#include #include #include "Si5351C.hpp" #include "max2871.hpp" #include "main.h" #include "delay.hpp" #include "FPGA/FPGA.hpp" #include #include "Exti.hpp" #include "Hardware.hpp" #include "Communication.h" #include "FreeRTOS.h" #include "task.h" #define LOG_LEVEL LOG_LEVEL_INFO #define LOG_MODULE "VNA" #include "Log.h" static VNA::SweepCallback sweepCallback; static Protocol::SweepSettings settings; static uint16_t pointCnt; static bool excitingPort1; static Protocol::Datapoint data; static bool active = false; static bool sourceHighPower; static bool adcShifted; static uint32_t actualBandwidth; using IFTableEntry = struct { uint16_t pointCnt; uint8_t clkconfig[8]; }; static constexpr uint16_t IFTableNumEntries = 500; static IFTableEntry IFTable[IFTableNumEntries]; static uint16_t IFTableIndexCnt = 0; static constexpr uint32_t BandSwitchFrequency = 25000000; static constexpr float alternativeSamplerate = 914285.7143f; static constexpr uint8_t alternativePrescaler = 102400000UL / alternativeSamplerate; static_assert(alternativePrescaler * alternativeSamplerate == 102400000UL, "alternative ADCSamplerate can not be reached exactly"); static constexpr uint16_t alternativePhaseInc = 4096 * HW::IF2 / alternativeSamplerate; static_assert(alternativePhaseInc * alternativeSamplerate == 4096 * HW::IF2, "DFT can not be computed for 2.IF when using alternative samplerate"); using namespace HWHAL; bool VNA::Setup(Protocol::SweepSettings s, SweepCallback cb) { VNA::Stop(); vTaskDelay(5); HW::SetMode(HW::Mode::VNA); if(s.excitePort1 == 0 && s.excitePort2 == 0) { // both ports disabled, nothing to do HW::SetIdle(); active = false; return false; } sweepCallback = cb; settings = s; // Abort possible active sweep first FPGA::SetMode(FPGA::Mode::FPGA); uint16_t points = settings.points <= FPGA::MaxPoints ? settings.points : FPGA::MaxPoints; // Configure sweep FPGA::SetNumberOfPoints(points); uint32_t samplesPerPoint = (HW::ADCSamplerate / s.if_bandwidth); // round up to next multiple of 16 (16 samples are spread across 5 IF2 periods) if(samplesPerPoint%16) { samplesPerPoint += 16 - samplesPerPoint%16; } actualBandwidth = HW::ADCSamplerate / samplesPerPoint; // has to be one less than actual number of samples FPGA::SetSamplesPerPoint(samplesPerPoint); // Set level (not very accurate) int16_t cdbm = s.cdbm_excitation; if(cdbm > -1000) { // use higher source power (approx 0dbm with no attenuation) sourceHighPower = true; Source.SetPowerOutA(MAX2871::Power::p5dbm, true); } else { // use lower source power (approx -10dbm with no attenuation) sourceHighPower = false; Source.SetPowerOutA(MAX2871::Power::n4dbm, true); cdbm += 1000; } uint8_t attenuator; if(cdbm >= 0) { attenuator = 0; } else if (cdbm <= -3175){ attenuator = 127; } else { attenuator = (-cdbm) / 25; } FPGA::WriteMAX2871Default(Source.GetRegisters()); uint32_t last_LO2 = HW::IF1 - HW::IF2; Si5351.SetCLK(SiChannel::Port1LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2); Si5351.SetCLK(SiChannel::Port2LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2); Si5351.SetCLK(SiChannel::RefLO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2); Si5351.ResetPLL(Si5351C::PLL::B); IFTableIndexCnt = 0; bool last_lowband = false; // invalidate first entry of IFTable, preventing switing of 2.LO in halted callback IFTable[0].pointCnt = 0xFFFF; // Transfer PLL configuration to FPGA for (uint16_t i = 0; i < points; i++) { uint64_t freq = s.f_start + (s.f_stop - s.f_start) * i / (points - 1); // SetFrequency only manipulates the register content in RAM, no SPI communication is done. // No mode-switch of FPGA necessary here. bool needs_halt = false; uint64_t actualSourceFreq; bool lowband = false; if (freq < BandSwitchFrequency) { needs_halt = true; lowband = true; actualSourceFreq = freq; } else { Source.SetFrequency(freq); actualSourceFreq = Source.GetActualFrequency(); } if (last_lowband && !lowband) { // additional halt before first highband point to enable highband source needs_halt = true; } LO1.SetFrequency(freq + HW::IF1); uint32_t actualFirstIF = LO1.GetActualFrequency() - actualSourceFreq; uint32_t actualFinalIF = actualFirstIF - last_LO2; uint32_t IFdeviation = abs(actualFinalIF - HW::IF2); bool needs_LO2_shift = false; if(IFdeviation > actualBandwidth / 2) { needs_LO2_shift = true; } if (s.suppressPeaks && needs_LO2_shift) { if (IFTableIndexCnt < IFTableNumEntries) { // still room in table needs_halt = true; IFTable[IFTableIndexCnt].pointCnt = i; // Configure LO2 for the changed IF1. This is not necessary right now but it will generate // the correct clock settings last_LO2 = actualFirstIF - HW::IF2; LOG_INFO("Changing 2.LO to %lu at point %lu (%lu%06luHz) to reach correct 2.IF frequency", last_LO2, i, (uint32_t ) (freq / 1000000), (uint32_t ) (freq % 1000000)); Si5351.SetCLK(SiChannel::RefLO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2); // store calculated clock configuration for later change Si5351.ReadRawCLKConfig(SiChannel::RefLO2, IFTable[IFTableIndexCnt].clkconfig); IFTableIndexCnt++; needs_LO2_shift = false; } } if(needs_LO2_shift) { // if shift is still needed either peak suppression is disabled or no more room in IFTable was available LOG_WARN( "PLL deviation of %luHz for measurement at %lu%06luHz, will cause a peak", IFdeviation, (uint32_t ) (freq / 1000000), (uint32_t ) (freq % 1000000)); } FPGA::WriteSweepConfig(i, lowband, Source.GetRegisters(), LO1.GetRegisters(), attenuator, freq, FPGA::SettlingTime::us20, FPGA::Samples::SPPRegister, needs_halt); last_lowband = lowband; } // revert clk configuration to previous value (might have been changed in sweep calculation) Si5351.SetCLK(SiChannel::RefLO2, HW::IF1 - HW::IF2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2); Si5351.ResetPLL(Si5351C::PLL::B); // Enable mixers/amplifier/PLLs FPGA::SetWindow(FPGA::Window::None); FPGA::Enable(FPGA::Periphery::Port1Mixer); FPGA::Enable(FPGA::Periphery::Port2Mixer); FPGA::Enable(FPGA::Periphery::RefMixer); FPGA::Enable(FPGA::Periphery::Amplifier); FPGA::Enable(FPGA::Periphery::SourceChip); FPGA::Enable(FPGA::Periphery::SourceRF); FPGA::Enable(FPGA::Periphery::LO1Chip); FPGA::Enable(FPGA::Periphery::LO1RF); FPGA::Enable(FPGA::Periphery::ExcitePort1, s.excitePort1); FPGA::Enable(FPGA::Periphery::ExcitePort2, s.excitePort2); FPGA::Enable(FPGA::Periphery::PortSwitch); pointCnt = 0; // starting port depends on whether port 1 is active in sweep excitingPort1 = s.excitePort1; IFTableIndexCnt = 0; adcShifted = false; active = true; // Enable new data and sweep halt interrupt FPGA::EnableInterrupt(FPGA::Interrupt::NewData); FPGA::EnableInterrupt(FPGA::Interrupt::SweepHalted); // Start the sweep FPGA::StartSweep(); return true; } static void PassOnData() { if (sweepCallback) { sweepCallback(data); } } bool VNA::MeasurementDone(const FPGA::SamplingResult &result) { if(!active) { return false; } if(result.pointNum != pointCnt || !result.activePort != excitingPort1) { LOG_WARN("Indicated point does not match (%u != %u, %d != %d)", result.pointNum, pointCnt, result.activePort, !excitingPort1); FPGA::AbortSweep(); return false; } // normal sweep mode auto port1_raw = std::complex(result.P1I, result.P1Q); auto port2_raw = std::complex(result.P2I, result.P2Q); auto ref = std::complex(result.RefI, result.RefQ); auto port1 = port1_raw / ref; auto port2 = port2_raw / ref; data.pointNum = pointCnt; data.frequency = settings.f_start + (settings.f_stop - settings.f_start) * pointCnt / (settings.points - 1); if(excitingPort1) { data.real_S11 = port1.real(); data.imag_S11 = port1.imag(); data.real_S21 = port2.real(); data.imag_S21 = port2.imag(); } else { data.real_S12 = port1.real(); data.imag_S12 = port1.imag(); data.real_S22 = port2.real(); data.imag_S22 = port2.imag(); } // figure out whether this sweep point is complete and which port gets excited next bool pointComplete = false; if(settings.excitePort1 == 1 && settings.excitePort2 == 1) { // point is complete when port 2 was active pointComplete = !excitingPort1; // next measurement will be from other port excitingPort1 = !excitingPort1; } else { // only one port active, point is complete after every measurement pointComplete = true; } if(pointComplete) { STM::DispatchToInterrupt(PassOnData); pointCnt++; if (pointCnt >= settings.points) { // reached end of sweep, start again pointCnt = 0; IFTableIndexCnt = 0; // request to trigger work function return true; } } return false; } void VNA::Work() { // end of sweep HW::Ref::update(); // Compile info packet Protocol::PacketInfo packet; packet.type = Protocol::PacketType::DeviceInfo; packet.info.FPGA_configured = 1; packet.info.FW_major = FW_MAJOR; packet.info.FW_minor = FW_MINOR; packet.info.HW_Revision = HW_REVISION; HW::fillDeviceInfo(&packet.info, true); Communication::Send(packet); // Start next sweep FPGA::StartSweep(); } void VNA::SweepHalted() { if(!active) { return; } LOG_DEBUG("Halted before point %d", pointCnt); // Check if IF table has entry at this point if (IFTable[IFTableIndexCnt].pointCnt == pointCnt) { Si5351.WriteRawCLKConfig(SiChannel::Port1LO2, IFTable[IFTableIndexCnt].clkconfig); Si5351.WriteRawCLKConfig(SiChannel::Port2LO2, IFTable[IFTableIndexCnt].clkconfig); Si5351.WriteRawCLKConfig(SiChannel::RefLO2, IFTable[IFTableIndexCnt].clkconfig); Si5351.ResetPLL(Si5351C::PLL::B); IFTableIndexCnt++; // PLL reset causes the 2.LO to turn off briefly and then ramp on back, needs delay before next point Delay::us(1300); } uint64_t frequency = settings.f_start + (settings.f_stop - settings.f_start) * pointCnt / (settings.points - 1); bool adcShiftRequired = false; if (frequency < BandSwitchFrequency) { // need the Si5351 as Source Si5351.SetCLK(SiChannel::LowbandSource, frequency, Si5351C::PLL::B, sourceHighPower ? Si5351C::DriveStrength::mA8 : Si5351C::DriveStrength::mA4); if (pointCnt == 0) { // First point in sweep, enable CLK Si5351.Enable(SiChannel::LowbandSource); FPGA::Disable(FPGA::Periphery::SourceRF); Delay::us(1300); } // At low frequencies the 1.LO feedtrough mixes with the 2.LO in the second mixer. // Depending on the stimulus frequency, the resulting mixing product might alias to the 2.IF // in the ADC which causes a spike. Check for this and shift the ADC sampling frequency if necessary uint32_t LO_mixing = (HW::IF1 + frequency) - (HW::IF1 - HW::IF2); // move frequency into ADC range LO_mixing %= HW::ADCSamplerate; // fold at half the samplerate if(LO_mixing >= HW::ADCSamplerate / 2) { LO_mixing = HW::ADCSamplerate - LO_mixing; } if(abs(LO_mixing - HW::IF2) <= actualBandwidth * 2) { // the image is in or near the IF bandwidth and would cause a peak // Use a slightly different ADC samplerate adcShiftRequired = true; } } else if(!FPGA::IsEnabled(FPGA::Periphery::SourceRF)){ // first sweep point in highband is also halted, disable lowband source Si5351.Disable(SiChannel::LowbandSource); FPGA::Enable(FPGA::Periphery::SourceRF); } if(adcShiftRequired) { FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, alternativePrescaler); FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, alternativePhaseInc); adcShifted = true; } else if(adcShifted) { // reset to default value FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, HW::ADCprescaler); FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, HW::DFTphaseInc); adcShifted = false; } FPGA::ResumeHaltedSweep(); } void VNA::Stop() { active = false; FPGA::AbortSweep(); }