Remove IFTable limitation, calculate 2.LO shift on the fly

This commit is contained in:
Jan Käberich 2022-11-20 01:19:42 +01:00
parent df8fa25935
commit ec6fae5822

View File

@ -23,6 +23,7 @@
static Protocol::SweepSettings settings;
static uint16_t pointCnt;
static uint8_t stageCnt;
static uint32_t last_LO2;
static double logMultiplier, logFrequency;
static Protocol::VNADatapoint<32> data;
static bool active = false;
@ -37,15 +38,6 @@ static bool zerospan;
static constexpr uint8_t sourceHarmonic = 5;
static constexpr uint8_t LOHarmonic = 3;
using IFTableEntry = struct {
uint16_t pointCnt;
uint8_t clkconfig[8];
};
static constexpr uint16_t IFTableNumEntries = 500;
static IFTableEntry IFTable[IFTableNumEntries];
static uint16_t IFTableIndexCnt = 0;
static constexpr float alternativeSamplerate = 914285.7143f;
static constexpr uint8_t alternativePrescaler = 102400000UL / alternativeSamplerate;
static_assert(alternativePrescaler * alternativeSamplerate == 102400000UL, "alternative ADCSamplerate can not be reached exactly");
@ -77,6 +69,42 @@ static uint64_t getPointFrequency(uint16_t pointNum) {
}
}
static void setPLLFrequencies(uint64_t f) {
if(f > HW::Info.limits_maxFreq) {
Source.SetFrequency(f / sourceHarmonic);
LO1.SetFrequency((f + HW::getIF1()) / LOHarmonic);
} else {
if(f >= HW::BandSwitchFrequency) {
Source.SetFrequency(f);
}
LO1.SetFrequency(f + HW::getIF1());
}
}
static bool needs2LOshift(uint64_t f, uint32_t current2LO, uint32_t IFBW, uint32_t *new2LO) {
// Check if 2.LO needs to be shifted
uint64_t actualSource, actual1LO;
actualSource = Source.GetActualFrequency();
actual1LO = LO1.GetActualFrequency();
if(f > HW::Info.limits_maxFreq) {
actualSource *= sourceHarmonic;
actual1LO *= LOHarmonic;
} else if(f < HW::BandSwitchFrequency) {
// can use the lowband PLL with high frequency resolution, assume perfect frequency match
actualSource = f;
}
uint32_t actualFirstIF = actual1LO - actualSource;
uint32_t actualFinalIF = actualFirstIF - current2LO;
uint32_t IFdeviation = abs(actualFinalIF - HW::getIF2());
if(IFdeviation > IFBW / 2) {
*new2LO = actualFirstIF - HW::getIF2();
return true;
} else {
// no shift required
return false;
}
}
bool VNA::Setup(Protocol::SweepSettings s) {
VNA::Stop();
vTaskDelay(5);
@ -130,108 +158,48 @@ bool VNA::Setup(Protocol::SweepSettings s) {
FPGA::WriteMAX2871Default(Source.GetRegisters());
uint32_t last_LO2 = HW::getIF1() - HW::getIF2();
last_LO2 = HW::getIF1() - HW::getIF2();
Si5351.SetCLK(SiChannel::Port1LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
Si5351.SetCLK(SiChannel::Port2LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
Si5351.SetCLK(SiChannel::RefLO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
Si5351.ResetPLL(Si5351C::PLL::B);
Si5351.WaitForLock(Si5351C::PLL::B, 10);
IFTableIndexCnt = 0;
zerospan = (s.f_start == s.f_stop) && (s.cdbm_excitation_start == s.cdbm_excitation_stop);
bool last_lowband = false;
// invalidate first entry of IFTable, preventing switing of 2.LO in halted callback
IFTable[0].pointCnt = 0xFFFF;
uint16_t pointsWithoutHalt = 0;
// Transfer PLL configuration to FPGA
for (uint16_t i = 0; i < settings.points; i++) {
bool harmonic_mixing = false;
uint64_t freq = getPointFrequency(i);
int16_t power = s.cdbm_excitation_start + (s.cdbm_excitation_stop - s.cdbm_excitation_start) * i / (settings.points - 1);
freq = Cal::FrequencyCorrectionToDevice(freq);
if(freq > 6000000000ULL) {
harmonic_mixing = true;
}
// SetFrequency only manipulates the register content in RAM, no SPI communication is done.
// No mode-switch of FPGA necessary here.
bool needs_halt = false;
uint64_t actualSourceFreq;
bool lowband = false;
if (freq < HW::BandSwitchFrequency) {
needs_halt = true;
lowband = true;
actualSourceFreq = freq;
} else {
uint64_t srcFreq = freq;
if(harmonic_mixing) {
srcFreq /= sourceHarmonic;
}
Source.SetFrequency(srcFreq);
actualSourceFreq = Source.GetActualFrequency();
if(harmonic_mixing) {
actualSourceFreq *= sourceHarmonic;
}
if(i == 0) {
// halt before first point (makes sure that the 2.LO gets configured correctly if it was shifted for the last point in
// the previous sweep
needs_halt = true;
}
// SetFrequency only manipulates the register content in RAM, no SPI communication is done.
// No mode-switch of FPGA necessary here.
setPLLFrequencies(freq);
if(s.suppressPeaks) {
if(needs2LOshift(freq, last_LO2, actualBandwidth, &last_LO2)) {
needs_halt = true;
}
}
if (last_lowband && !lowband) {
// additional halt before first highband point to enable highband source
needs_halt = true;
}
uint64_t LOFreq = freq + HW::getIF1();
if(harmonic_mixing) {
LOFreq /= LOHarmonic;
}
LO1.SetFrequency(LOFreq);
uint64_t actualLO1 = LO1.GetActualFrequency();
if(harmonic_mixing) {
actualLO1 *= LOHarmonic;
}
uint32_t actualFirstIF = actualLO1 - actualSourceFreq;
uint32_t actualFinalIF = actualFirstIF - last_LO2;
uint32_t IFdeviation = abs(actualFinalIF - HW::getIF2());
bool needs_LO2_shift = false;
if(IFdeviation > actualBandwidth / 2) {
needs_LO2_shift = true;
}
if (s.suppressPeaks && needs_LO2_shift) {
if (IFTableIndexCnt < IFTableNumEntries) {
// still room in table
needs_halt = true;
IFTable[IFTableIndexCnt].pointCnt = i;
if(IFTableIndexCnt < IFTableNumEntries - 1) {
// Configure LO2 for the changed IF1. This is not necessary right now but it will generate
// the correct clock settings
last_LO2 = actualFirstIF - HW::getIF2();
LOG_INFO("Changing 2.LO to %lu at point %lu (%lu%06luHz) to reach correct 2.IF frequency (1.LO: %lu%06luHz, 1.IF: %lu%06luHz)",
last_LO2, i, (uint32_t ) (freq / 1000000),
(uint32_t ) (freq % 1000000), (uint32_t ) (actualLO1 / 1000000),
(uint32_t ) (actualLO1 % 1000000), (uint32_t ) (actualFirstIF / 1000000),
(uint32_t ) (actualFirstIF % 1000000));
} else {
// last entry in IF table, revert LO2 to default
last_LO2 = HW::getIF1() - HW::getIF2();
}
Si5351.SetCLK(SiChannel::RefLO2, last_LO2,
Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
// store calculated clock configuration for later change
Si5351.ReadRawCLKConfig(SiChannel::RefLO2, IFTable[IFTableIndexCnt].clkconfig);
IFTableIndexCnt++;
needs_LO2_shift = false;
}
}
if(needs_LO2_shift) {
// if shift is still needed either peak suppression is disabled or no more room in IFTable was available
LOG_WARN(
"PLL deviation of %luHz for measurement at %lu%06luHz, will cause a peak",
IFdeviation, (uint32_t ) (freq / 1000000), (uint32_t ) (freq % 1000000));
}
// halt on regular intervals to prevent USB buffer overflow
if(!needs_halt) {
@ -239,8 +207,7 @@ bool VNA::Setup(Protocol::SweepSettings s) {
if(pointsWithoutHalt > maxPointsBetweenHalts) {
needs_halt = true;
}
}
if(needs_halt) {
} else {
pointsWithoutHalt = 0;
}
@ -286,7 +253,6 @@ bool VNA::Setup(Protocol::SweepSettings s) {
FPGA::Enable(FPGA::Periphery::PortSwitch);
pointCnt = 0;
stageCnt = 0;
IFTableIndexCnt = 0;
adcShifted = false;
active = true;
// Enable new data and sweep halt interrupt
@ -344,7 +310,6 @@ bool VNA::MeasurementDone(const FPGA::SamplingResult &result) {
if (pointCnt >= settings.points) {
// reached end of sweep, start again
pointCnt = 0;
IFTableIndexCnt = 0;
// request to trigger work function
return true;
}
@ -376,22 +341,11 @@ void VNA::SweepHalted() {
// are handled through the STM::DispatchToInterrupt functionality, ensuring that they do not interrupt each other
STM::DispatchToInterrupt([](){
LOG_DEBUG("Halted before point %d", pointCnt);
// Check if IF table has entry at this point
if (IFTableIndexCnt < IFTableNumEntries && IFTable[IFTableIndexCnt].pointCnt == pointCnt) {
Si5351.WriteRawCLKConfig(SiChannel::Port1LO2, IFTable[IFTableIndexCnt].clkconfig);
Si5351.WriteRawCLKConfig(SiChannel::Port2LO2, IFTable[IFTableIndexCnt].clkconfig);
Si5351.WriteRawCLKConfig(SiChannel::RefLO2, IFTable[IFTableIndexCnt].clkconfig);
Si5351.ResetPLL(Si5351C::PLL::B);
IFTableIndexCnt++;
Si5351.WaitForLock(Si5351C::PLL::B, 10);
// PLL reset causes the 2.LO to turn off briefly and then ramp on back, needs delay before next point
Delay::us(1500);
}
bool adcShiftRequired = false;
uint64_t frequency = getPointFrequency(pointCnt);
int16_t power = settings.cdbm_excitation_start
+ (settings.cdbm_excitation_stop - settings.cdbm_excitation_start)
* pointCnt / (settings.points - 1);
bool adcShiftRequired = false;
if (frequency < HW::BandSwitchFrequency) {
auto driveStrength = fixedPowerLowband;
if(!settings.fixedPowerSetting) {
@ -432,6 +386,20 @@ void VNA::SweepHalted() {
Si5351.Disable(SiChannel::LowbandSource);
FPGA::Enable(FPGA::Periphery::SourceRF);
}
if(settings.suppressPeaks) {
// does not actually change PLL settings, just calculates the register values and
// is required to determine the need for a 2.LO shift
setPLLFrequencies(frequency);
if(needs2LOshift(frequency, last_LO2, actualBandwidth, &last_LO2)) {
Si5351.SetCLK(SiChannel::Port1LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
Si5351.SetCLK(SiChannel::Port2LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
Si5351.SetCLK(SiChannel::RefLO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
Si5351.ResetPLL(Si5351C::PLL::B);
Si5351.WaitForLock(Si5351C::PLL::B, 10);
// PLL reset causes the 2.LO to turn off briefly and then ramp on back, needs delay before next point
Delay::us(1500);
}
}
if (pointCnt == 0) {
HAL_Delay(2);