#include #include #include "Si5351C.hpp" #include "max2871.hpp" #include "main.h" #include "delay.hpp" #include "FPGA/FPGA.hpp" #include #include "Exti.hpp" #include "Hardware.hpp" #include "Communication.h" #include "FreeRTOS.h" #include "task.h" #include "Util.hpp" #include "usb.h" #include #define LOG_LEVEL LOG_LEVEL_INFO #define LOG_MODULE "VNA" #include "Log.h" static Protocol::SweepSettings settings; static uint16_t pointCnt; static uint8_t stageCnt; static uint8_t stages; static double logMultiplier, logFrequency; static Protocol::Datapoint data; static bool active = false; static Si5351C::DriveStrength fixedPowerLowband; static bool adcShifted; static uint32_t actualBandwidth; static uint64_t firstPointTime; static bool firstPoint; static bool zerospan; static constexpr uint8_t sourceHarmonic = 5; static constexpr uint8_t LOHarmonic = 3; using IFTableEntry = struct { uint16_t pointCnt; uint8_t clkconfig[8]; }; static constexpr uint16_t IFTableNumEntries = 500; static IFTableEntry IFTable[IFTableNumEntries]; static uint16_t IFTableIndexCnt = 0; static constexpr float alternativeSamplerate = 914285.7143f; static constexpr uint8_t alternativePrescaler = 102400000UL / alternativeSamplerate; static_assert(alternativePrescaler * alternativeSamplerate == 102400000UL, "alternative ADCSamplerate can not be reached exactly"); static constexpr uint16_t alternativePhaseInc = 4096 * HW::DefaultIF2 / alternativeSamplerate; static_assert(alternativePhaseInc * alternativeSamplerate == 4096 * HW::DefaultIF2, "DFT can not be computed for 2.IF when using alternative samplerate"); // Constants for USB buffer overflow prevention static constexpr uint16_t maxPointsBetweenHalts = 40; static constexpr uint32_t reservedUSBbuffer = maxPointsBetweenHalts * (sizeof(Protocol::Datapoint) + 8 /*USB packet overhead*/); using namespace HWHAL; static uint64_t getPointFrequency(uint16_t pointNum) { if(!settings.logSweep) { return settings.f_start + (settings.f_stop - settings.f_start) * pointNum / (settings.points - 1); } else { static uint16_t lastPointNum = 0; if (pointNum == 0) { logFrequency = settings.f_start; } else if(pointNum == lastPointNum) { // nothing to do } else if(pointNum == lastPointNum + 1) { logFrequency *= logMultiplier; } else { logFrequency = settings.f_start * pow(10.0, pointNum * log10((double)settings.f_stop / settings.f_start) / (settings.points - 1)); } lastPointNum = pointNum; return logFrequency; } } bool VNA::Setup(Protocol::SweepSettings s) { VNA::Stop(); vTaskDelay(5); HW::SetMode(HW::Mode::VNA); if(s.excitePort1 == 0 && s.excitePort2 == 0) { // both ports disabled, nothing to do HW::SetIdle(); active = false; return false; } // Abort possible active sweep first FPGA::SetMode(FPGA::Mode::FPGA); FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, HW::getADCPrescaler()); FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, HW::getDFTPhaseInc()); if(settings.points > FPGA::MaxPoints) { settings.points = FPGA::MaxPoints; } settings = s; // calculate factor between adjacent points for log sweep for faster calculation when sweeping logMultiplier = pow((double) settings.f_stop / settings.f_start, 1.0 / (settings.points-1)); // Configure sweep FPGA::SetNumberOfPoints(settings.points); uint32_t samplesPerPoint = (HW::getADCRate() / s.if_bandwidth); // round up to next multiple of 16 (16 samples are spread across 5 IF2 periods) if(samplesPerPoint%16) { samplesPerPoint += 16 - samplesPerPoint%16; } actualBandwidth = HW::getADCRate() / samplesPerPoint; // has to be one less than actual number of samples FPGA::SetSamplesPerPoint(samplesPerPoint); // reset unlevel flag if it was set from a previous sweep/mode HW::SetOutputUnlevel(false); // Start with average level auto cdbm = (s.cdbm_excitation_start + s.cdbm_excitation_stop) / 2; // correct for port 1, assumes port 2 is identical auto centerFreq = (s.f_start + s.f_stop) / 2; // force calculation of amplitude setting for PLL, even with lower frequencies if(centerFreq < HW::BandSwitchFrequency) { centerFreq = HW::BandSwitchFrequency; } auto amplitude = HW::GetAmplitudeSettings(cdbm, centerFreq, true, false); if(amplitude.unlevel) { HW::SetOutputUnlevel(true); } uint8_t fixedAttenuatorHighband = amplitude.attenuator; Source.SetPowerOutA(amplitude.highBandPower, true); // amplitude calculation for lowband amplitude = HW::GetAmplitudeSettings(cdbm, HW::BandSwitchFrequency / 2, true, false); if(amplitude.unlevel) { HW::SetOutputUnlevel(true); } uint8_t fixedAttenuatorLowband = amplitude.attenuator; fixedPowerLowband = amplitude.lowBandPower; FPGA::WriteMAX2871Default(Source.GetRegisters()); uint32_t last_LO2 = HW::getIF1() - HW::getIF2(); Si5351.SetCLK(SiChannel::Port1LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2); Si5351.SetCLK(SiChannel::Port2LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2); Si5351.SetCLK(SiChannel::RefLO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2); Si5351.ResetPLL(Si5351C::PLL::B); IFTableIndexCnt = 0; zerospan = (s.f_start == s.f_stop) && (s.cdbm_excitation_start == s.cdbm_excitation_stop); bool last_lowband = false; // invalidate first entry of IFTable, preventing switing of 2.LO in halted callback IFTable[0].pointCnt = 0xFFFF; uint16_t pointsWithoutHalt = 0; // Transfer PLL configuration to FPGA for (uint16_t i = 0; i < settings.points; i++) { bool harmonic_mixing = false; uint64_t freq = getPointFrequency(i); int16_t power = s.cdbm_excitation_start + (s.cdbm_excitation_stop - s.cdbm_excitation_start) * i / (settings.points - 1); freq = Cal::FrequencyCorrectionToDevice(freq); if(freq > 6000000000ULL) { harmonic_mixing = true; } // SetFrequency only manipulates the register content in RAM, no SPI communication is done. // No mode-switch of FPGA necessary here. bool needs_halt = false; uint64_t actualSourceFreq; bool lowband = false; if (freq < HW::BandSwitchFrequency) { needs_halt = true; lowband = true; actualSourceFreq = freq; } else { uint64_t srcFreq = freq; if(harmonic_mixing) { srcFreq /= sourceHarmonic; } Source.SetFrequency(srcFreq); actualSourceFreq = Source.GetActualFrequency(); if(harmonic_mixing) { actualSourceFreq *= sourceHarmonic; } } if (last_lowband && !lowband) { // additional halt before first highband point to enable highband source needs_halt = true; } uint64_t LOFreq = freq + HW::getIF1(); if(harmonic_mixing) { LOFreq /= LOHarmonic; } LO1.SetFrequency(LOFreq); uint64_t actualLO1 = LO1.GetActualFrequency(); if(harmonic_mixing) { actualLO1 *= LOHarmonic; } uint32_t actualFirstIF = actualLO1 - actualSourceFreq; uint32_t actualFinalIF = actualFirstIF - last_LO2; uint32_t IFdeviation = abs(actualFinalIF - HW::getIF2()); bool needs_LO2_shift = false; if(IFdeviation > actualBandwidth / 2) { needs_LO2_shift = true; } if (s.suppressPeaks && needs_LO2_shift) { if (IFTableIndexCnt < IFTableNumEntries) { // still room in table needs_halt = true; IFTable[IFTableIndexCnt].pointCnt = i; if(IFTableIndexCnt < IFTableNumEntries - 1) { // Configure LO2 for the changed IF1. This is not necessary right now but it will generate // the correct clock settings last_LO2 = actualFirstIF - HW::getIF2(); LOG_INFO("Changing 2.LO to %lu at point %lu (%lu%06luHz) to reach correct 2.IF frequency (1.LO: %lu%06luHz, 1.IF: %lu%06luHz)", last_LO2, i, (uint32_t ) (freq / 1000000), (uint32_t ) (freq % 1000000), (uint32_t ) (actualLO1 / 1000000), (uint32_t ) (actualLO1 % 1000000), (uint32_t ) (actualFirstIF / 1000000), (uint32_t ) (actualFirstIF % 1000000)); } else { // last entry in IF table, revert LO2 to default last_LO2 = HW::getIF1() - HW::getIF2(); } Si5351.SetCLK(SiChannel::RefLO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2); // store calculated clock configuration for later change Si5351.ReadRawCLKConfig(SiChannel::RefLO2, IFTable[IFTableIndexCnt].clkconfig); IFTableIndexCnt++; needs_LO2_shift = false; } } if(needs_LO2_shift) { // if shift is still needed either peak suppression is disabled or no more room in IFTable was available LOG_WARN( "PLL deviation of %luHz for measurement at %lu%06luHz, will cause a peak", IFdeviation, (uint32_t ) (freq / 1000000), (uint32_t ) (freq % 1000000)); } // halt on regular intervals to prevent USB buffer overflow if(!needs_halt) { pointsWithoutHalt++; if(pointsWithoutHalt > maxPointsBetweenHalts) { needs_halt = true; } } if(needs_halt) { pointsWithoutHalt = 0; } uint8_t attenuator = freq >= HW::BandSwitchFrequency ? fixedAttenuatorHighband : fixedAttenuatorLowband; if(!s.fixedPowerSetting) { // adapt power level throughout the sweep amplitude = HW::GetAmplitudeSettings(power, freq, true, false); if(freq >= HW::BandSwitchFrequency) { Source.SetPowerOutA(amplitude.highBandPower, true); } if(amplitude.unlevel) { HW::SetOutputUnlevel(true); } attenuator = amplitude.attenuator; } // needs halt before first point to allow PLLs to settle if (i == 0) { needs_halt = true; } FPGA::WriteSweepConfig(i, lowband, Source.GetRegisters(), LO1.GetRegisters(), attenuator, freq, FPGA::SettlingTime::us20, FPGA::Samples::SPPRegister, needs_halt); last_lowband = lowband; } // revert clk configuration to previous value (might have been changed in sweep calculation) Si5351.SetCLK(SiChannel::RefLO2, HW::getIF1() - HW::getIF2(), Si5351C::PLL::B, Si5351C::DriveStrength::mA2); Si5351.ResetPLL(Si5351C::PLL::B); // Enable mixers/amplifier/PLLs FPGA::SetWindow(FPGA::Window::Kaiser); FPGA::Enable(FPGA::Periphery::Port1Mixer); FPGA::Enable(FPGA::Periphery::Port2Mixer); FPGA::Enable(FPGA::Periphery::RefMixer); FPGA::Enable(FPGA::Periphery::Amplifier); FPGA::Enable(FPGA::Periphery::SourceChip); FPGA::Enable(FPGA::Periphery::SourceRF); FPGA::Enable(FPGA::Periphery::LO1Chip); FPGA::Enable(FPGA::Periphery::LO1RF); if(s.excitePort1 && s.excitePort2) { // two stages, port 1 first, followed by port 2 FPGA::SetupSweep(1, 0, 1); stages = 2; } else if(s.excitePort1) { // one stage, port 1 only FPGA::SetupSweep(0, 0, 1); stages = 1; } else { // one stage, port 2 only FPGA::SetupSweep(0, 1, 0); stages = 1; } FPGA::Enable(FPGA::Periphery::PortSwitch); pointCnt = 0; stageCnt = 0; IFTableIndexCnt = 0; adcShifted = false; active = true; // Enable new data and sweep halt interrupt FPGA::EnableInterrupt(FPGA::Interrupt::NewData); FPGA::EnableInterrupt(FPGA::Interrupt::SweepHalted); // Start the sweep firstPoint = true; FPGA::StartSweep(); return true; } static void PassOnData() { Protocol::PacketInfo info; info.type = Protocol::PacketType::Datapoint; info.datapoint = data; Communication::Send(info); } bool VNA::MeasurementDone(const FPGA::SamplingResult &result) { if(!active) { return false; } if(result.pointNum != pointCnt || result.stageNum != stageCnt) { LOG_WARN("Indicated point does not match (%u != %u, %d != %d)", result.pointNum, pointCnt, result.stageNum, stageCnt); FPGA::AbortSweep(); return false; } // normal sweep mode auto port1_raw = std::complex(result.P1I, result.P1Q); auto port2_raw = std::complex(result.P2I, result.P2Q); auto ref = std::complex(result.RefI, result.RefQ); auto port1 = port1_raw / ref; auto port2 = port2_raw / ref; data.pointNum = pointCnt; if(zerospan) { uint64_t timestamp = HW::getLastISRTimestamp(); if(firstPoint) { data.us = 0; firstPointTime = timestamp; firstPoint = false; } else { data.us = timestamp - firstPointTime; } } else { // non-zero span, set frequency/power data.frequency = getPointFrequency(pointCnt); data.cdbm = settings.cdbm_excitation_start + (settings.cdbm_excitation_stop - settings.cdbm_excitation_start) * pointCnt / (settings.points - 1); } if(stageCnt == 0 && settings.excitePort1) { // stimulus is present at port 1 data.real_S11 = port1.real(); data.imag_S11 = port1.imag(); data.real_S21 = port2.real(); data.imag_S21 = port2.imag(); } else { // stimulus is present at port 2 data.real_S12 = port1.real(); data.imag_S12 = port1.imag(); data.real_S22 = port2.real(); data.imag_S22 = port2.imag(); } // figure out whether this sweep point is complete stageCnt++; if(stageCnt == stages) { // point is complete stageCnt = 0; STM::DispatchToInterrupt(PassOnData); pointCnt++; if (pointCnt >= settings.points) { // reached end of sweep, start again pointCnt = 0; IFTableIndexCnt = 0; // request to trigger work function return true; } } return false; } void VNA::Work() { // end of sweep HW::Ref::update(); // Compile info packet Protocol::PacketInfo packet; packet.type = Protocol::PacketType::DeviceStatusV1; HW::getDeviceStatus(&packet.statusV1, true); Communication::Send(packet); // do not reset unlevel flag here, as it is calculated only once at the setup of the sweep // Start next sweep FPGA::StartSweep(); } void VNA::SweepHalted() { if(!active) { return; } LOG_DEBUG("Halted before point %d", pointCnt); // Check if IF table has entry at this point if (IFTableIndexCnt < IFTableNumEntries && IFTable[IFTableIndexCnt].pointCnt == pointCnt) { Si5351.WriteRawCLKConfig(SiChannel::Port1LO2, IFTable[IFTableIndexCnt].clkconfig); Si5351.WriteRawCLKConfig(SiChannel::Port2LO2, IFTable[IFTableIndexCnt].clkconfig); Si5351.WriteRawCLKConfig(SiChannel::RefLO2, IFTable[IFTableIndexCnt].clkconfig); Si5351.ResetPLL(Si5351C::PLL::B); IFTableIndexCnt++; // PLL reset causes the 2.LO to turn off briefly and then ramp on back, needs delay before next point Delay::us(1300); } uint64_t frequency = getPointFrequency(pointCnt); int16_t power = settings.cdbm_excitation_start + (settings.cdbm_excitation_stop - settings.cdbm_excitation_start) * pointCnt / (settings.points - 1); bool adcShiftRequired = false; if (frequency < HW::BandSwitchFrequency) { auto driveStrength = fixedPowerLowband; if(!settings.fixedPowerSetting) { auto amplitude = HW::GetAmplitudeSettings(power, frequency, true, false); // attenuator value has already been set in sweep setup driveStrength = amplitude.lowBandPower; } // need the Si5351 as Source bool freqSuccess = Si5351.SetCLK(SiChannel::LowbandSource, frequency, Si5351C::PLL::B, driveStrength); static bool lowbandDisabled = false; if (pointCnt == 0) { // First point in sweep, switch to correct source FPGA::Disable(FPGA::Periphery::SourceRF); lowbandDisabled = true; } if(lowbandDisabled && freqSuccess) { // frequency is valid, can enable lowband source now Si5351.Enable(SiChannel::LowbandSource); Delay::us(1300); lowbandDisabled = false; } // At low frequencies the 1.LO feedthrough mixes with the 2.LO in the second mixer. // Depending on the stimulus frequency, the resulting mixing product might alias to the 2.IF // in the ADC which causes a spike. Check for this and shift the ADC sampling frequency if necessary uint32_t LO_mixing = (HW::getIF1() + frequency) - (HW::getIF1() - HW::getIF2()); if(abs(Util::Alias(LO_mixing, HW::getADCRate()) - HW::getIF2()) <= actualBandwidth * 2) { // the image is in or near the IF bandwidth and would cause a peak // Use a slightly different ADC sample rate if possible if(HW::getIF2() == HW::DefaultIF2) { adcShiftRequired = true; } } } else if(!FPGA::IsEnabled(FPGA::Periphery::SourceRF)){ // first sweep point in highband is also halted, disable lowband source Si5351.Disable(SiChannel::LowbandSource); FPGA::Enable(FPGA::Periphery::SourceRF); } if (pointCnt == 0) { HAL_Delay(2); } if(adcShiftRequired) { FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, alternativePrescaler); FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, alternativePhaseInc); adcShifted = true; } else if(adcShifted) { // reset to default value FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, HW::getADCPrescaler()); FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, HW::getDFTPhaseInc()); adcShifted = false; } if(usb_available_buffer() >= reservedUSBbuffer) { // enough space available, can resume immediately FPGA::ResumeHaltedSweep(); } else { // USB buffer could potentially overflow before next halted point, wait until more space is available. // This function is called from a low level interrupt, need to dispatch to lower priority to allow USB // handling to continue STM::DispatchToInterrupt([](){ uint32_t start = HAL_GetTick(); while(usb_available_buffer() < reservedUSBbuffer) { if(HAL_GetTick() - start > 100) { // still no buffer space after some time, something more serious must have gone wrong // -> abort sweep and return to idle usb_clear_buffer(); FPGA::AbortSweep(); HW::SetIdle(); return; } } FPGA::ResumeHaltedSweep(); }); } } void VNA::Stop() { active = false; FPGA::AbortSweep(); } void VNA::PrintStatus() { HAL_Delay(10); LOG_INFO("VNA status:"); HAL_Delay(10); LOG_INFO("Active: %d", active); HAL_Delay(10); LOG_INFO("Points: %d/%d", pointCnt, settings.points); HAL_Delay(10); LOG_INFO("Stages: %d/%d", stageCnt, stages); HAL_Delay(10); LOG_INFO("FPGA status: 0x%04x", FPGA::GetStatus()); }