LibreVNA/Software/PC_Application/Traces/Math/parser/mpMatrix.h
2020-12-18 18:52:38 +01:00

449 lines
12 KiB
C++

#ifndef MU_MATRIX_H
#define MU_MATRIX_H
/*
__________ ____ ___
_____ __ _\______ \_____ _______ ______ __________\ \/ /
/ \| | \ ___/\__ \\_ __ \/ ___// __ \_ __ \ /
| Y Y \ | / | / __ \| | \/\___ \\ ___/| | \/ \
|__|_| /____/|____| (____ /__| /____ >\___ >__| /___/\ \
\/ \/ \/ \/ \_/
Copyright (C) 2016, Ingo Berg
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include <algorithm>
#include <cassert>
#include <stdexcept>
#include <sstream>
#include <iostream>
#include <vector>
#include "mpMatrixError.h"
MUP_NAMESPACE_START
//-----------------------------------------------------------------------------------------------
template<class T>
class Matrix
{
template<class T2>
friend Matrix operator+(const Matrix& lhs, const Matrix& rhs);
template<class T2>
friend Matrix operator-(const Matrix& lhs, const Matrix& rhs);
public:
//---------------------------------------------------------------------------------------------
enum EMatrixStorageScheme
{
mssROWS_FIRST,
mssCOLS_FIRST
};
//---------------------------------------------------------------------------------------------
Matrix()
:m_nRows(1)
, m_nCols(1)
, m_eStorageScheme(mssROWS_FIRST)
, m_vData(1)
{}
//---------------------------------------------------------------------------------------------
Matrix(int nRows, const T &value = T())
:m_nRows(nRows)
, m_nCols(1)
, m_eStorageScheme(mssROWS_FIRST)
, m_vData(m_nRows, value)
{}
//---------------------------------------------------------------------------------------------
/* \brief Constructs a Matrix object representing a scalar value
*/
Matrix(const T &v)
:m_nRows(1)
, m_nCols(1)
, m_eStorageScheme(mssROWS_FIRST)
, m_vData(1, v)
{}
//---------------------------------------------------------------------------------------------
/* \brief Constructs a Matrix object representing a vector
*/
Matrix(const std::vector<T> &v)
:m_nRows(v.size())
, m_nCols(1)
, m_eStorageScheme(mssROWS_FIRST)
, m_vData(v)
{}
//---------------------------------------------------------------------------------------------
/* Constructs a Matrix object representing a vector
*/
template<size_t TSize>
Matrix(T(&v)[TSize])
:m_nRows(TSize)
, m_nCols(1)
, m_eStorageScheme(mssROWS_FIRST)
, m_vData(v, v + TSize)
{}
//---------------------------------------------------------------------------------------------
template<size_t TRows, size_t TCols>
Matrix(T(&v)[TRows][TCols])
:m_nRows(TRows)
, m_nCols(TCols)
, m_eStorageScheme(mssROWS_FIRST)
, m_vData(TRows*TCols, 0)
{
for (int m = 0; m < TRows; ++m)
{
for (int n = 0; n < TCols; ++n)
{
At(m, n) = v[m][n];
}
}
}
//---------------------------------------------------------------------------------------------
Matrix(int nRows, int nCols, const T &value = T())
:m_nRows(nRows)
, m_nCols(nCols)
, m_eStorageScheme(mssROWS_FIRST)
, m_vData(m_nRows*m_nCols, value)
{}
//---------------------------------------------------------------------------------------------
Matrix(const Matrix &ref)
{
Assign(ref);
}
//---------------------------------------------------------------------------------------------
Matrix& operator=(const Matrix &ref)
{
if (this != &ref)
Assign(ref);
return *this;
}
//---------------------------------------------------------------------------------------------
Matrix& operator=(const T &v)
{
m_nCols = 1;
m_nRows = 1;
m_eStorageScheme = mssROWS_FIRST;
m_vData.assign(1, v);
return *this;
}
//---------------------------------------------------------------------------------------------
Matrix& operator+=(const Matrix &lhs)
{
if (m_nRows != lhs.m_nRows || m_nCols != lhs.m_nCols)
throw MatrixError("Matrix dimension mismatch");
for (int i = 0; i < m_nRows; ++i)
{
for (int j = 0; j < m_nCols; ++j)
{
At(i, j) += lhs.At(i, j);
}
}
return *this;
}
//---------------------------------------------------------------------------------------------
Matrix& operator-=(const Matrix &lhs)
{
if (m_nRows != lhs.m_nRows || m_nCols != lhs.m_nCols)
throw MatrixError("Matrix dimension mismatch");
for (int i = 0; i < m_nRows; ++i)
{
for (int j = 0; j < m_nCols; ++j)
{
At(i, j) -= lhs.At(i, j);
}
}
return *this;
}
//---------------------------------------------------------------------------------------------
Matrix& operator*=(const T &rhs)
{
// Matrix x Matrix multiplication
for (int m = 0; m < m_nRows; ++m)
{
for (int n = 0; n < m_nCols; ++n)
{
At(m, n) *= rhs;
}
}
return *this;
}
//---------------------------------------------------------------------------------------------
Matrix& operator*=(const Matrix &rhs)
{
// Matrix x Matrix multiplication
if (rhs.GetRows() == 0)
{
T v = rhs.At(0, 0);
for (int m = 0; m < m_nRows; ++m)
{
for (int n = 0; n < m_nCols; ++n)
{
At(m, n) *= v;
}
}
}
else if (GetRows() == 0)
{
T v = At(0, 0);
Assign(rhs);
for (int m = 0; m < m_nRows; ++m)
{
for (int n = 0; n < m_nCols; ++n)
{
At(m, n) *= v;
}
}
}
else if (m_nCols == rhs.m_nRows)
{
Matrix<T> out(m_nRows, rhs.m_nCols);
// For each cell in the output matrix
for (int m = 0; m < m_nRows; ++m)
{
for (int n = 0; n < rhs.m_nCols; ++n)
{
T buf = 0.0;
for (int i = 0; i < m_nCols; ++i)
{
buf += At(m, i) * rhs.At(i, n);
}
out.At(m, n) = buf;
} // for all rows
} // for all columns
Assign(out);
}
else
throw MatrixError("Matrix dimensions don't allow multiplication");
return *this;
}
//---------------------------------------------------------------------------------------------
void AsciiDump(const char *szTitle) const
{
using namespace std;
cout << szTitle << _T("\n");
cout << _T("------------------\n");
cout << _T("Cols: ") << GetCols() << _T("\n");
cout << _T("Rows: ") << GetRows() << _T("\n");
cout << _T("Dim: ") << GetDim() << _T("\n");
for (int i = 0; i < m_nRows; ++i)
{
for (int j = 0; j < m_nCols; ++j)
{
cout << At(i, j) << _T(" ");
}
cout << _T("\n");
}
cout << _T("\n\n");
}
//---------------------------------------------------------------------------------------------
std::string ToString() const
{
std::stringstream ss;
for (int i = 0; i < m_nRows; ++i)
{
for (int j = 0; j < m_nCols; ++j)
{
ss << At(i, j) << " ";
}
ss << "\n";
}
return ss.str();
}
//---------------------------------------------------------------------------------------------
~Matrix()
{
m_vData.clear();
}
//---------------------------------------------------------------------------------------------
int GetRows() const
{
return m_nRows;
}
//---------------------------------------------------------------------------------------------
int GetCols() const
{
return m_nCols;
}
//---------------------------------------------------------------------------------------------
int GetDim() const
{
if (m_nCols == 1)
{
return (m_nRows == 1) ? 0 : 1;
}
else
return 2;
}
//---------------------------------------------------------------------------------------------
T& At(int nRow, int nCol = 0)
{
int i;
if (m_eStorageScheme == mssROWS_FIRST)
{
i = nRow * m_nCols + nCol;
}
else
{
i = nCol * m_nRows + nRow;
}
assert(i < (int)m_vData.size());
return m_vData[i];
}
//---------------------------------------------------------------------------------------------
const T& At(int nRow, int nCol = 0) const
{
int i;
if (m_eStorageScheme == mssROWS_FIRST)
{
i = nRow * m_nCols + nCol;
}
else
{
i = nCol * m_nRows + nRow;
}
assert(i < (int)m_vData.size());
return m_vData[i];
}
//---------------------------------------------------------------------------------------------
const T* GetData() const
{
assert(m_vData.size());
return &m_vData[0];
}
//---------------------------------------------------------------------------------------------
void SetStorageScheme(EMatrixStorageScheme eScheme)
{
m_eStorageScheme = eScheme;
}
//---------------------------------------------------------------------------------------------
EMatrixStorageScheme GetStorageScheme() const
{
return m_eStorageScheme;
}
//---------------------------------------------------------------------------------------------
Matrix<T>& Transpose()
{
if (GetDim() == 0)
return *this;
m_eStorageScheme = (m_eStorageScheme == mssROWS_FIRST) ? mssCOLS_FIRST : mssROWS_FIRST;
std::swap(m_nRows, m_nCols);
return *this;
}
//---------------------------------------------------------------------------------------------
void Fill(const T &v)
{
m_vData.assign(m_vData.size(), v);
}
private:
int m_nRows;
int m_nCols;
EMatrixStorageScheme m_eStorageScheme;
std::vector<T> m_vData;
//---------------------------------------------------------------------------------------------
void Assign(const Matrix &ref)
{
m_nCols = ref.m_nCols;
m_nRows = ref.m_nRows;
m_eStorageScheme = ref.m_eStorageScheme;
m_vData = ref.m_vData;
}
};
//---------------------------------------------------------------------------------------------
template<class T>
Matrix<T> operator*(const Matrix<T>& lhs, const T& rhs)
{
return Matrix<T>(lhs) *= rhs;
}
//---------------------------------------------------------------------------------------------
template<class T>
Matrix<T> operator*(const Matrix<T>& lhs, const Matrix<T>& rhs)
{
return Matrix<T>(lhs) *= rhs;
}
//---------------------------------------------------------------------------------------------
template<class T>
Matrix<T> operator+(const Matrix<T>& lhs, const Matrix<T>& rhs)
{
return Matrix<T>(lhs) += rhs;
}
//---------------------------------------------------------------------------------------------
template<class T>
Matrix<T> operator-(const Matrix<T>& lhs, const Matrix<T>& rhs)
{
return Matrix<T>(lhs) -= rhs;
}
MUP_NAMESPACE_END
#endif