LibreVNA/Software/VNA_embedded/Application/VNA.cpp

285 lines
8.7 KiB
C++

#include <HW_HAL.hpp>
#include <VNA.hpp>
#include "Si5351C.hpp"
#include "max2871.hpp"
#include "main.h"
#include "delay.hpp"
#include "FPGA/FPGA.hpp"
#include <complex>
#include "Exti.hpp"
#include "Hardware.hpp"
#include "Communication.h"
#define LOG_LEVEL LOG_LEVEL_INFO
#define LOG_MODULE "VNA"
#include "Log.h"
static constexpr uint32_t IF1 = 60100000;
static constexpr uint32_t IF1_alternate = 57000000;
static constexpr uint32_t IF2 = 250000;
static VNA::SweepCallback sweepCallback;
static Protocol::SweepSettings settings;
static uint16_t pointCnt;
static bool excitingPort1;
static Protocol::Datapoint data;
static bool active = false;
using IFTableEntry = struct {
uint16_t pointCnt;
uint32_t IF1;
uint8_t clkconfig[8];
};
static constexpr uint16_t IFTableNumEntries = 100;
static IFTableEntry IFTable[IFTableNumEntries];
static uint16_t IFTableIndexCnt = 0;
static constexpr uint32_t BandSwitchFrequency = 25000000;
using namespace HWHAL;
bool VNA::Setup(Protocol::SweepSettings s, SweepCallback cb) {
HW::SetMode(HW::Mode::VNA);
if(s.excitePort1 == 0 && s.excitePort2 == 0) {
// both ports disabled, nothing to do
HW::SetIdle();
active = false;
return false;
}
sweepCallback = cb;
settings = s;
// Abort possible active sweep first
FPGA::AbortSweep();
FPGA::SetMode(FPGA::Mode::FPGA);
uint16_t points = settings.points <= FPGA::MaxPoints ? settings.points : FPGA::MaxPoints;
// Configure sweep
FPGA::SetNumberOfPoints(points);
uint32_t samplesPerPoint = (1000000 / s.if_bandwidth);
// round up to next multiple of 128 (128 samples are spread across 35 IF2 periods)
samplesPerPoint = ((uint32_t) ((samplesPerPoint + 127) / 128)) * 128;
// has to be one less than actual number of samples
FPGA::SetSamplesPerPoint(samplesPerPoint);
uint8_t attenuator;
if(s.cdbm_excitation >= -1000) {
attenuator = 0;
} else if (s.cdbm_excitation <= -4175){
attenuator = 127;
} else {
attenuator = (-1000 - s.cdbm_excitation) / 25;
}
uint32_t last_IF1 = IF1;
IFTableIndexCnt = 0;
bool last_lowband = false;
// Transfer PLL configuration to FPGA
for (uint16_t i = 0; i < points; i++) {
uint64_t freq = s.f_start + (s.f_stop - s.f_start) * i / (points - 1);
// SetFrequency only manipulates the register content in RAM, no SPI communication is done.
// No mode-switch of FPGA necessary here.
// Check which IF frequency is a better fit
uint32_t used_IF = IF1;
// if (freq < 290000000) {
// // for low frequencies the harmonics of the IF and source frequency should not be too close
// uint32_t dist_primary;
// if(freq < IF1) {
// dist_primary = IF1 - freq * (IF1 / freq);
// if (dist_primary > freq / 2) {
// dist_primary = freq - dist_primary;
// }
// } else {
// dist_primary = freq - IF1 * (freq / IF1);
// if (dist_primary > IF1 / 2) {
// dist_primary = IF1 - dist_primary;
// }
// }
// uint32_t dist_alternate;
// if(freq < IF1_alternate) {
// dist_alternate = IF1_alternate - freq * (IF1_alternate / freq);
// if (dist_alternate > freq / 2) {
// dist_alternate = freq - dist_primary;
// }
// } else {
// dist_alternate = freq - IF1_alternate * (freq / IF1_alternate);
// if (dist_alternate > IF1_alternate / 2) {
// dist_alternate = IF1_alternate - dist_primary;
// }
// }
// if(dist_alternate > dist_primary) {
// used_IF = IF1_alternate;
// }
// LOG_INFO("Distance: %lu/%lu", dist_primary, dist_alternate);
// }
bool needs_halt = false;
if (used_IF != last_IF1) {
last_IF1 = used_IF;
LOG_INFO("Changing IF1 to %lu at point %u (f=%lu)", used_IF, i, (uint32_t) freq);
needs_halt = true;
if (IFTableIndexCnt >= IFTableNumEntries) {
LOG_ERR("IF table full, unable to add new entry");
return false;
}
IFTable[IFTableIndexCnt].pointCnt = i;
IFTable[IFTableIndexCnt].IF1 = used_IF;
// Configure LO2 for the changed IF1. This is not necessary right now but it will generate
// the correct clock settings
Si5351.SetCLK(SiChannel::RefLO2, used_IF + IF2, Si5351C::PLL::A, Si5351C::DriveStrength::mA2);
// store calculated clock configuration for later change
Si5351.ReadRawCLKConfig(1, IFTable[IFTableIndexCnt].clkconfig);
IFTableIndexCnt++;
}
bool lowband = false;
if (freq < BandSwitchFrequency) {
needs_halt = true;
lowband = true;
} else {
Source.SetFrequency(freq);
}
if (last_lowband && !lowband) {
// additional halt before first highband point to enable highband source
needs_halt = true;
}
LO1.SetFrequency(freq + used_IF);
FPGA::WriteSweepConfig(i, lowband, Source.GetRegisters(),
LO1.GetRegisters(), attenuator, freq, FPGA::SettlingTime::us20,
FPGA::Samples::SPPRegister, needs_halt);
last_lowband = lowband;
}
// // revert clk configuration to previous value (might have been changed in sweep calculation)
// Si5351.SetCLK(1, IF1 + IF2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
// Si5351.ResetPLL(Si5351C::PLL::B);
// Enable mixers/amplifier/PLLs
FPGA::SetWindow(FPGA::Window::None);
FPGA::Enable(FPGA::Periphery::Port1Mixer);
FPGA::Enable(FPGA::Periphery::Port2Mixer);
FPGA::Enable(FPGA::Periphery::RefMixer);
FPGA::Enable(FPGA::Periphery::Amplifier);
FPGA::Enable(FPGA::Periphery::SourceChip);
FPGA::Enable(FPGA::Periphery::SourceRF);
FPGA::Enable(FPGA::Periphery::LO1Chip);
FPGA::Enable(FPGA::Periphery::LO1RF);
FPGA::Enable(FPGA::Periphery::ExcitePort1, s.excitePort1);
FPGA::Enable(FPGA::Periphery::ExcitePort2, s.excitePort2);
pointCnt = 0;
// starting port depends on whether port 1 is active in sweep
excitingPort1 = s.excitePort1;
IFTableIndexCnt = 0;
active = true;
// Start the sweep
FPGA::StartSweep();
return true;
}
bool VNA::MeasurementDone(FPGA::SamplingResult result) {
if(!active) {
return false;
}
// normal sweep mode
auto port1_raw = std::complex<float>(result.P1I, result.P1Q);
auto port2_raw = std::complex<float>(result.P2I, result.P2Q);
auto ref = std::complex<float>(result.RefI, result.RefQ);
auto port1 = port1_raw / ref;
auto port2 = port2_raw / ref;
data.pointNum = pointCnt;
data.frequency = settings.f_start + (settings.f_stop - settings.f_start) * pointCnt / (settings.points - 1);
if(excitingPort1) {
data.real_S11 = port1.real();
data.imag_S11 = port1.imag();
data.real_S21 = port2.real();
data.imag_S21 = port2.imag();
} else {
data.real_S12 = port1.real();
data.imag_S12 = port1.imag();
data.real_S22 = port2.real();
data.imag_S22 = port2.imag();
}
// figure out whether this sweep point is complete and which port gets excited next
bool pointComplete = false;
if(settings.excitePort1 == 1 && settings.excitePort2 == 1) {
// point is complete when port 2 was active
pointComplete = !excitingPort1;
// next measurement will be from other port
excitingPort1 = !excitingPort1;
} else {
// only one port active, point is complete after every measurement
pointComplete = true;
}
if(pointComplete) {
if (sweepCallback) {
sweepCallback(data);
}
pointCnt++;
if (pointCnt >= settings.points) {
// reached end of sweep, start again
pointCnt = 0;
IFTableIndexCnt = 0;
// request to trigger work function
return true;
}
}
return false;
}
void VNA::Work() {
// end of sweep
HW::Ref::update();
// Compile info packet
Protocol::PacketInfo packet;
packet.type = Protocol::PacketType::DeviceInfo;
packet.info.FPGA_configured = 1;
packet.info.FW_major = FW_MAJOR;
packet.info.FW_minor = FW_MINOR;
packet.info.HW_Revision = HW_REVISION;
HW::fillDeviceInfo(&packet.info);
Communication::Send(packet);
FPGA::ResetADCLimits();
// Start next sweep
FPGA::StartSweep();
}
void VNA::SweepHalted() {
if(!active) {
return;
}
LOG_DEBUG("Halted before point %d", pointCnt);
// Check if IF table has entry at this point
// if (IFTable[IFTableIndexCnt].pointCnt == pointCnt) {
// LOG_DEBUG("Shifting IF to %lu at point %u",
// IFTable[IFTableIndexCnt].IF1, pointCnt);
// Si5351.WriteRawCLKConfig(1, IFTable[IFTableIndexCnt].clkconfig);
// Si5351.WriteRawCLKConfig(4, IFTable[IFTableIndexCnt].clkconfig);
// Si5351.WriteRawCLKConfig(5, IFTable[IFTableIndexCnt].clkconfig);
// Si5351.ResetPLL(Si5351C::PLL::B);
// IFTableIndexCnt++;
// }
uint64_t frequency = settings.f_start
+ (settings.f_stop - settings.f_start) * pointCnt
/ (settings.points - 1);
if (frequency < BandSwitchFrequency) {
// need the Si5351 as Source
Si5351.SetCLK(SiChannel::LowbandSource, frequency, Si5351C::PLL::B,
Si5351C::DriveStrength::mA2);
if (pointCnt == 0) {
// First point in sweep, enable CLK
Si5351.Enable(SiChannel::LowbandSource);
FPGA::Disable(FPGA::Periphery::SourceRF);
}
} else {
// first sweep point in highband is also halted, disable lowband source
Si5351.Disable(SiChannel::LowbandSource);
FPGA::Enable(FPGA::Periphery::SourceRF);
}
FPGA::ResumeHaltedSweep();
}
void VNA::Stop() {
active = false;
FPGA::AbortSweep();
}