletions

View File

@ -258,6 +258,7 @@ FORMS += \
VNA/Deembedding/deembeddingdialog.ui \
VNA/Deembedding/form.ui \
VNA/Deembedding/matchingnetworkdialog.ui \
VNA/Deembedding/measurementdialog.ui \
VNA/Deembedding/portextensioneditdialog.ui \
VNA/Deembedding/twothrudialog.ui \
main.ui \

View File

@ -1,6 +1,7 @@
#include "deembedding.h"
#include "deembeddingdialog.h"
#include <QDebug>
#include "ui_measurementdialog.h"
using namespace std;
@ -10,9 +11,259 @@ void Deembedding::configure()
d->show();
}
void Deembedding::measurementCompleted()
{
// pass on the measurement result to the option that triggered the measurement
if (measuringOption) {
measuringOption->measurementCompleted(measurements);
measuringOption = nullptr;
}
delete measurementDialog;
measurementDialog = nullptr;
measurementUI = nullptr;
}
void Deembedding::setInitialTraceSelections()
{
// all checkboxes initially set to none
measurementUI->cS11->blockSignals(true);
measurementUI->cS12->blockSignals(true);
measurementUI->cS21->blockSignals(true);
measurementUI->cS22->blockSignals(true);
measurementUI->cS11->clear();
measurementUI->cS12->clear();
measurementUI->cS21->clear();
measurementUI->cS22->clear();
measurementUI->cS11->addItem("None");
measurementUI->cS12->addItem("None");
measurementUI->cS21->addItem("None");
measurementUI->cS22->addItem("None");
// add applicable traces
for(auto t : tm.getTraces()) {
if(t->isReflection()) {
measurementUI->cS11->addItem(t->name(), QVariant::fromValue<Trace*>(t));
measurementUI->cS22->addItem(t->name(), QVariant::fromValue<Trace*>(t));
} else {
measurementUI->cS12->addItem(t->name(), QVariant::fromValue<Trace*>(t));
measurementUI->cS21->addItem(t->name(), QVariant::fromValue<Trace*>(t));
}
}
measurementUI->cS11->blockSignals(false);
measurementUI->cS12->blockSignals(false);
measurementUI->cS21->blockSignals(false);
measurementUI->cS22->blockSignals(false);
}
void Deembedding::traceSelectionChanged(QComboBox *w)
{
vector<QComboBox*> cbs;
if (measurementUI->cS11->isVisible()) {
cbs.push_back(measurementUI->cS11);
}
if (measurementUI->cS12->isVisible()) {
cbs.push_back(measurementUI->cS12);
}
if (measurementUI->cS21->isVisible()) {
cbs.push_back(measurementUI->cS21);
}
if (measurementUI->cS22->isVisible()) {
cbs.push_back(measurementUI->cS22);
}
// update available traces in combo boxes
if(w->currentIndex() != 0 && points == 0) {
// the first trace has been selected, extract frequency info
Trace *t = qvariant_cast<Trace*>(w->itemData(w->currentIndex()));
points = t->size();
if(points > 0) {
minFreq = t->minX();
maxFreq = t->maxX();
}
// remove all trace options with incompatible frequencies
for(auto c : cbs) {
for(int i=1;i<c->count();i++) {
Trace *t = qvariant_cast<Trace*>(c->itemData(i));
if(t->size() != points || (points > 0 && (t->minX() != minFreq || t->maxX() != maxFreq))) {
// this trace is not available anymore
c->removeItem(i);
// decrement to check the next index in the next loop iteration
i--;
}
}
}
} else if(w->currentIndex() == 0 && points > 0) {
measurementUI->buttonBox->setEnabled(false);
// Check if all trace selections are set for none
for(auto c : cbs) {
if(c->currentIndex() != 0) {
// some trace is still selected, abort
return;
}
}
// all traces set for none
points = 0;
minFreq = 0;
maxFreq = 0;
setInitialTraceSelections();
}
bool allSelectionsValid = true;
for(auto c : cbs) {
if (c->currentIndex() == 0) {
allSelectionsValid = false;
break;
}
}
if(allSelectionsValid) {
measurementUI->buttonBox->setEnabled(true);
}
}
void Deembedding::startMeasurementDialog(bool S11, bool S12, bool S21, bool S22)
{
measurements.clear();
points = 0;
minFreq = 0.0;
maxFreq = 0.0;
measurementDialog = new QDialog;
auto ui = new Ui_DeembeddingMeasurementDialog;
measurementUI = ui;
ui->setupUi(measurementDialog);
// disable not needed GUI elements
if(!S11) {
ui->lS11->setVisible(false);
ui->cS11->setVisible(false);
}
if(!S12) {
ui->lS12->setVisible(false);
ui->cS12->setVisible(false);
}
if(!S21) {
ui->lS21->setVisible(false);
ui->cS21->setVisible(false);
}
if(!S22) {
ui->lS22->setVisible(false);
ui->cS22->setVisible(false);
}
connect(ui->bMeasure, &QPushButton::clicked, [=](){
ui->bMeasure->setEnabled(false);
ui->cS11->setEnabled(false);
ui->cS12->setEnabled(false);
ui->cS21->setEnabled(false);
ui->cS22->setEnabled(false);
ui->buttonBox->setEnabled(false);
measuring = true;
});
connect(ui->cS11, qOverload<int>(&QComboBox::currentIndexChanged), [=](int){
traceSelectionChanged(ui->cS11);
});
connect(ui->cS12, qOverload<int>(&QComboBox::currentIndexChanged), [=](int){
traceSelectionChanged(ui->cS12);
});
connect(ui->cS21, qOverload<int>(&QComboBox::currentIndexChanged), [=](int){
traceSelectionChanged(ui->cS21);
});
connect(ui->cS22, qOverload<int>(&QComboBox::currentIndexChanged), [=](int){
traceSelectionChanged(ui->cS22);
});
connect(ui->buttonBox, &QDialogButtonBox::accepted, [=](){
// create datapoints from individual traces
measurements.clear();
Trace *S11 = nullptr, *S12 = nullptr, *S21 = nullptr, *S22 = nullptr;
if (ui->cS11->currentIndex() != 0) {
S11 = qvariant_cast<Trace*>(ui->cS11->itemData(ui->cS11->currentIndex()));
}
if (ui->cS12->currentIndex() != 0) {
S12 = qvariant_cast<Trace*>(ui->cS12->itemData(ui->cS12->currentIndex()));
}
if (ui->cS21->currentIndex() != 0) {
S21 = qvariant_cast<Trace*>(ui->cS21->itemData(ui->cS21->currentIndex()));
}
if (ui->cS22->currentIndex() != 0) {
S22 = qvariant_cast<Trace*>(ui->cS22->itemData(ui->cS22->currentIndex()));
}
for(unsigned int i=0;i<points;i++) {
Protocol::Datapoint p;
p.pointNum = i;
if(S11) {
auto sample = S11->sample(i);
p.imag_S11 = sample.y.imag();
p.real_S11 = sample.y.real();
p.frequency = sample.x;
}
if(S12) {
auto sample = S12->sample(i);
p.imag_S12 = sample.y.imag();
p.real_S12 = sample.y.real();
p.frequency = sample.x;
}
if(S21) {
auto sample = S21->sample(i);
p.imag_S21 = sample.y.imag();
p.real_S21 = sample.y.real();
p.frequency = sample.x;
}
if(S22) {
auto sample = S22->sample(i);
p.imag_S22 = sample.y.imag();
p.real_S22 = sample.y.real();
p.frequency = sample.x;
}
measurements.push_back(p);
}
measurementCompleted();
});
setInitialTraceSelections();
measurementDialog->show();
}
Deembedding::Deembedding(TraceModel &tm)
: tm(tm),
measuring(false),
points(0)
{
}
void Deembedding::Deembed(Protocol::Datapoint &d)
{
// figure out the point in one sweep based on the incomig pointNums
static unsigned lastPointNum;
if (d.pointNum == 0) {
sweepPoints = lastPointNum;
} else if(d.pointNum > sweepPoints) {
sweepPoints = d.pointNum;
}
lastPointNum = d.pointNum;
for(auto it = options.begin();it != options.end();it++) {
if (measuring && measuringOption == *it) {
// this option needs a measurement
if (d.pointNum == 0) {
if(measurements.size() == 0) {
// this is the first point of the measurement
measurements.push_back(d);
} else {
// this is the first point of the next sweep, measurement complete
measuring = false;
measurementCompleted();
}
} else if(measurements.size() > 0) {
// in the middle of the measurement, add point
measurements.push_back(d);
}
if(measurementUI) {
measurementUI->progress->setValue(100 * measurements.size() / sweepPoints);
}
}
(*it)->transformDatapoint(d);
}
}
@ -35,6 +286,10 @@ void Deembedding::addOption(DeembeddingOption *option)
options.erase(pos);
}
});
connect(option, &DeembeddingOption::triggerMeasurement, [=](bool S11, bool S12, bool S21, bool S22) {
measuringOption = option;
startMeasurementDialog(S11, S12, S21, S22);
});
}
void Deembedding::swapOptions(unsigned int index)

View File

@ -5,12 +5,17 @@
#include <vector>
#include <QObject>
#include "savable.h"
#include "Traces/tracemodel.h"
#include <QDialog>
#include <QComboBox>
class Ui_DeembeddingMeasurementDialog;
class Deembedding : public QObject, public Savable
{
Q_OBJECT
public:
Deembedding(){};
Deembedding(TraceModel &tm);
~Deembedding(){};
void Deembed(Protocol::Datapoint &d);
@ -23,9 +28,27 @@ public:
void fromJSON(nlohmann::json j) override;
public slots:
void configure();
signals:
void triggerMeasurement(bool S11 = true, bool S12 = true, bool S21 = true, bool S22 = true);
private:
void measurementCompleted();
void setInitialTraceSelections();
void traceSelectionChanged(QComboBox *w);
void startMeasurementDialog(bool S11, bool S12, bool S21, bool S22);
std::vector<DeembeddingOption*> options;
DeembeddingOption *measuringOption;
TraceModel &tm;
bool measuring;
std::vector<Protocol::Datapoint> measurements;
QDialog *measurementDialog;
Ui_DeembeddingMeasurementDialog *measurementUI;
// parameters of the selected traces for the measurement
double minFreq, maxFreq;
unsigned long points;
unsigned long sweepPoints;
};
#endif // DEEMBEDDING_H

View File

@ -13,6 +13,9 @@
<property name="windowTitle">
<string>De-embedding</string>
</property>
<property name="modal">
<bool>true</bool>
</property>
<layout class="QVBoxLayout" name="verticalLayout_2">
<item>
<layout class="QHBoxLayout" name="horizontalLayout">

View File

@ -23,9 +23,14 @@ public:
virtual void transformDatapoint(Protocol::Datapoint &p) = 0;
virtual void edit(){};
virtual Type getType() = 0;
public slots:
virtual void measurementCompleted(std::vector<Protocol::Datapoint> m){Q_UNUSED(m)};
signals:
// Deembedding option may selfdestruct if not applicable with current settings. It should emit this signal before deleting itself
void deleted(DeembeddingOption *option);
void triggerMeasurement(bool S11 = true, bool S12 = true, bool S21 = true, bool S22 = true);
};
#endif // DEEMBEDDING_H

View File

@ -67,6 +67,7 @@ void MatchingNetwork::edit()
auto dialog = new QDialog();
auto ui = new Ui::MatchingNetworkDialog();
ui->setupUi(dialog);
dialog->setModal(true);
graph = new QWidget();
ui->scrollArea->setWidget(graph);

View File

@ -0,0 +1,144 @@
<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
<class>DeembeddingMeasurementDialog</class>
<widget class="QDialog" name="DeembeddingMeasurementDialog">
<property name="windowModality">
<enum>Qt::ApplicationModal</enum>
</property>
<property name="geometry">
<rect>
<x>0</x>
<y>0</y>
<width>582</width>
<height>228</height>
</rect>
</property>
<property name="windowTitle">
<string>De-embedding Measurement</string>
</property>
<property name="modal">
<bool>true</bool>
</property>
<layout class="QVBoxLayout" name="verticalLayout_2">
<item>
<widget class="QLabel" name="label">
<property name="text">
<string>Either take a new measurement with the currently active frequency/span settings...</string>
</property>
</widget>
</item>
<item>
<layout class="QHBoxLayout" name="horizontalLayout" stretch="1,0">
<item>
<widget class="QProgressBar" name="progress">
<property name="value">
<number>0</number>
</property>
</widget>
</item>
<item>
<widget class="QPushButton" name="bMeasure">
<property name="text">
<string>Measure</string>
</property>
</widget>
</item>
</layout>
</item>
<item>
<widget class="Line" name="line">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="label_2">
<property name="text">
<string>... or select already existing traces for the measurement:</string>
</property>
</widget>
</item>
<item>
<layout class="QHBoxLayout" name="horizontalLayout_2" stretch="1,0">
<item>
<layout class="QFormLayout" name="formLayout">
<item row="0" column="0">
<widget class="QLabel" name="lS11">
<property name="text">
<string>S11:</string>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QComboBox" name="cS11"/>
</item>
<item row="1" column="0">
<widget class="QLabel" name="lS12">
<property name="text">
<string>S12:</string>
</property>
</widget>
</item>
<item row="1" column="1">
<widget class="QComboBox" name="cS12"/>
</item>
<item row="2" column="0">
<widget class="QLabel" name="lS21">
<property name="text">
<string>S21:</string>
</property>
</widget>
</item>
<item row="2" column="1">
<widget class="QComboBox" name="cS21"/>
</item>
<item row="3" column="0">
<widget class="QLabel" name="lS22">
<property name="text">
<string>S22:</string>
</property>
</widget>
</item>
<item row="3" column="1">
<widget class="QComboBox" name="cS22"/>
</item>
</layout>
</item>
<item>
<layout class="QVBoxLayout" name="verticalLayout" stretch="1,0">
<item>
<spacer name="verticalSpacer">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>20</width>
<height>40</height>
</size>
</property>
</spacer>
</item>
<item>
<widget class="QDialogButtonBox" name="buttonBox">
<property name="enabled">
<bool>false</bool>
</property>
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="standardButtons">
<set>QDialogButtonBox::Ok</set>
</property>
</widget>
</item>
</layout>
</item>
</layout>
</item>
</layout>
</widget>
<resources/>
<connections/>
</ui>

View File

@ -22,111 +22,11 @@ PortExtension::PortExtension()
port2.delay = 0;
port2.velocityFactor = 0.66;
measuring = false;
kit = nullptr;
}
void PortExtension::transformDatapoint(Protocol::Datapoint &d)
{
if(measuring) {
if(measurements.size() > 0) {
if(d.pointNum == 0) {
// sweep complete, evaluate measurement
double last_phase = 0.0;
double phasediff_sum = 0.0;
vector<double> att_x, att_y;
double avg_x = 0.0, avg_y = 0.0;
for(auto m : measurements) {
// grab correct measurement
complex<double> reflection;
if(isPort1) {
reflection = complex<double>(m.real_S11, m.imag_S11);
} else {
reflection = complex<double>(m.real_S22, m.imag_S22);
}
// remove calkit if specified
if(!isIdeal) {
complex<double> calStandard;
auto standards = kit->toSOLT(m.frequency);
if(isOpen) {
calStandard = standards.Open;
} else {
calStandard = standards.Short;
}
// remove effect of calibration standard
reflection /= calStandard;
}
// sum phase differences to previous point
auto phase = arg(reflection);
if(m.pointNum == 0) {
last_phase = phase;
} else {
auto phasediff = phase - last_phase;
last_phase = phase;
if(phasediff > M_PI) {
phasediff -= 2 * M_PI;
} else if(phasediff <= -M_PI) {
phasediff += 2 * M_PI;
}
phasediff_sum += phasediff;
qDebug() << phasediff;
}
double x = sqrt(m.frequency / measurements.back().frequency);
double y = 20*log10(abs(reflection));
att_x.push_back(x);
att_y.push_back(y);
avg_x += x;
avg_y += y;
}
auto phase = phasediff_sum / (measurements.size() - 1);
auto freq_diff = measurements[1].frequency - measurements[0].frequency;
auto delay = -phase / (2 * M_PI * freq_diff);
// measured delay is two-way but port extension expects one-way
delay /= 2;
// calculate linear regression with transformed square root model
avg_x /= measurements.size();
avg_y /= measurements.size();
double sum_top = 0.0;
double sum_bottom = 0.0;
for(unsigned int i=0;i<att_x.size();i++) {
sum_top += (att_x[i] - avg_x)*(att_y[i] - avg_y);
sum_bottom += (att_x[i] - avg_x)*(att_x[i] - avg_x);
}
double beta = sum_top / sum_bottom;
double alpha = avg_y - beta * avg_x;
double DCloss = -alpha / 2;
double loss = -beta / 2;
double freq = measurements.back().frequency;
if(isPort1) {
ui->P1Time->setValue(delay);
ui->P1DCloss->setValue(DCloss);
ui->P1Loss->setValue(loss);
ui->P1Frequency->setValue(freq);
} else {
ui->P2Time->setValue(delay);
ui->P2DCloss->setValue(DCloss);
ui->P2Loss->setValue(loss);
ui->P2Frequency->setValue(freq);
}
if(msgBox) {
msgBox->close();
msgBox = nullptr;
}
measurements.clear();
} else {
measurements.push_back(d);
}
} else if(d.pointNum == 0) {
// first point of sweep, start measurement
measurements.push_back(d);
}
}
if(port1.enabled || port2.enabled) {
// Convert measurements to complex variables
auto S11 = complex<double>(d.real_S11, d.imag_S11);
@ -299,16 +199,94 @@ void PortExtension::edit()
dialog->show();
}
void PortExtension::measurementCompleted(std::vector<Protocol::Datapoint> m)
{
if(m.size() > 0) {
double last_phase = 0.0;
double phasediff_sum = 0.0;
vector<double> att_x, att_y;
double avg_x = 0.0, avg_y = 0.0;
for(auto p : m) {
// grab correct measurement
complex<double> reflection;
if(isPort1) {
reflection = complex<double>(p.real_S11, p.imag_S11);
} else {
reflection = complex<double>(p.real_S22, p.imag_S22);
}
// remove calkit if specified
if(!isIdeal) {
complex<double> calStandard;
auto standards = kit->toSOLT(p.frequency);
if(isOpen) {
calStandard = standards.Open;
} else {
calStandard = standards.Short;
}
// remove effect of calibration standard
reflection /= calStandard;
}
// sum phase differences to previous point
auto phase = arg(reflection);
if(p.pointNum == 0) {
last_phase = phase;
} else {
auto phasediff = phase - last_phase;
last_phase = phase;
if(phasediff > M_PI) {
phasediff -= 2 * M_PI;
} else if(phasediff <= -M_PI) {
phasediff += 2 * M_PI;
}
phasediff_sum += phasediff;
qDebug() << phasediff;
}
double x = sqrt(p.frequency / m.back().frequency);
double y = 20*log10(abs(reflection));
att_x.push_back(x);
att_y.push_back(y);
avg_x += x;
avg_y += y;
}
auto phase = phasediff_sum / (m.size() - 1);
auto freq_diff = m[1].frequency - m[0].frequency;
auto delay = -phase / (2 * M_PI * freq_diff);
// measured delay is two-way but port extension expects one-way
delay /= 2;
// calculate linear regression with transformed square root model
avg_x /= m.size();
avg_y /= m.size();
double sum_top = 0.0;
double sum_bottom = 0.0;
for(unsigned int i=0;i<att_x.size();i++) {
sum_top += (att_x[i] - avg_x)*(att_y[i] - avg_y);
sum_bottom += (att_x[i] - avg_x)*(att_x[i] - avg_x);
}
double beta = sum_top / sum_bottom;
double alpha = avg_y - beta * avg_x;
double DCloss = -alpha / 2;
double loss = -beta / 2;
double freq = m.back().frequency;
if(isPort1) {
ui->P1Time->setValue(delay);
ui->P1DCloss->setValue(DCloss);
ui->P1Loss->setValue(loss);
ui->P1Frequency->setValue(freq);
} else {
ui->P2Time->setValue(delay);
ui->P2DCloss->setValue(DCloss);
ui->P2Loss->setValue(loss);
ui->P2Frequency->setValue(freq);
}
}
}
void PortExtension::startMeasurement()
{
measurements.clear();
msgBox = new QMessageBox(QMessageBox::Information, "Auto port extension", "Taking measurement...", QMessageBox::Cancel);
connect(msgBox, &QMessageBox::rejected, [=]() {
measuring = false;
measurements.clear();
});
msgBox->show();
measuring = true;
emit triggerMeasurement(isPort1, false, false, !isPort1);
}
void PortExtension::setCalkit(Calkit *kit)

View File

@ -24,6 +24,7 @@ public:
void fromJSON(nlohmann::json j) override;
public slots:
void edit() override;
void measurementCompleted(std::vector<Protocol::Datapoint> m) override;
private:
void startMeasurement();
@ -40,11 +41,11 @@ private:
// status variables for automatic measurements
Calkit *kit;
bool measuring;
// bool measuring;
bool isPort1;
bool isOpen;
bool isIdeal;
std::vector<Protocol::Datapoint> measurements;
// std::vector<Protocol::Datapoint> measurements;
QMessageBox *msgBox;
Ui::PortExtensionEditDialog *ui;
};

View File

@ -2,12 +2,15 @@
<ui version="4.0">
<class>PortExtensionEditDialog</class>
<widget class="QDialog" name="PortExtensionEditDialog">
<property name="windowModality">
<enum>Qt::ApplicationModal</enum>
</property>
<property name="geometry">
<rect>
<x>0</x>
<y>0</y>
<width>318</width>
<height>476</height>
<height>505</height>
</rect>
</property>
<property name="windowTitle">

View File

@ -2,227 +2,56 @@
#include "CustomWidgets/informationbox.h"
#include "ui_twothrudialog.h"
#include "Traces/fftcomplex.h"
#include <QDebug>
#include "unit.h"
using namespace std;
TwoThru::TwoThru()
{
measuring = false;
Z0 = 50.0;
}
void TwoThru::transformDatapoint(Protocol::Datapoint &p)
{
auto S11 = complex<double>(p.real_S11, p.imag_S11);
auto S12 = complex<double>(p.real_S12, p.imag_S12);
auto S21 = complex<double>(p.real_S21, p.imag_S21);
auto S22 = complex<double>(p.real_S22, p.imag_S22);
Sparam S(S11, S12, S21, S22);
Tparam meas(S);
if(measuring) {
if(measurements.size() > 0 && p.pointNum == 0) {
// complete sweep measured, exit measurement mode
measuring = false;
// calculate error boxes, see https://www.freelists.org/post/si-list/IEEE-P370-Opensource-Deembedding-MATLAB-functions
// create vectors of S parameters
vector<complex<double>> S11, S12, S21, S22;
vector<double> f;
for(auto m : measurements) {
if(m.frequency == 0) {
// ignore possible DC point
continue;
}
S11.push_back(complex<double>(m.real_S11, m.imag_S11));
S12.push_back(complex<double>(m.real_S12, m.imag_S12));
S21.push_back(complex<double>(m.real_S21, m.imag_S21));
S22.push_back(complex<double>(m.real_S22, m.imag_S22));
f.push_back(m.frequency);
}
auto n = f.size();
auto makeSymmetric = [](const vector<complex<double>> &in) -> vector<complex<double>> {
auto abs_DC = 2.0 * abs(in[0]) - abs(in[1]);
auto phase_DC = 2.0 * arg(in[0]) - arg(in[1]);
auto DC = polar(abs_DC, phase_DC);
vector<complex<double>> ret;
ret.push_back(DC);
// add non-symmetric part
ret.insert(ret.end(), in.begin(), in.end());
// add flipped complex conjugate values
for(auto it = in.rbegin(); it != in.rend(); it++) {
ret.push_back(conj(*it));
}
return ret;
};
auto makeRealAndScale = [](vector<complex<double>> &in) {
for(unsigned int i=0;i<in.size();i++) {
in[i] = real(in[i]) / in.size();
}
};
// S parameter error boxes
vector<Sparam> data_side1, data_side2;
{
auto p112x = makeSymmetric(S11);
auto p212x = makeSymmetric(S21);
// transform into time domain and calculate step responses
auto t112x = p112x;
Fft::transform(t112x, true);
makeRealAndScale(t112x);
Fft::shift(t112x, false);
partial_sum(t112x.begin(), t112x.end(), t112x.begin());
auto t212x = p212x;
Fft::transform(t212x, true);
makeRealAndScale(t212x);
Fft::shift(t212x, false);
partial_sum(t212x.begin(), t212x.end(), t212x.begin());
// find the midpoint of the trace
double threshold = 0.5*real(t212x.back());
auto mid = lower_bound(t212x.begin(), t212x.end(), threshold, [](complex<double> p, double c) -> bool {
return real(p) < c;
}) - t212x.begin();
// mask step response
vector<complex<double>> t111xStep(2*n + 1, 0.0);
copy(t112x.begin() + n, t112x.begin() + mid, t111xStep.begin() + n);
Fft::shift(t111xStep, true);
// create impulse response from masked step response
adjacent_difference(t111xStep.begin(), t111xStep.end(), t111xStep.begin());
Fft::transform(t111xStep, false);
auto &p111x = t111xStep;
// calculate p221x and p211x
vector<complex<double>> p221x;
vector<complex<double>> p211x;
double k = 1.0;
complex<double> test, last_test;
for(unsigned int i=0;i<p112x.size();i++) {
p221x.push_back((p112x[i]-p111x[i])/p212x[i]);
test = sqrt(p212x[i]*(1.0-p221x[i]*p221x[i]));
if(i > 0) {
if(arg(test) - arg(last_test) > 0) {
k = -k;
}
}
last_test = test;
p211x.push_back(k*test);
}
// create S parameter errorbox
for(unsigned int i=1;i<=n;i++) {
data_side1.push_back(Sparam(p111x[i], p211x[i], p211x[i], p221x[i]));
}
}
// same thing for error box 2. Variable names get a bit confusing because they are viewed from port 2 (S22 is now called p112x, ...).
// All variable names follow https://gitlab.com/IEEE-SA/ElecChar/P370/-/blob/master/TG1/IEEEP3702xThru_Octave.m
{
auto p112x = makeSymmetric(S22);
auto p212x = makeSymmetric(S12);
// transform into time domain and calculate step responses
auto t112x = p112x;
Fft::transform(t112x, true);
makeRealAndScale(t112x);
Fft::shift(t112x, false);
partial_sum(t112x.begin(), t112x.end(), t112x.begin());
auto t212x = p212x;
Fft::transform(t212x, true);
makeRealAndScale(t212x);
Fft::shift(t212x, false);
partial_sum(t212x.begin(), t212x.end(), t212x.begin());
// find the midpoint of the trace
double threshold = 0.5*real(t212x.back());
auto mid = lower_bound(t212x.begin(), t212x.end(), threshold, [](complex<double> p, double c) -> bool {
return real(p) < c;
}) - t212x.begin();
// mask step response
vector<complex<double>> t111xStep(2*n + 1, 0.0);
copy(t112x.begin() + n, t112x.begin() + mid, t111xStep.begin() + n);
Fft::shift(t111xStep, true);
// create impulse response from masked step response
adjacent_difference(t111xStep.begin(), t111xStep.end(), t111xStep.begin());
Fft::transform(t111xStep, false);
auto &p111x = t111xStep;
// calculate p221x and p211x
vector<complex<double>> p221x;
vector<complex<double>> p211x;
double k = 1.0;
complex<double> test, last_test;
for(unsigned int i=0;i<p112x.size();i++) {
p221x.push_back((p112x[i]-p111x[i])/p212x[i]);
test = sqrt(p212x[i]*(1.0-p221x[i]*p221x[i]));
if(i > 0) {
if(arg(test) - arg(last_test) > 0) {
k = -k;
}
}
last_test = test;
p211x.push_back(k*test);
}
// create S parameter errorbox
for(unsigned int i=1;i<=n;i++) {
data_side2.push_back(Sparam(data_side1[i-1].m22, p211x[i], p211x[i], p111x[i]));
data_side1[i-1].m22 = p221x[i];
}
}
// got the error boxes, convert to T parameters and invert
for(unsigned int i=0;i<n;i++) {
Point p;
p.freq = f[i];
p.inverseP1 = Tparam(data_side1[i]).inverse();
p.inverseP2 = Tparam(data_side2[i]).inverse();
points.push_back(p);
}
measurements.clear();
if(msgBox) {
msgBox->accept();
msgBox = nullptr;
}
updateLabel();
} else if(measurements.size() > 0 || p.pointNum == 0) {
measurements.push_back(p);
}
}
// correct measurement
if(points.size() > 0) {
if(p.frequency != 0 && (p.frequency < points.front().freq || p.frequency > points.back().freq)) {
// No exact match, measurement no longer valid
points.clear();
InformationBox::ShowMessage("Warning", "2xThru measurement cleared because it no longer matches the selected span");
return;
}
// find correct measurement point
auto point = lower_bound(points.begin(), points.end(), p.frequency, [](Point p, uint64_t freq) -> bool {
return p.freq < freq;
});
auto S11 = complex<double>(p.real_S11, p.imag_S11);
auto S12 = complex<double>(p.real_S12, p.imag_S12);
auto S21 = complex<double>(p.real_S21, p.imag_S21);
auto S22 = complex<double>(p.real_S22, p.imag_S22);
Sparam S(S11, S12, S21, S22);
Tparam meas(S);
Tparam inv1, inv2;
if(point->freq == p.frequency) {
inv1 = point->inverseP1;
inv2 = point->inverseP2;
if(p.frequency < points.front().freq) {
inv1 = points.front().inverseP1;
inv2 = points.front().inverseP2;
} else if(p.frequency > points.back().freq) {
inv1 = points.back().inverseP1;
inv2 = points.back().inverseP2;
} else {
// need to interpolate
auto high = point;
point--;
auto low = point;
double alpha = (p.frequency - low->freq) / (high->freq - low->freq);
inv1 = low->inverseP1 * (1 - alpha) + high->inverseP1 * alpha;
inv2 = low->inverseP2 * (1 - alpha) + high->inverseP2 * alpha;
// find correct measurement point
auto point = lower_bound(points.begin(), points.end(), p.frequency, [](Point p, uint64_t freq) -> bool {
return p.freq < freq;
});
if(point->freq == p.frequency) {
inv1 = point->inverseP1;
inv2 = point->inverseP2;
} else {
// need to interpolate
auto high = point;
point--;
auto low = point;
double alpha = (p.frequency - low->freq) / (high->freq - low->freq);
inv1 = low->inverseP1 * (1 - alpha) + high->inverseP1 * alpha;
inv2 = low->inverseP2 * (1 - alpha) + high->inverseP2 * alpha;
}
}
// perform correction
Tparam corrected = inv1*meas*inv2;
// transform back into S parameters
Sparam S(corrected);
S = Sparam(corrected);
p.real_S11 = real(S.m11);
p.imag_S11 = imag(S.m11);
p.real_S12 = real(S.m12);
@ -236,27 +65,58 @@ void TwoThru::transformDatapoint(Protocol::Datapoint &p)
void TwoThru::startMeasurement()
{
points.clear();
measurements.clear();
updateLabel();
msgBox = new QMessageBox(QMessageBox::Information, "2xThru", "Taking measurement...", QMessageBox::Cancel);
connect(msgBox, &QMessageBox::rejected, [=]() {
measuring = false;
points.clear();
measurements.clear();
updateLabel();
});
msgBox->show();
measuring = true;
emit triggerMeasurement();
}
void TwoThru::updateLabel()
void TwoThru::updateGUI()
{
if(points.size() > 0) {
ui->lInfo->setText("Got "+QString::number(points.size())+" points");
if(measurements2xthru.size() > 0) {
ui->l2xthru->setText(QString::number(measurements2xthru.size())+" points from "
+Unit::ToString(measurements2xthru.front().frequency, "Hz", " kMG", 4)+" to "
+Unit::ToString(measurements2xthru.back().frequency, "Hz", " kMG", 4));
} else {
ui->lInfo->setText("No measurement, not deembedding");
ui->l2xthru->setText("Not available, not de-embedding");
}
if(measurementsDUT.size() > 0) {
ui->lDUT->setText(QString::number(measurementsDUT.size())+" points from "
+Unit::ToString(measurementsDUT.front().frequency, "Hz", " kMG", 4)+" to "
+Unit::ToString(measurementsDUT.back().frequency, "Hz", " kMG", 4));
} else {
ui->lDUT->setText("Not available, not de-embedding");
}
if(points.size() > 0) {
ui->lPoints->setText(QString::number(points.size())+" points from "
+Unit::ToString(points.front().freq, "Hz", " kMG", 4)+" to "
+Unit::ToString(points.back().freq, "Hz", " kMG", 4));
} else {
ui->lPoints->setText("Not available, not de-embedding");
}
if (measurementsDUT.size() > 0 && measurements2xthru.size() > 0) {
// correction using both measurements is available
ui->Z0->setEnabled(true);
ui->bCalc->setEnabled(true);
} else if(measurements2xthru.size() > 0) {
// simpler correction using only 2xthru measurement available
ui->Z0->setEnabled(false);
ui->bCalc->setEnabled(true);
} else {
// no correction available
ui->Z0->setEnabled(false);
ui->bCalc->setEnabled(false);
}
}
void TwoThru::measurementCompleted(std::vector<Protocol::Datapoint> m)
{
if (measuring2xthru) {
measurements2xthru = m;
} else if(measuringDUT) {
measurementsDUT = m;
}
updateGUI();
}
void TwoThru::edit()
@ -264,11 +124,48 @@ void TwoThru::edit()
auto dialog = new QDialog();
ui = new Ui::TwoThruDialog();
ui->setupUi(dialog);
ui->Z0->setUnit("Ω");
ui->Z0->setPrecision(4);
ui->Z0->setValue(Z0);
connect(ui->bMeasure, &QPushButton::clicked, this, &TwoThru::startMeasurement);
connect(ui->buttonBox, &QDialogButtonBox::accepted, dialog, &QDialog::accept);
// choice of Z0 does not seem to make any difference, hide from user
ui->Z0->setVisible(false);
ui->lZ0->setVisible(false);
updateLabel();
connect(ui->bMeasure, &QPushButton::clicked, [=](){
measuringDUT = false;
measuring2xthru = true;
startMeasurement();
});
connect(ui->bMeasureDUT, &QPushButton::clicked, [=](){
measuringDUT = true;
measuring2xthru = false;
startMeasurement();
});
connect(ui->bClear, &QPushButton::clicked, [=](){
measurements2xthru.clear();
updateGUI();
});
connect(ui->bClearDUT, &QPushButton::clicked, [=](){
measurementsDUT.clear();
updateGUI();
});
connect(ui->bCalc, &QPushButton::clicked, [=](){
ui->lPoints->setText("Calculating...");
qApp->processEvents();
if(measurementsDUT.size() > 0) {
points = calculateErrorBoxes(measurements2xthru, measurementsDUT, ui->Z0->value());
} else {
points = calculateErrorBoxes(measurements2xthru);
}
updateGUI();
});
updateGUI();
dialog->show();
}
@ -317,3 +214,509 @@ void TwoThru::fromJSON(nlohmann::json j)
points.push_back(p);
}
}
std::vector<TwoThru::Point> TwoThru::calculateErrorBoxes(std::vector<Protocol::Datapoint> data_2xthru)
{
// calculate error boxes, see https://www.freelists.org/post/si-list/IEEE-P370-Opensource-Deembedding-MATLAB-functions
// create vectors of S parameters
vector<complex<double>> S11, S12, S21, S22;
vector<double> f;
// remove DC point if present
if(data_2xthru[0].frequency == 0) {
data_2xthru.erase(data_2xthru.begin());
}
data_2xthru = interpolateEvenFrequencySteps(data_2xthru);
for(auto m : data_2xthru) {
if(m.frequency == 0) {
// ignore possible DC point
continue;
}
S11.push_back(complex<double>(m.real_S11, m.imag_S11));
S12.push_back(complex<double>(m.real_S12, m.imag_S12));
S21.push_back(complex<double>(m.real_S21, m.imag_S21));
S22.push_back(complex<double>(m.real_S22, m.imag_S22));
f.push_back(m.frequency);
}
auto n = f.size();
auto makeSymmetric = [](const vector<complex<double>> &in) -> vector<complex<double>> {
auto abs_DC = 2.0 * abs(in[0]) - abs(in[1]);
auto phase_DC = 2.0 * arg(in[0]) - arg(in[1]);
auto DC = polar(abs_DC, phase_DC);
vector<complex<double>> ret;
ret.push_back(DC);
// add non-symmetric part
ret.insert(ret.end(), in.begin(), in.end());
// add flipped complex conjugate values
for(auto it = in.rbegin(); it != in.rend(); it++) {
ret.push_back(conj(*it));
}
return ret;
};
auto makeRealAndScale = [](vector<complex<double>> &in) {
for(unsigned int i=0;i<in.size();i++) {
in[i] = real(in[i]) / in.size();
}
};
// S parameter error boxes
vector<Sparam> data_side1, data_side2;
{
auto p112x = makeSymmetric(S11);
auto p212x = makeSymmetric(S21);
// transform into time domain and calculate step responses
auto t112x = p112x;
Fft::transform(t112x, true);
makeRealAndScale(t112x);
Fft::shift(t112x, false);
partial_sum(t112x.begin(), t112x.end(), t112x.begin());
auto t212x = p212x;
Fft::transform(t212x, true);
makeRealAndScale(t212x);
Fft::shift(t212x, false);
partial_sum(t212x.begin(), t212x.end(), t212x.begin());
// find the midpoint of the trace
double threshold = 0.5*real(t212x.back());
auto mid = lower_bound(t212x.begin(), t212x.end(), threshold, [](complex<double> p, double c) -> bool {
return real(p) < c;
}) - t212x.begin();
// mask step response
vector<complex<double>> t111xStep(2*n + 1, 0.0);
copy(t112x.begin() + n, t112x.begin() + mid, t111xStep.begin() + n);
Fft::shift(t111xStep, true);
// create impulse response from masked step response
adjacent_difference(t111xStep.begin(), t111xStep.end(), t111xStep.begin());
Fft::transform(t111xStep, false);
auto &p111x = t111xStep;
// calculate p221x and p211x
vector<complex<double>> p221x;
vector<complex<double>> p211x;
double k = 1.0;
complex<double> test, last_test;
for(unsigned int i=0;i<p112x.size();i++) {
p221x.push_back((p112x[i]-p111x[i])/p212x[i]);
test = sqrt(p212x[i]*(1.0-p221x[i]*p221x[i]));
if(i > 0) {
if(arg(test) - arg(last_test) > 0) {
k = -k;
}
}
last_test = test;
p211x.push_back(k*test);
}
// create S parameter errorbox
for(unsigned int i=1;i<=n;i++) {
data_side1.push_back(Sparam(p111x[i], p211x[i], p211x[i], p221x[i]));
}
}
// same thing for error box 2. Variable names get a bit confusing because they are viewed from port 2 (S22 is now called p112x, ...).
// All variable names follow https://gitlab.com/IEEE-SA/ElecChar/P370/-/blob/master/TG1/IEEEP3702xThru_Octave.m
{
auto p112x = makeSymmetric(S22);
auto p212x = makeSymmetric(S12);
// transform into time domain and calculate step responses
auto t112x = p112x;
Fft::transform(t112x, true);
makeRealAndScale(t112x);
Fft::shift(t112x, false);
partial_sum(t112x.begin(), t112x.end(), t112x.begin());
auto t212x = p212x;
Fft::transform(t212x, true);
makeRealAndScale(t212x);
Fft::shift(t212x, false);
partial_sum(t212x.begin(), t212x.end(), t212x.begin());
// find the midpoint of the trace
double threshold = 0.5*real(t212x.back());
auto mid = lower_bound(t212x.begin(), t212x.end(), threshold, [](complex<double> p, double c) -> bool {
return real(p) < c;
}) - t212x.begin();
// mask step response
vector<complex<double>> t111xStep(2*n + 1, 0.0);
copy(t112x.begin() + n, t112x.begin() + mid, t111xStep.begin() + n);
Fft::shift(t111xStep, true);
// create impulse response from masked step response
adjacent_difference(t111xStep.begin(), t111xStep.end(), t111xStep.begin());
Fft::transform(t111xStep, false);
auto &p111x = t111xStep;
// calculate p221x and p211x
vector<complex<double>> p221x;
vector<complex<double>> p211x;
double k = 1.0;
complex<double> test, last_test;
for(unsigned int i=0;i<p112x.size();i++) {
p221x.push_back((p112x[i]-p111x[i])/p212x[i]);
test = sqrt(p212x[i]*(1.0-p221x[i]*p221x[i]));
if(i > 0) {
if(arg(test) - arg(last_test) > 0) {
k = -k;
}
}
last_test = test;
p211x.push_back(k*test);
}
// create S parameter errorbox
for(unsigned int i=1;i<=n;i++) {
data_side2.push_back(Sparam(data_side1[i-1].m22, p211x[i], p211x[i], p111x[i]));
data_side1[i-1].m22 = p221x[i];
}
}
// got the error boxes, convert to T parameters and invert
vector<Point> ret;
for(unsigned int i=0;i<n;i++) {
Point p;
p.freq = f[i];
p.inverseP1 = Tparam(data_side1[i]).inverse();
p.inverseP2 = Tparam(data_side2[i]).inverse();
ret.push_back(p);
}
return ret;
}
std::vector<TwoThru::Point> TwoThru::calculateErrorBoxes(std::vector<Protocol::Datapoint> data_2xthru, std::vector<Protocol::Datapoint> data_fix_dut_fix, double z0)
{
vector<Point> ret;
if(data_2xthru.size() != data_fix_dut_fix.size()) {
InformationBox::ShowMessage("Unable to calculate", "The DUT and 2xthru measurements do not have the same amount of points, calculation not possible");
return ret;
}
// check if frequencies are the same (measurements must be taken with identical span settings)
for(unsigned int i=0;i<data_2xthru.size();i++) {
if(abs((long int)data_2xthru[i].frequency - (long int)data_fix_dut_fix[i].frequency) > (double) data_2xthru[i].frequency / 1e9) {
InformationBox::ShowMessage("Unable to calculate", "The DUT and 2xthru measurements do not have identical frequencies for all points, calculation not possible");
return ret;
}
}
data_2xthru = interpolateEvenFrequencySteps(data_2xthru);
data_fix_dut_fix = interpolateEvenFrequencySteps(data_fix_dut_fix);
// Variable names and order of calulation follows https://gitlab.com/IEEE-SA/ElecChar/P370/-/blob/master/TG1/IEEEP370Zc2xThru_Octave.m as close as possible
vector<Sparam> p;
vector<double> f;
for(auto d : data_2xthru) {
p.push_back(Sparam(complex<double>(d.real_S11, d.imag_S11),
complex<double>(d.real_S12, d.imag_S12),
complex<double>(d.real_S21, d.imag_S21),
complex<double>(d.real_S22, d.imag_S22)));
f.push_back(d.frequency);
}
auto data_2xthru_Sparam = p;
vector<Sparam> data_fix_dut_fix_Sparam;
for(auto d : data_fix_dut_fix) {
data_fix_dut_fix_Sparam.push_back(Sparam(complex<double>(d.real_S11, d.imag_S11),
complex<double>(d.real_S12, d.imag_S12),
complex<double>(d.real_S21, d.imag_S21),
complex<double>(d.real_S22, d.imag_S22)));
}
// grabbing S21
vector<complex<double>> s212x;
for(auto s : p) {
s212x.push_back(s.m21);
}
// get the attenuation and phase constant per length
vector<complex<double>> gamma;
double last_angle = 0.0;
for(auto s : s212x) {
// unwrap phase
double angle = arg(s);
while(angle - last_angle > M_PI) {
angle -= 2 * M_PI;
}
while(angle - last_angle < -M_PI) {
angle += 2 * M_PI;
}
last_angle = angle;
double beta_per_length = -angle;
double alpha_per_length = 20 * log10(abs(s))/-8.686;
// assume no bandwidth limit (==0)
gamma.push_back(complex<double>(alpha_per_length, beta_per_length));
}
// helper function lambdas
auto makeSymmetric = [](const vector<complex<double>> &in) -> vector<complex<double>> {
auto ret = in;
for(auto it = in.rbegin();it != in.rend();it++) {
ret.push_back(conj(*it));
}
// went one step too far, remove the DC point from the symmetric data
ret.pop_back();
return ret;
};
auto makeRealAndScale = [](vector<complex<double>> &in) {
for(unsigned int i=0;i<in.size();i++) {
in[i] = real(in[i]) / in.size();
}
};
auto DC2 = [=](const vector<complex<double>> &s, const vector<double> &f) -> complex<double> {
auto simple_filter = [](const vector<double> &f, double f0) -> vector<complex<double>> {
vector<complex<double>> ret;
for(auto v : f) {
ret.push_back(1.0/complex<double>(1.0, pow(v/f0, 4)));
}
return ret;
};
complex<double> DCpoint = 0.002; // seed for the algorithm
double err = 1; // error seed
double allowedError = 1e-10; // allowable error
long cnt = 0;
auto df = f[1] - f[0];
auto n = f.size();
unsigned int ts = round((-3e-9) / ((2.0/df)/(n*2+1)) + (n*2+1)/2);
auto Hr = simple_filter(f, f.back()/2);
while (err > allowedError) {
vector<complex<double>> f1;
f1.push_back(DCpoint);
for(unsigned int i=0;i<n;i++) {
f1.push_back(s[i] * Hr[i]);
}
auto h1 = makeSymmetric(f1);
Fft::transform(h1, true);
makeRealAndScale(h1);
Fft::shift(h1, false);
partial_sum(h1.begin(), h1.end(), h1.begin());
vector<complex<double>> f2;
f2.push_back(DCpoint+0.001);
for(unsigned int i=0;i<n;i++) {
f2.push_back(s[i] * Hr[i]);
}
auto h2 = makeSymmetric(f2);
Fft::transform(h2, true);
makeRealAndScale(h2);
Fft::shift(h2, false);
partial_sum(h2.begin(), h2.end(), h2.begin());
auto m = (h2[ts]-h1[ts])/0.001;
auto b = h1[ts] - m*DCpoint;
DCpoint = (0.0 - b) / m;
err = abs(h1[ts] - 0.0);
cnt++;
}
return DCpoint;
};
auto makeTL = [](const vector<complex<double>> &gamma, double l, complex<double> zLine, complex<double> z0) -> vector<Sparam> {
vector<Sparam> ret;
for(auto g : gamma) {
auto s11 = ((zLine*zLine-z0*z0)*sinh(g*l))/((zLine*zLine+z0*z0)*sinh(g*l)+2.0*z0*zLine*cosh(g*l));
auto s21 = (2.0*z0*zLine)/((zLine*zLine + z0*z0)*sinh(g*l)+2.0*z0*zLine*cosh(g*l));
ret.push_back(Sparam(s11, s21, s21, s11));
}
return ret;
};
auto hybrid = [](const vector<Sparam> &errorbox, const vector<Sparam> &data_2xthru, const vector<double> &freq_2xthru) -> vector<Sparam> {
// taking the errorbox created by peeling and using it only for e00 and e11
// grab s11 and s22 of errorbox model
vector<complex<double>> s111x, s221x;
for(auto s : errorbox) {
s111x.push_back(s.m11);
s221x.push_back(s.m22);
}
// grab s21 of the 2x thru measurement
vector<complex<double>> s212x;
for(auto s : data_2xthru) {
s212x.push_back(s.m21);
}
auto f = freq_2xthru;
double k = 1.0;
complex<double> test, last_test;
vector<complex<double>> s211x;
vector<Sparam> ret;
for(unsigned int i=0;i<f.size();i++) {
test = sqrt(s212x[i]*(1.0-s221x[i]*s221x[i]));
if(i > 0) {
if(arg(test) - arg(last_test) > 0) {
k = -k;
}
}
last_test = test;
s211x.push_back(k*test);
// create the error box and make the s-parameter block
ret.push_back(Sparam(s111x[i], s211x[i], s211x[i], s221x[i]));
}
return ret;
};
auto makeErrorbox = [=](const vector<Sparam> &data_dut, const vector<Sparam> &data_2xthru, const vector<double> &freq_2xthru, const vector<complex<double>> &gamma, complex<double> z0) -> vector<Sparam> {
auto f = freq_2xthru;
auto n = f.size();
vector<complex<double>> s212x;
// add the DC point
s212x.push_back(1.0);
for(auto p : data_2xthru) {
s212x.push_back(p.m21);
}
// extract the mid point from the 2x thru
auto t212x = makeSymmetric(s212x);
Fft::transform(t212x, true);
makeRealAndScale(t212x);
auto x = max_element(t212x.begin(), t212x.end(), [](complex<double> a, complex<double> b) -> bool {
return abs(a) < abs(b);
}) - t212x.begin() + 1;
// define the relative length
double l = 1.0/(2*x);
// peel away the fixture and create the errorbox
// create the errorbox seed (a perfect transmission line with no delay)
vector<ABCDparam> abcd_errorbox(n, ABCDparam(Sparam(0.0, 1.0, 1.0, 0.0), z0));
for(unsigned int i=0;i<x;i++) {
// INPUTS: data_dut, f, abcd_errorbox, n
// define the fixture-dut-fixture S-parameters
vector<complex<double>> s_dut;
for(auto s : data_dut) {
s_dut.push_back(s.m11);
}
// define the point for extraction
s_dut.insert(s_dut.begin(), DC2(s_dut, f));
auto dc11 = makeSymmetric(s_dut);
Fft::transform(dc11, true);
makeRealAndScale(dc11);
Fft::shift(dc11, false);
partial_sum(dc11.begin(), dc11.end(), dc11.begin());
auto t11dutStep = dc11;
vector<complex<double>> z11dutStep;
for(auto s : t11dutStep) {
z11dutStep.push_back(-z0 * (s+1.0)/(s-1.0));
}
Fft::shift(z11dutStep, true);
auto zLine = z11dutStep;
// create the TL
auto TL = makeTL(gamma, l, zLine[0], z0);
for(unsigned int i=0;i<n;i++) {
// peel away the the TL
auto abcd_TL = ABCDparam(TL[i], z0);
auto abcd_dut = ABCDparam(data_dut[i], z0);
abcd_dut = abcd_TL.inverse() * abcd_dut;
// add to the errorbox
abcd_errorbox[i] = abcd_errorbox[i] * abcd_TL;
}
}
vector<Sparam> errorbox;
for(auto abcd : abcd_errorbox) {
errorbox.push_back(Sparam(abcd, z0));
}
return hybrid(errorbox, data_2xthru, f);
};
// make the first error box
auto data_side1 = makeErrorbox(data_fix_dut_fix_Sparam, data_2xthru_Sparam, f, gamma, z0);
// reverse the port order of fixture-dut-fixture and 2x thru
vector<Sparam> data_fix_dut_fix_reversed;
for(auto s : data_fix_dut_fix_Sparam) {
data_fix_dut_fix_reversed.push_back(Sparam(s.m22, s.m21, s.m12, s.m11));
}
vector<Sparam> data_2xthru_reversed;
for(auto s : data_2xthru_Sparam) {
data_2xthru_reversed.push_back(Sparam(s.m22, s.m21, s.m12, s.m11));
}
// make the second error box
auto data_side2 = makeErrorbox(data_fix_dut_fix_reversed, data_2xthru_reversed, f, gamma, z0);
// got the error boxes, convert to T parameters and invert
for(unsigned int i=0;i<f.size();i++) {
Point p;
p.freq = f[i];
p.inverseP1 = Tparam(data_side1[i]).inverse();
// correct port order of error box 2
auto side2 = Sparam(data_side2[i].m22, data_side2[i].m21, data_side2[i].m12, data_side2[i].m11);
p.inverseP2 = Tparam(side2).inverse();
ret.push_back(p);
}
return ret;
}
std::vector<Protocol::Datapoint> TwoThru::interpolateEvenFrequencySteps(std::vector<Protocol::Datapoint> input)
{
vector<Protocol::Datapoint> ret;
if(input.size() > 1) {
int size = input.size();
double freqStep = 0.0;
if(input.front().frequency == 0) {
freqStep = input[1].frequency;
size--;
} else {
freqStep = input[0].frequency;
}
if(freqStep * size == input.back().frequency) {
// already correct spacing, no interpolation necessary
for(auto d : input) {
if(d.frequency == 0) {
continue;
}
ret.push_back(d);
}
} else {
// needs to interpolate
double freq = freqStep;
while(freq <= input.back().frequency) {
Protocol::Datapoint interp;
auto it = lower_bound(input.begin(), input.end(), freq, [](const Protocol::Datapoint &lhs, const double f) -> bool {
return lhs.frequency < f;
});
if(it->frequency == freq) {
interp = *it;
} else {
// no exact match, needs to interpolate
auto high = *it;
it--;
auto low = *it;
double alpha = (freq - low.frequency) / (high.frequency - low.frequency);
interp.real_S11 = low.real_S11 * (1.0 - alpha) + high.real_S11 * alpha;
interp.imag_S11 = low.imag_S11 * (1.0 - alpha) + high.imag_S11 * alpha;
interp.real_S12 = low.real_S12 * (1.0 - alpha) + high.real_S12 * alpha;
interp.imag_S12 = low.imag_S12 * (1.0 - alpha) + high.imag_S12 * alpha;
interp.real_S21 = low.real_S21 * (1.0 - alpha) + high.real_S21 * alpha;
interp.imag_S21 = low.imag_S21 * (1.0 - alpha) + high.imag_S21 * alpha;
interp.real_S22 = low.real_S22 * (1.0 - alpha) + high.real_S22 * alpha;
interp.imag_S22 = low.imag_S22 * (1.0 - alpha) + high.imag_S22 * alpha;
}
interp.frequency = freq;
ret.push_back(interp);
freq += freqStep;
}
}
}
return ret;
}

View File

@ -23,15 +23,24 @@ public:
private slots:
void startMeasurement();
void updateLabel();
void updateGUI();
void measurementCompleted(std::vector<Protocol::Datapoint> m) override;
private:
using Point = struct {
double freq;
Tparam inverseP1, inverseP2;
};
std::vector<Protocol::Datapoint> measurements;
static std::vector<Protocol::Datapoint> interpolateEvenFrequencySteps(std::vector<Protocol::Datapoint> input);
static std::vector<Point> calculateErrorBoxes(std::vector<Protocol::Datapoint> data_2xthru);
static std::vector<Point> calculateErrorBoxes(std::vector<Protocol::Datapoint> data_2xthru, std::vector<Protocol::Datapoint> data_fix_dut_fix, double z0);
std::vector<Protocol::Datapoint> measurements2xthru;
std::vector<Protocol::Datapoint> measurementsDUT;
double Z0;
std::vector<Point> points;
bool measuring;
bool measuring2xthru;
bool measuringDUT;
QMessageBox *msgBox;
Ui::TwoThruDialog *ui;
};

View File

@ -9,8 +9,8 @@
<rect>
<x>0</x>
<y>0</y>
<width>233</width>
<height>103</height>
<width>742</width>
<height>198</height>
</rect>
</property>
<property name="windowTitle">
@ -21,41 +21,112 @@
</property>
<layout class="QVBoxLayout" name="verticalLayout">
<item>
<widget class="QLabel" name="lInfo">
<property name="text">
<string/>
<widget class="QGroupBox" name="groupBox">
<property name="title">
<string>Measurements</string>
</property>
<layout class="QGridLayout" name="gridLayout" columnstretch="0,1,0,0" columnminimumwidth="0,0,0,0">
<item row="0" column="0">
<widget class="QLabel" name="label">
<property name="text">
<string>2xThru (mandatory):</string>
</property>
</widget>
</item>
<item row="1" column="0">
<widget class="QLabel" name="label_2">
<property name="text">
<string>Fixture-DUT-Fixture (optional):</string>
</property>
</widget>
</item>
<item row="0" column="3">
<widget class="QPushButton" name="bMeasure">
<property name="text">
<string>Measure</string>
</property>
</widget>
</item>
<item row="0" column="1">
<widget class="QLabel" name="l2xthru">
<property name="text">
<string/>
</property>
</widget>
</item>
<item row="1" column="1">
<widget class="QLabel" name="lDUT">
<property name="text">
<string/>
</property>
</widget>
</item>
<item row="1" column="3">
<widget class="QPushButton" name="bMeasureDUT">
<property name="text">
<string>Measure</string>
</property>
</widget>
</item>
<item row="0" column="2">
<widget class="QPushButton" name="bClear">
<property name="text">
<string>Clear</string>
</property>
</widget>
</item>
<item row="1" column="2">
<widget class="QPushButton" name="bClearDUT">
<property name="text">
<string>Clear</string>
</property>
</widget>
</item>
</layout>
</widget>
</item>
<item>
<widget class="QPushButton" name="bMeasure">
<property name="text">
<string>Measure</string>
</property>
</widget>
</item>
<item>
<spacer name="verticalSpacer">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>20</width>
<height>40</height>
</size>
</property>
</spacer>
</item>
<item>
<widget class="QDialogButtonBox" name="buttonBox">
<property name="standardButtons">
<set>QDialogButtonBox::Ok</set>
<widget class="QGroupBox" name="groupBox_2">
<property name="title">
<string>Calculated de-embedding parameters</string>
</property>
<layout class="QHBoxLayout" name="horizontalLayout" stretch="1,0,0,0">
<item>
<widget class="QLabel" name="lPoints">
<property name="text">
<string/>
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="lZ0">
<property name="text">
<string>Z0:</string>
</property>
</widget>
</item>
<item>
<widget class="SIUnitEdit" name="Z0"/>
</item>
<item>
<widget class="QPushButton" name="bCalc">
<property name="text">
<string>Calculate</string>
</property>
</widget>
</item>
</layout>
</widget>
</item>
</layout>
</widget>
<customwidgets>
<customwidget>
<class>SIUnitEdit</class>
<extends>QLineEdit</extends>
<header>CustomWidgets/siunitedit.h</header>
</customwidget>
</customwidgets>
<resources/>
<connections/>
</ui>

View File

@ -47,6 +47,7 @@
VNA::VNA(AppWindow *window)
: Mode(window, "Vector Network Analyzer"),
deembedding(traceModel),
central(new TileWidget(traceModel))
{
averages = 1;