LibreVNA/Software/PC_Application/LibreVNA-GUI/Util/util.cpp
2022-10-19 17:31:14 +02:00

204 lines
6.1 KiB
C++

#include "util.h"
#include <random>
#include <QVector2D>
void Util::unwrapPhase(std::vector<double> &phase, unsigned int start_index)
{
for (unsigned int i = start_index + 1; i < phase.size(); i++) {
int d = trunc(phase[i] - phase[i-1]) / M_PI;
if(d > 0) {
// there is larger than a 180° shift between this and the previous phase
phase[i] -= 2*M_PI*(int)((d+1)/2);
} else if(d < 0) {
// there is larger than a -180° shift between this and the previous phase
phase[i] -= 2*M_PI*(int)((d-1)/2);
}
}
}
void Util::linearRegression(const std::vector<double> &input, double &B_0, double &B_1)
{
double x_mean = (input.size() - 1.0) / 2.0;
double y_mean = std::accumulate(input.begin(), input.end(), 0.0) / input.size();
double ss_xy = 0.0;
for(unsigned int i=0;i<input.size();i++) {
ss_xy += input[i] * i;
}
ss_xy -= input.size() * x_mean * y_mean;
int n = input.size() - 1;
double ss_xx = (1.0/6.0) * n * (n + 1) * (2*n + 1) - input.size() * x_mean * x_mean;
B_1 = ss_xy / ss_xx;
B_0 = y_mean - B_1 * x_mean;
}
double Util::distanceToLine(QPointF point, QPointF l1, QPointF l2, QPointF *closestLinePoint, double *pointRatio)
{
auto M = l2 - l1;
auto t0 = QPointF::dotProduct(M, point - l1) / QPointF::dotProduct(M, M);
QPointF closestPoint;
QVector2D orthVect;
if (t0 <= 0) {
orthVect = QVector2D(point - l1);
closestPoint = l1;
t0 = 0;
} else if(t0 >= 1) {
orthVect = QVector2D(point - l2);
closestPoint = l2;
t0 = 1;
} else {
auto intersect = l1 + t0 * M;
orthVect = QVector2D(point - intersect);
closestPoint = intersect;
}
if(closestLinePoint) {
*closestLinePoint = closestPoint;
}
if(pointRatio) {
*pointRatio = t0;
}
return orthVect.length();
}
std::complex<double> Util::SparamToImpedance(std::complex<double> d, std::complex<double> Z0) {
return Z0 * (1.0 + d) / (1.0 - d);
}
double Util::dBmTodBuV(double dBm)
{
double uVpower = 0.000001*0.000001/50.0;
double dBdiff = 10*log10(uVpower*1000);
return dBm - dBdiff;
}
double Util::dBuVTodBm(double dBuV)
{
double uVpower = 0.000001*0.000001/50.0;
double dBdiff = 10*log10(uVpower*1000);
return dBuV + dBdiff;
}
unsigned long long Util::random(unsigned long long max)
{
static std::random_device os_seed;
static const unsigned long long seed = os_seed();
static std::mt19937_64 generator(seed);
std::uniform_int_distribution<unsigned long long> distribute(0, max);
return distribute(generator);
}
std::complex<double> Util::findCenterOfCircle(const std::vector<std::complex<double> > &points)
{
int i,iter,IterMAX=99;
double Xi,Yi,Zi;
double Mz,Mxy,Mxx,Myy,Mxz,Myz,Mzz,Cov_xy,Var_z;
double A0,A1,A2,A22;
double Dy,xnew,x,ynew,y;
double DET,Xcenter,Ycenter;
// find means
double meanX = 0.0, meanY = 0.0;
for(auto p : points) {
meanX += p.real();
meanY += p.imag();
}
meanX /= points.size();
meanY /= points.size();
// computing moments
Mxx=Myy=Mxy=Mxz=Myz=Mzz=0.;
for (i=0; i<(int) points.size(); i++)
{
Xi = points[i].real() - meanX; // centered x-coordinates
Yi = points[i].imag() - meanY; // centered y-coordinates
Zi = Xi*Xi + Yi*Yi;
Mxy += Xi*Yi;
Mxx += Xi*Xi;
Myy += Yi*Yi;
Mxz += Xi*Zi;
Myz += Yi*Zi;
Mzz += Zi*Zi;
}
Mxx /= points.size();
Myy /= points.size();
Mxy /= points.size();
Mxz /= points.size();
Myz /= points.size();
Mzz /= points.size();
// computing the coefficients of the characteristic polynomial
Mz = Mxx + Myy;
Cov_xy = Mxx*Myy - Mxy*Mxy;
Var_z = Mzz - Mz*Mz;
A2 = 4.0*Cov_xy - 3.0*Mz*Mz - Mzz;
A1 = Var_z*Mz + 4.0*Cov_xy*Mz - Mxz*Mxz - Myz*Myz;
A0 = Mxz*(Mxz*Myy - Myz*Mxy) + Myz*(Myz*Mxx - Mxz*Mxy) - Var_z*Cov_xy;
A22 = A2 + A2;
// finding the root of the characteristic polynomial
// using Newton's method starting at x=0
// (it is guaranteed to converge to the right root)
for (x=0.,y=A0,iter=0; iter<IterMAX; iter++) // usually, 4-6 iterations are enough
{
Dy = A1 + x*(A22 + 16.*x*x);
xnew = x - y/Dy;
if ((xnew == x)||(!isfinite(xnew))) break;
ynew = A0 + xnew*(A1 + xnew*(A2 + 4.0*xnew*xnew));
if (abs(ynew)>=abs(y)) break;
x = xnew; y = ynew;
}
// computing paramters of the fitting circle
DET = x*x - x*Mz + Cov_xy;
Xcenter = (Mxz*(Myy - x) - Myz*Mxy)/DET/2.0;
Ycenter = (Myz*(Mxx - x) - Mxz*Mxy)/DET/2.0;
// assembling the output
return std::complex<double>(Xcenter + meanX, Ycenter + meanY);
}
std::complex<double> Util::addTransmissionLine(std::complex<double> termination_reflection, double offset_impedance, double offset_delay, double offset_loss, double frequency)
{
// nomenclature and formulas from https://loco.lab.asu.edu/loco-memos/edges_reports/report_20130807.pdf
auto Gamma_T = termination_reflection;
auto f = frequency;
auto w = 2.0 * M_PI * frequency;
auto f_sqrt = sqrt(f / 1e9);
auto Z_c = std::complex<double>(offset_impedance + (offset_loss / (2*w)) * f_sqrt, -(offset_loss / (2*w)) * f_sqrt);
auto gamma_l = std::complex<double>(offset_loss*offset_delay/(2*offset_impedance)*f_sqrt, w*offset_delay+offset_loss*offset_delay/(2*offset_impedance)*f_sqrt);
auto Z_r = std::complex<double>(50.0);
auto Gamma_1 = (Z_c - Z_r) / (Z_c + Z_r);
auto Gamma_i = (Gamma_1*(1.0-exp(-2.0*gamma_l)-Gamma_1*Gamma_T)+exp(-2.0*gamma_l)*Gamma_T)
/ (1.0-Gamma_1*(exp(-2.0*gamma_l)*Gamma_1+Gamma_T*(1.0-exp(-2.0*gamma_l))));
return Gamma_i;
}
QColor Util::getIntensityGradeColor(double intensity)
{
if(intensity < 0.0) {
return Qt::black;
} else if(intensity > 1.0) {
return Qt::white;
} else if(intensity >= 0.0 && intensity <= 1.0) {
return QColor::fromHsv(Util::Scale<double>(intensity, 0.0, 1.0, 240, 0), 255, 255);
} else {
return Qt::black;
}
}