#include "tracemarker.h" #include #include "CustomWidgets/siunitedit.h" #include #include #include #include #include "tracemarkermodel.h" #include "unit.h" using namespace std; TraceMarker::TraceMarker(TraceMarkerModel *model, int number, TraceMarker *parent, QString descr) : editingFrequeny(false), model(model), parentTrace(nullptr), position(1000000000), number(number), data(0), type(Type::Manual), description(descr), delta(nullptr), parent(parent), cutoffAmplitude(-3.0) { } TraceMarker::~TraceMarker() { if(parentTrace) { parentTrace->removeMarker(this); } deleteHelperMarkers(); emit deleted(this); } void TraceMarker::setTimeDomain(bool timeDomain) { if(timeDomain != this->timeDomain) { // setting changed, check if actually available if(timeDomain && !parentTrace->TDRactive()) { qWarning() << "Attempted to enable TDR marker on trace without active TDR"; return; } this->timeDomain = timeDomain; // TODO handle changed setting and everything if(timeDomain) { // need to delete this marker if the TDR data of the trace is no longer available connect(parentTrace, &Trace::changedTDRstate, [=](bool tdr_available){ if(!tdr_available) { delete this; } }); // check if current type still supported if(!getSupportedTypes().count(type)) { // unsupported type, change to manual setType(Type::Manual); } } else { disconnect(parentTrace, &Trace::changedTDRstate, nullptr, nullptr); } emit timeDomainChanged(); } } void TraceMarker::assignTrace(Trace *t) { if(parentTrace) { // remove connection from previous parent trace parentTrace->removeMarker(this); disconnect(parentTrace, &Trace::deleted, this, &TraceMarker::parentTraceDeleted); disconnect(parentTrace, &Trace::dataChanged, this, &TraceMarker::traceDataChanged); disconnect(parentTrace, &Trace::colorChanged, this, &TraceMarker::updateSymbol); } setTimeDomain(false); parentTrace = t; if(!getSupportedTypes().count(type)) { // new trace does not support the current type setType(Type::Manual); } connect(parentTrace, &Trace::deleted, this, &TraceMarker::parentTraceDeleted); connect(parentTrace, &Trace::dataChanged, this, &TraceMarker::traceDataChanged); connect(parentTrace, &Trace::colorChanged, this, &TraceMarker::updateSymbol); constrainPosition(); updateSymbol(); parentTrace->addMarker(this); for(auto m : helperMarkers) { m->assignTrace(t); } update(); emit traceChanged(this); } Trace *TraceMarker::trace() { return parentTrace; } QString TraceMarker::readableData() { switch(type) { case Type::Manual: case Type::Maximum: case Type::Minimum: if(isTimeDomain()) { QString ret; ret += "Impulse:"+Unit::ToString(timeData.impulseResponse, "", "m ", 3)+" Step:"+Unit::ToString(timeData.stepResponse, "", "m ", 3)+" Impedance:"; if(isnan(timeData.impedance)) { ret += "Invalid"; } else { ret += Unit::ToString(timeData.impedance, "Ω", "m k", 3); } return ret; } else { auto phase = arg(data); return QString::number(toDecibel(), 'g', 4) + "db@" + QString::number(phase*180/M_PI, 'g', 4); } case Type::Delta: if(!delta || delta->isTimeDomain() != isTimeDomain()) { return "Invalid delta marker"; } else { if(isTimeDomain()) { // calculate difference between markers auto impulse = timeData.impulseResponse - delta->timeData.impulseResponse; auto step = timeData.stepResponse - delta->timeData.stepResponse; auto impedance = timeData.impedance - delta->timeData.impedance; QString ret; ret += "ΔImpulse:"+Unit::ToString(impulse, "", "m ", 3)+" ΔStep:"+Unit::ToString(step, "", "m ", 3)+" ΔImpedance:"; if(isnan(timeData.impedance)) { ret += "Invalid"; } else { ret += Unit::ToString(impedance, "Ω", "m k", 3); } return ret; } else { // calculate difference between markers auto freqDiff = position - delta->position; auto valueDiff = data / delta->data; auto phase = arg(valueDiff); auto db = 20*log10(abs(valueDiff)); return Unit::ToString(freqDiff, "Hz", " kMG") + " / " + QString::number(db, 'g', 4) + "db@" + QString::number(phase*180/M_PI, 'g', 4); } } break; case Type::Noise: return Unit::ToString(parentTrace->getNoise(position), "dbm/Hz", " ", 3); case Type::PeakTable: return "Found " + QString::number(helperMarkers.size()) + " peaks"; case Type::Lowpass: case Type::Highpass: if(parentTrace->isReflection()) { return "Calculation not possible with reflection measurement"; } else { auto insertionLoss = toDecibel(); auto cutoff = helperMarkers[0]->toDecibel(); QString ret = "fc: "; if(cutoff > insertionLoss + cutoffAmplitude) { // the trace never dipped below the specified cutoffAmplitude, exact cutoff frequency unknown ret += type == Type::Lowpass ? ">" : "<"; } ret += Unit::ToString(helperMarkers[0]->position, "Hz", " kMG", 4); ret += ", Ins.Loss: >=" + QString::number(-insertionLoss, 'g', 4) + "db"; return ret; } break; case Type::Bandpass: if(parentTrace->isReflection()) { return "Calculation not possible with reflection measurement"; } else { auto insertionLoss = toDecibel(); auto cutoffL = helperMarkers[0]->toDecibel(); auto cutoffH = helperMarkers[1]->toDecibel(); auto bandwidth = helperMarkers[1]->position - helperMarkers[0]->position; auto center = helperMarkers[2]->position; QString ret = "fc: "; if(cutoffL > insertionLoss + cutoffAmplitude || cutoffH > insertionLoss + cutoffAmplitude) { // the trace never dipped below the specified cutoffAmplitude, center and exact bandwidth unknown ret += "?, BW: >"; } else { ret += Unit::ToString(center, "Hz", " kMG", 5)+ ", BW: "; } ret += Unit::ToString(bandwidth, "Hz", " kMG", 4); ret += ", Ins.Loss: >=" + QString::number(-insertionLoss, 'g', 4) + "db"; return ret; } break; case Type::TOI: { auto avgFundamental = (helperMarkers[0]->toDecibel() + helperMarkers[1]->toDecibel()) / 2; auto avgDistortion = (helperMarkers[2]->toDecibel() + helperMarkers[3]->toDecibel()) / 2; auto TOI = (3 * avgFundamental - avgDistortion) / 2; return "Fundamental: " + Unit::ToString(avgFundamental, "dbm", " ", 3) + ", distortion: " + Unit::ToString(avgDistortion, "dbm", " ", 3) + ", TOI: "+Unit::ToString(TOI, "dbm", " ", 3); } break; case Type::PhaseNoise: { auto carrier = toDecibel(); auto phasenoise = parentTrace->getNoise(helperMarkers[0]->position) - carrier; return Unit::ToString(phasenoise, "dbc/Hz", " ", 3) +"@" + Unit::ToString(offset, "Hz", " kM", 4) + " offset (" + Unit::ToString(position, "Hz", " kMG", 6) + " carrier)"; } default: return "Unknown marker type"; } } QString TraceMarker::readableSettings() { if(timeDomain) { switch(type) { case Type::Manual: case Type::Delta: { QString unit; if(position <= parentTrace->getTDR().back().time) { unit = "s"; } else { unit = "m"; } return Unit::ToString(position, unit, "fpnum k", 4); } default: return "Unhandled case"; } } else { switch(type) { case Type::Manual: case Type::Maximum: case Type::Minimum: case Type::Delta: case Type::Noise: return Unit::ToString(position, "Hz", " kMG", 6); case Type::Lowpass: case Type::Highpass: case Type::Bandpass: return Unit::ToString(cutoffAmplitude, "db", " ", 3); case Type::PeakTable: return Unit::ToString(peakThreshold, "db", " ", 3); case Type::TOI: return "none"; case Type::PhaseNoise: return Unit::ToString(offset, "Hz", " kM", 4); default: return "Unhandled case"; } } } QString TraceMarker::readableType() { if(parent) { return description; } else { return typeToString(type); } } void TraceMarker::setPosition(double pos) { position = pos; constrainPosition(); } void TraceMarker::parentTraceDeleted(Trace *t) { if(t == parentTrace) { delete this; } } void TraceMarker::traceDataChanged() { // some data of the parent trace changed, check if marker data also changed complex newdata; if (timeDomain) { timeData = parentTrace->getTDR(position); newdata = complex(timeData.stepResponse, timeData.impulseResponse); } else { newdata = parentTrace->getData(position); } if (newdata != data) { data = newdata; update(); emit rawDataChanged(); } } void TraceMarker::updateSymbol() { if(isVisible()) { constexpr int width = 15, height = 15; symbol = QPixmap(width, height); symbol.fill(Qt::transparent); QPainter p(&symbol); p.setRenderHint(QPainter::Antialiasing); QPointF points[] = {QPointF(0,0),QPointF(width,0),QPointF(width/2,height)}; auto traceColor = parentTrace->color(); p.setPen(traceColor); p.setBrush(traceColor); p.drawConvexPolygon(points, 3); auto brightness = traceColor.redF() * 0.299 + traceColor.greenF() * 0.587 + traceColor.blueF() * 0.114; p.setPen((brightness > 0.6) ? Qt::black : Qt::white); p.drawText(QRectF(0,0,width, height*2.0/3.0), Qt::AlignCenter, QString::number(number) + suffix); } else { symbol = QPixmap(1,1); } emit symbolChanged(this); } std::set TraceMarker::getSupportedTypes() { set supported; if(parentTrace) { if(timeDomain) { // only basic markers in time domain supported.insert(Type::Manual); supported.insert(Type::Delta); } else { // all traces support some basic markers supported.insert(Type::Manual); supported.insert(Type::Maximum); supported.insert(Type::Minimum); supported.insert(Type::Delta); supported.insert(Type::PeakTable); if(parentTrace->isLive()) { switch(parentTrace->liveParameter()) { case Trace::LiveParameter::S11: case Trace::LiveParameter::S12: case Trace::LiveParameter::S21: case Trace::LiveParameter::S22: // special VNA marker types supported.insert(Type::Lowpass); supported.insert(Type::Highpass); supported.insert(Type::Bandpass); break; case Trace::LiveParameter::Port1: case Trace::LiveParameter::Port2: // special SA marker types supported.insert(Type::Noise); supported.insert(Type::TOI); supported.insert(Type::PhaseNoise); break; } } } } return supported; } void TraceMarker::constrainPosition() { if(parentTrace) { if(timeDomain) { if(position < 0) { position = 0; } else if(position > parentTrace->getTDR().back().distance) { position = parentTrace->getTDR().back().distance; } } else { if(parentTrace->size() > 0) { if(position > parentTrace->maxFreq()) { position = parentTrace->maxFreq(); } else if(position < parentTrace->minFreq()) { position = parentTrace->minFreq(); } } } traceDataChanged(); } } void TraceMarker::assignDeltaMarker(TraceMarker *m) { if(delta) { disconnect(delta, &TraceMarker::dataChanged, this, &TraceMarker::update); } delta = m; if(delta && delta != this) { // this marker has to be updated when the delta marker changes connect(delta, &TraceMarker::rawDataChanged, this, &TraceMarker::update); connect(delta, &TraceMarker::deleted, [=](){ delta = nullptr; update(); }); } } void TraceMarker::deleteHelperMarkers() { emit beginRemoveHelperMarkers(this); for(auto m : helperMarkers) { delete m; } helperMarkers.clear(); emit endRemoveHelperMarkers(this); } void TraceMarker::setType(TraceMarker::Type t) { // remove any potential helper markers deleteHelperMarkers(); type = t; using helper_descr = struct { QString suffix; QString description; Type type; }; vector required_helpers; switch(type) { case Type::Delta: delta = nullptr; // invalid delta marker assigned, attempt to find a matching marker for(int pass = 0;pass < 3;pass++) { for(auto m : model->getMarkers()) { if(m->isTimeDomain() != isTimeDomain()) { // markers are not on the same domain continue; } if(pass == 0 && m->parentTrace != parentTrace) { // ignore markers on different traces in first pass continue; } if(pass <= 1 && m == this) { // ignore itself on second pass continue; } assignDeltaMarker(m); break; } if(delta) { break; } } break; case Type::Lowpass: case Type::Highpass: required_helpers = {{"c", "cutoff", Type::Manual}}; break; case Type::Bandpass: required_helpers = {{"l", "lower cutoff", Type::Manual}, {"h", "higher cutoff", Type::Manual} ,{"c", "center", Type::Manual}}; break; case Type::TOI: required_helpers = {{"p", "first peak", Type::Manual}, {"p", "second peak", Type::Manual}, {"l", "left intermodulation", Type::Manual}, {"r", "right intermodulation", Type::Manual}}; break; case Type::PhaseNoise: required_helpers = {{"o", "Offset", Type::Noise}}; break; default: break; } // create helper markers for(auto h : required_helpers) { auto helper = new TraceMarker(model, number, this, h.description); helper->suffix = h.suffix; helper->assignTrace(parentTrace); helper->setType(h.type); helperMarkers.push_back(helper); } updateSymbol(); emit typeChanged(this); update(); } double TraceMarker::toDecibel() { return 20*log10(abs(data)); } bool TraceMarker::isVisible() { switch(type) { case Type::Manual: case Type::Delta: case Type::Maximum: case Type::Minimum: case Type::Noise: case Type::PhaseNoise: return true; default: return false; } } QString TraceMarker::getSuffix() const { return suffix; } bool TraceMarker::isTimeDomain() const { return timeDomain; } const std::vector &TraceMarker::getHelperMarkers() const { return helperMarkers; } TraceMarker *TraceMarker::helperMarker(unsigned int i) { if(i < helperMarkers.size()) { return helperMarkers[i]; } else { return nullptr; } } TraceMarker *TraceMarker::getParent() const { return parent; } void TraceMarker::setNumber(int value) { number = value; updateSymbol(); for(auto h : helperMarkers) { h->setNumber(number); } } QWidget *TraceMarker::getTypeEditor(QAbstractItemDelegate *delegate) { auto c = new QComboBox; for(auto t : getSupportedTypes()) { c->addItem(typeToString(t)); if(type == t) { // select this item c->setCurrentIndex(c->count() - 1); } } if(type == Type::Delta) { // add additional spinbox to choose corresponding delta marker auto w = new QWidget; auto layout = new QHBoxLayout; layout->addWidget(c); c->setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding); layout->setContentsMargins(0,0,0,0); layout->setMargin(0); layout->setSpacing(0); layout->addWidget(new QLabel("to")); auto spinbox = new QSpinBox; if(delta) { spinbox->setValue(delta->number); } connect(spinbox, qOverload(&QSpinBox::valueChanged), [=](int newval){ bool found = false; for(auto m : model->getMarkers()) { if(m->number == newval) { assignDeltaMarker(m); found = true; break; } } if(!found) { assignDeltaMarker(nullptr); } update(); }); spinbox->setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding); layout->addWidget(spinbox); w->setLayout(layout); c->setObjectName("Type"); if(delegate){ connect(c, qOverload(&QComboBox::currentIndexChanged), [=](int) { emit delegate->commitData(w); }); } return w; } else { // no delta marker, simply return the combobox connect(c, qOverload(&QComboBox::currentIndexChanged), [=](int) { emit delegate->commitData(c); }); return c; } } void TraceMarker::updateTypeFromEditor(QWidget *w) { QComboBox *c; if(type == Type::Delta) { c = w->findChild("Type"); } else { c = (QComboBox*) w; } for(auto t : getSupportedTypes()) { if(c->currentText() == typeToString(t)) { if(type != t) { setType(t); } } } update(); } SIUnitEdit *TraceMarker::getSettingsEditor() { if(timeDomain) { switch(type) { case Type::Manual: case Type::Delta: return new SIUnitEdit("", "fpnum k", 6); default: return nullptr; } } else { switch(type) { case Type::Manual: case Type::Maximum: case Type::Minimum: case Type::Delta: case Type::Noise: case Type::PhaseNoise: default: return new SIUnitEdit("Hz", " kMG", 6); case Type::Lowpass: case Type::Highpass: case Type::PeakTable: return new SIUnitEdit("db", " ", 3); case Type::TOI: return nullptr; } } } void TraceMarker::adjustSettings(double value) { switch(type) { case Type::Manual: case Type::Maximum: case Type::Minimum: case Type::Delta: case Type::Noise: default: setPosition(value); /* no break */ case Type::Lowpass: case Type::Highpass: case Type::Bandpass: if(value > 0.0) { value = -value; } cutoffAmplitude = value; break; case Type::PeakTable: peakThreshold = value; break; case Type::PhaseNoise: offset = value; break; } update(); } void TraceMarker::update() { if(!parentTrace->size()) { // empty trace, nothing to do return; } switch(type) { case Type::Manual: case Type::Delta: case Type::Noise: // nothing to do break; case Type::Maximum: setPosition(parentTrace->findExtremumFreq(true)); break; case Type::Minimum: setPosition(parentTrace->findExtremumFreq(false)); break; case Type::PeakTable: { deleteHelperMarkers(); auto peaks = parentTrace->findPeakFrequencies(100, peakThreshold); char suffix = 'a'; for(auto p : peaks) { auto helper = new TraceMarker(model, number, this); helper->suffix = suffix; helper->assignTrace(parentTrace); helper->setPosition(p); suffix++; helperMarkers.push_back(helper); } } break; case Type::Lowpass: case Type::Highpass: if(parentTrace->isReflection()) { // lowpass/highpass calculation only works with transmission measurement break; } else { // find the maximum auto peakFreq = parentTrace->findExtremumFreq(true); // this marker shows the insertion loss setPosition(peakFreq); // find the cutoff frequency auto index = parentTrace->index(peakFreq); auto peakAmplitude = 20*log10(abs(parentTrace->sample(index).S)); auto cutoff = peakAmplitude + cutoffAmplitude; int inc = type == Type::Lowpass ? 1 : -1; while(index >= 0 && index < (int) parentTrace->size()) { auto amplitude = 20*log10(abs(parentTrace->sample(index).S)); if(amplitude <= cutoff) { break; } index += inc; } if(index < 0) { index = 0; } else if(index >= (int) parentTrace->size()) { index = parentTrace->size() - 1; } // set position of cutoff marker helperMarkers[0]->setPosition(parentTrace->sample(index).frequency); } break; case Type::Bandpass: if(parentTrace->isReflection()) { // lowpass/highpass calculation only works with transmission measurement break; } else { // find the maximum auto peakFreq = parentTrace->findExtremumFreq(true); // this marker shows the insertion loss setPosition(peakFreq); // find the cutoff frequencies auto index = parentTrace->index(peakFreq); auto peakAmplitude = 20*log10(abs(parentTrace->sample(index).S)); auto cutoff = peakAmplitude + cutoffAmplitude; auto low_index = index; while(low_index >= 0) { auto amplitude = 20*log10(abs(parentTrace->sample(low_index).S)); if(amplitude <= cutoff) { break; } low_index--; } if(low_index < 0) { low_index = 0; } // set position of cutoff marker helperMarkers[0]->setPosition(parentTrace->sample(low_index).frequency); auto high_index = index; while(high_index < (int) parentTrace->size()) { auto amplitude = 20*log10(abs(parentTrace->sample(high_index).S)); if(amplitude <= cutoff) { break; } high_index++; } if(high_index >= (int) parentTrace->size()) { high_index = parentTrace->size() - 1; } // set position of cutoff marker helperMarkers[1]->setPosition(parentTrace->sample(high_index).frequency); // set center marker inbetween cutoff markers helperMarkers[2]->setPosition((helperMarkers[0]->position + helperMarkers[1]->position) / 2); } break; case Type::TOI: { auto peaks = parentTrace->findPeakFrequencies(2); if(peaks.size() != 2) { // error finding peaks, do nothing break; } // assign marker frequenies: // this marker is the left peak, first helper the right peak. // 2nd and 3rd helpers are left and right TOI peaks helperMarkers[0]->setPosition(peaks[0]); helperMarkers[1]->setPosition(peaks[1]); auto freqDiff = peaks[1] - peaks[0]; helperMarkers[2]->setPosition(peaks[0] - freqDiff); helperMarkers[3]->setPosition(peaks[1] + freqDiff); } break; case Type::PhaseNoise: setPosition(parentTrace->findExtremumFreq(true)); helperMarkers[0]->setPosition(position + offset); break; } emit dataChanged(this); } Trace *TraceMarker::getTrace() const { return parentTrace; } int TraceMarker::getNumber() const { return number; } std::complex TraceMarker::getData() const { return data; } Trace::TimedomainData TraceMarker::getTimeData() const { Trace::TimedomainData ret = {}; if(timeDomain) { ret = timeData; } return ret; } bool TraceMarker::isMovable() { if(parent) { // helper traces are never movable by the user return false; } switch(type) { case Type::Manual: case Type::Delta: case Type::Noise: return true; default: return false; } } QPixmap &TraceMarker::getSymbol() { return symbol; } double TraceMarker::getPosition() const { return position; }