#include "tracepolar.h" #include "Marker/marker.h" #include "Util/util.h" #include using namespace std; TracePolar::TracePolar(TraceModel &model, QWidget *parent) : TracePlot(model, parent) { limitToSpan = true; limitToEdge = true; manualFrequencyRange = false; fmin = 0; fmax = 6000000000; edgeReflection = 1.0; offset = QPointF(0.0, 0.0); initializeTraceInfo(); } nlohmann::json TracePolar::toJSON() { nlohmann::json j; j["limit_to_span"] = limitToSpan; j["limit_to_edge"] = limitToEdge; j["edge_reflection"] = edgeReflection; j["offset_axis_x"] = offset.x(); j["offset_axis_y"] = offset.y(); j["frequency_override"] = manualFrequencyRange; j["override_min"] = fmin; j["override_max"] = fmax; nlohmann::json jtraces; for(auto t : traces) { if(t.second) { jtraces.push_back(t.first->toHash()); } } j["traces"] = jtraces; return j; } void TracePolar::fromJSON(nlohmann::json j) { limitToSpan = j.value("limit_to_span", true); limitToEdge = j.value("limit_to_edge", false); edgeReflection = j.value("edge_reflection", 1.0); manualFrequencyRange = j.value("frequency_override", false); fmin = j.value("override_min", 0.0); fmax = j.value("override_max", 6000000000.0); offset = QPointF(j.value("offset_axis_x", 0.0), j.value("offset_axis_y", 0.0)); for(unsigned int hash : j["traces"]) { // attempt to find the traces with this hash bool found = false; for(auto t : model.getTraces()) { if(t->toHash() == hash) { enableTrace(t, true); found = true; break; } } if(!found) { qWarning() << "Unable to find trace with hash" << hash; } } } void TracePolar::move(const QPoint &vect) { Trace::Data center; center.y = 0.0; center.x = 0.0; auto shift = pixelToData(dataToPixel(center) + vect); offset.rx() += shift.real(); offset.ry() += shift.imag(); replot(); } void TracePolar::zoom(const QPoint ¢er, double factor, bool horizontally, bool vertically) { Q_UNUSED(horizontally); Q_UNUSED(vertically); auto pos = pixelToData(center); auto shift = QPointF(pos.real(), pos.imag()); offset -= shift; edgeReflection *= factor; offset += shift * factor; replot(); } void TracePolar::setAuto(bool horizontally, bool vertically) { Q_UNUSED(horizontally); Q_UNUSED(vertically); edgeReflection = 1.0; offset = QPointF(0.0, 0.0); replot(); } //void TracePolar::wheelEvent(QWheelEvent *event) //{ // // most mousewheel have 15 degree increments, the reported delta is in 1/8th degree -> 120 // auto increment = event->angleDelta().y() / 120.0; // // round toward bigger step in case of special higher resolution mousewheel // int steps = increment > 0 ? ceil(increment) : floor(increment); // constexpr double zoomfactor = 1.1; // auto zoom = pow(zoomfactor, steps); // edgeReflection /= zoom; // auto incrementX = event->angleDelta().x() / 120.0; //// dx += incrementX/10; // triggerReplot(); //} bool TracePolar::positionWithinGraphArea(const QPoint &p) { // TODO auto coord = pixelToData(p); if(abs(coord) <= edgeReflection) { return true; } else { return false; } } QPoint TracePolar::dataToPixel(std::complex d) { return transform.map(QPoint(d.real() * polarCoordMax * (1.0 / edgeReflection), -d.imag() * polarCoordMax * (1.0 / edgeReflection))); } QPoint TracePolar:: dataToPixel(Trace::Data d) { return dataToPixel(d.y); } std::complex TracePolar::dataAddOffset(std::complex d) { auto dataShift = complex(offset.x(), offset.y()); d = d + dataShift; return d; } Trace::Data TracePolar::dataAddOffset(Trace::Data d) { d.y = dataAddOffset(d.y); return d; } QPoint TracePolar::dataToPixel(QPointF d) { return dataToPixel(complex(d.x(), d.y())); } std::complex TracePolar::pixelToData(QPoint p) { auto data = transform.inverted().map(QPointF(p)); return complex(data.x() / polarCoordMax * edgeReflection, -data.y() / polarCoordMax * edgeReflection); } QPoint TracePolar::markerToPixel(Marker *m) { QPoint ret = QPoint(); // if(!m->isTimeDomain()) { if(m->getPosition() >= sweep_fmin && m->getPosition() <= sweep_fmax) { auto d = m->getData(); d = dataAddOffset(d); ret = dataToPixel(d); } // } return ret; } double TracePolar::nearestTracePoint(Trace *t, QPoint pixel, double *distance) { double closestDistance = numeric_limits::max(); double closestXpos = 0; unsigned int closestIndex = 0; auto samples = t->size(); for(unsigned int i=0;isample(i); data = dataAddOffset(data); auto plotPoint = dataToPixel(data); if (plotPoint.isNull()) { // destination point outside of currently displayed range continue; } auto diff = plotPoint - pixel; unsigned int distance = diff.x() * diff.x() + diff.y() * diff.y(); if(distance < closestDistance) { closestDistance = distance; closestXpos = t->sample(i).x; closestIndex = i; } } closestDistance = sqrt(closestDistance); if(closestIndex > 0) { auto l1 = dataToPixel(dataAddOffset(t->sample(closestIndex-1))); auto l2 = dataToPixel(dataAddOffset(t->sample(closestIndex))); double ratio; auto distance = Util::distanceToLine(pixel, l1, l2, nullptr, &ratio); if(distance < closestDistance) { closestDistance = distance; closestXpos = t->sample(closestIndex-1).x + (t->sample(closestIndex).x - t->sample(closestIndex-1).x) * ratio; } } if(closestIndex < t->size() - 1) { auto l1 = dataToPixel(dataAddOffset(t->sample(closestIndex))); auto l2 = dataToPixel(dataAddOffset(t->sample(closestIndex+1))); double ratio; auto distance = Util::distanceToLine(pixel, l1, l2, nullptr, &ratio); if(distance < closestDistance) { closestDistance = distance; closestXpos = t->sample(closestIndex).x + (t->sample(closestIndex+1).x - t->sample(closestIndex).x) * ratio; } } if(distance) { *distance = closestDistance; } return closestXpos; } bool TracePolar::markerVisible(double x) { if(limitToSpan) { if(x >= sweep_fmin && x <= sweep_fmax) { return true; } else { return false; } } else { // complete traces visible return true; } } void TracePolar::updateContextMenu() { contextmenu->clear(); auto setup = new QAction("Setup...", contextmenu); connect(setup, &QAction::triggered, this, &TracePolar::axisSetupDialog, Qt::UniqueConnection); contextmenu->addAction(setup); contextmenu->addSeparator(); auto image = new QAction("Save image...", contextmenu); contextmenu->addAction(image); connect(image, &QAction::triggered, [=]() { auto filename = QFileDialog::getSaveFileName(nullptr, "Save plot image", "", "PNG image files (*.png)", nullptr, QFileDialog::DontUseNativeDialog); if(filename.isEmpty()) { // aborted selection return; } if(filename.endsWith(".png")) { filename.chop(4); } filename += ".png"; grab().save(filename); }); auto createMarker = contextmenu->addAction("Add marker here"); bool activeTraces = false; for(auto t : traces) { if(t.second) { activeTraces = true; break; } } if(!activeTraces) { createMarker->setEnabled(false); } connect(createMarker, &QAction::triggered, [=](){ createMarkerAtPosition(contextmenuClickpoint); }); contextmenu->addSection("Traces"); // Populate context menu for(auto t : orderedTraces()) { if(!supported(t)) { continue; } auto action = new QAction(t->name(), contextmenu); action->setCheckable(true); if(traces[t]) { action->setChecked(true); } connect(action, &QAction::toggled, [=](bool active) { enableTrace(t, active); }); contextmenu->addAction(action); } finishContextMenu(); } bool TracePolar::constrainLineToCircle(QPointF &a, QPointF &b, QPointF center, double radius) { auto distance = [](const QPointF &a, const QPointF &b) { auto dx = b.x() - a.x(); auto dy = b.y() - a.y(); return sqrt(dx*dx + dy*dy); }; if(distance(a, center) <= radius && distance(b, center) <= radius) { // both points are completely contained within the circle, no adjustment necessary return true; } // shift points, the formulas assume center = (0,0) a -= center; b -= center; // according to https://mathworld.wolfram.com/Circle-LineIntersection.html auto dx = b.x() - a.x(); auto dy = b.y() - a.y(); auto dr = sqrt(dx*dx+dy*dy); auto D = a.x()*b.y() - b.x()*a.y(); // check intersection auto delta = radius*radius * dr*dr - D*D; if(delta <= 0) { // line does not intersect the circle return false; } // line intersects the circle, calculate intersection points auto x1 = (D*dy+copysign(1.0, dy) * dx*sqrt(delta)) / (dr*dr); auto x2 = (D*dy-copysign(1.0, dy) * dx*sqrt(delta)) / (dr*dr); auto y1 = (-D*dx+abs(dy)*sqrt(delta)) / (dr*dr); auto y2 = (-D*dx-abs(dy)*sqrt(delta)) / (dr*dr); auto inter1 = QPointF(x1, y1); auto inter2 = QPointF(x2, y2); bool inter1betweenPoints = false; bool inter2betweenPoints = false; if(abs(distance(a, inter1) + distance(b, inter1) - distance(a, b)) < 0.000001) { inter1betweenPoints = true; } if(abs(distance(a, inter2) + distance(b, inter2) - distance(a, b)) < 0.000001) { inter2betweenPoints = true; } if(inter1betweenPoints && inter2betweenPoints) { // adjust both points, order does not matter a = inter1; b = inter2; } else if(!inter1betweenPoints && !inter2betweenPoints) { // the line intersect the circle but outside of the segment defined by the points -> ignore a += center; b += center; return false; } else { // exactly one intersection point must lie between the two line points, otherwise we would have returned already auto inter = inter1betweenPoints ? inter1 : inter2; if(distance(a, QPointF(0,0)) < radius) { // point is in the circle and can remain unchanged. Use inter as new point b b = inter; } else { // the other way around a = inter; } } a += center; b += center; return true; } PolarArc::PolarArc(QPointF center, double radius, double startAngle, double spanAngle) : center(center), radius(radius), startAngle(startAngle), spanAngle(spanAngle) { } void PolarArc::constrainToCircle(QPointF center, double radius) { // check if arc/circle intersect auto centerDiff = this->center - center; auto centerDistSquared = centerDiff.x() * centerDiff.x() + centerDiff.y() * centerDiff.y(); if (centerDistSquared >= (radius + this->radius) * (radius + this->radius)) { // arc completely outside of constraining circle spanAngle = 0.0; return; } else if (centerDistSquared <= (radius - this->radius) * (radius - this->radius)) { if (radius >= this->radius) { // arc completely in constraining circle, do nothing return; } else { // arc completely outside of circle spanAngle = 0.0; return; } } else { // there are intersections between the arc and the circle. Calculate points according to https://stackoverflow.com/questions/3349125/circle-circle-intersection-points auto distance = sqrt(centerDistSquared); auto a = (this->radius*this->radius-radius*radius+distance*distance) / (2*distance); auto h = sqrt(this->radius*this->radius - a*a); auto intersectMiddle = this->center + a*(center - this->center) / distance; auto rotatedCenterDiff = center - this->center; swap(rotatedCenterDiff.rx(), rotatedCenterDiff.ry()); rotatedCenterDiff.setY(-rotatedCenterDiff.y()); auto intersect1 = intersectMiddle + h * rotatedCenterDiff / distance; auto intersect2 = intersectMiddle - h * rotatedCenterDiff / distance; // got intersection points, convert into angles from arc center auto wrapAngle = [](double angle) -> double { double ret = fmod(angle, 2*M_PI); if(ret < 0) { ret += 2*M_PI; } return ret; }; auto angle1 = wrapAngle(atan2((intersect1 - this->center).y(), (intersect1 - this->center).x())); auto angle2 = wrapAngle(atan2((intersect2 - this->center).y(), (intersect2 - this->center).x())); auto angleDiff = wrapAngle(angle2 - angle1); if ((angleDiff >= M_PI) ^ (a > 0.0)) { // allowed angles go from intersect1 to intersect2 if(startAngle < angle1) { startAngle = angle1; } auto maxSpan = wrapAngle(angle2 - startAngle); if(spanAngle > maxSpan) { spanAngle = maxSpan; } } else { // allowed angles go from intersect2 to intersect1 if(startAngle < angle2) { startAngle = angle2; } auto maxSpan = wrapAngle(angle1 - startAngle); if(spanAngle > maxSpan) { spanAngle = maxSpan; } } } }