389 lines
13 KiB
C++
389 lines
13 KiB
C++
#include <HW_HAL.hpp>
|
|
#include <VNA.hpp>
|
|
#include "Si5351C.hpp"
|
|
#include "max2871.hpp"
|
|
#include "main.h"
|
|
#include "delay.hpp"
|
|
#include "FPGA/FPGA.hpp"
|
|
#include <complex>
|
|
#include "Exti.hpp"
|
|
#include "Hardware.hpp"
|
|
#include "Communication.h"
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
#include "Util.hpp"
|
|
#include "usb.h"
|
|
|
|
#define LOG_LEVEL LOG_LEVEL_INFO
|
|
#define LOG_MODULE "VNA"
|
|
#include "Log.h"
|
|
|
|
static Protocol::SweepSettings settings;
|
|
static uint16_t pointCnt;
|
|
static bool excitingPort1;
|
|
static Protocol::Datapoint data;
|
|
static bool active = false;
|
|
static bool sourceHighPower;
|
|
static bool adcShifted;
|
|
static uint32_t actualBandwidth;
|
|
|
|
static constexpr uint8_t sourceHarmonic = 5;
|
|
static constexpr uint8_t LOHarmonic = 3;
|
|
|
|
using IFTableEntry = struct {
|
|
uint16_t pointCnt;
|
|
uint8_t clkconfig[8];
|
|
};
|
|
|
|
static constexpr uint16_t IFTableNumEntries = 500;
|
|
static IFTableEntry IFTable[IFTableNumEntries];
|
|
static uint16_t IFTableIndexCnt = 0;
|
|
|
|
static constexpr float alternativeSamplerate = 914285.7143f;
|
|
static constexpr uint8_t alternativePrescaler = 102400000UL / alternativeSamplerate;
|
|
static_assert(alternativePrescaler * alternativeSamplerate == 102400000UL, "alternative ADCSamplerate can not be reached exactly");
|
|
static constexpr uint16_t alternativePhaseInc = 4096 * HW::IF2 / alternativeSamplerate;
|
|
static_assert(alternativePhaseInc * alternativeSamplerate == 4096 * HW::IF2, "DFT can not be computed for 2.IF when using alternative samplerate");
|
|
|
|
// Constants for USB buffer overflow prevention
|
|
static constexpr uint16_t maxPointsBetweenHalts = 40;
|
|
static constexpr uint32_t reservedUSBbuffer = maxPointsBetweenHalts * (sizeof(Protocol::Datapoint) + 8 /*USB packet overhead*/);
|
|
|
|
using namespace HWHAL;
|
|
|
|
bool VNA::Setup(Protocol::SweepSettings s) {
|
|
VNA::Stop();
|
|
vTaskDelay(5);
|
|
HW::SetMode(HW::Mode::VNA);
|
|
if(s.excitePort1 == 0 && s.excitePort2 == 0) {
|
|
// both ports disabled, nothing to do
|
|
HW::SetIdle();
|
|
active = false;
|
|
return false;
|
|
}
|
|
settings = s;
|
|
// Abort possible active sweep first
|
|
FPGA::SetMode(FPGA::Mode::FPGA);
|
|
uint16_t points = settings.points <= FPGA::MaxPoints ? settings.points : FPGA::MaxPoints;
|
|
// Configure sweep
|
|
FPGA::SetNumberOfPoints(points);
|
|
uint32_t samplesPerPoint = (HW::ADCSamplerate / s.if_bandwidth);
|
|
// round up to next multiple of 16 (16 samples are spread across 5 IF2 periods)
|
|
if(samplesPerPoint%16) {
|
|
samplesPerPoint += 16 - samplesPerPoint%16;
|
|
}
|
|
actualBandwidth = HW::ADCSamplerate / samplesPerPoint;
|
|
// has to be one less than actual number of samples
|
|
FPGA::SetSamplesPerPoint(samplesPerPoint);
|
|
|
|
// Set level (not very accurate)
|
|
int16_t cdbm = s.cdbm_excitation;
|
|
if(cdbm > -1000) {
|
|
// use higher source power (approx 0dbm with no attenuation)
|
|
sourceHighPower = true;
|
|
Source.SetPowerOutA(MAX2871::Power::p5dbm, true);
|
|
} else {
|
|
// use lower source power (approx -10dbm with no attenuation)
|
|
sourceHighPower = false;
|
|
Source.SetPowerOutA(MAX2871::Power::n4dbm, true);
|
|
cdbm += 1000;
|
|
}
|
|
uint8_t attenuator;
|
|
if(cdbm >= 0) {
|
|
attenuator = 0;
|
|
} else if (cdbm <= -3175){
|
|
attenuator = 127;
|
|
} else {
|
|
attenuator = (-cdbm) / 25;
|
|
}
|
|
FPGA::WriteMAX2871Default(Source.GetRegisters());
|
|
|
|
uint32_t last_LO2 = HW::IF1 - HW::IF2;
|
|
Si5351.SetCLK(SiChannel::Port1LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.SetCLK(SiChannel::Port2LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.SetCLK(SiChannel::RefLO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.ResetPLL(Si5351C::PLL::B);
|
|
|
|
IFTableIndexCnt = 0;
|
|
|
|
bool last_lowband = false;
|
|
|
|
// invalidate first entry of IFTable, preventing switing of 2.LO in halted callback
|
|
IFTable[0].pointCnt = 0xFFFF;
|
|
|
|
uint16_t pointsWithoutHalt = 0;
|
|
|
|
// Transfer PLL configuration to FPGA
|
|
for (uint16_t i = 0; i < points; i++) {
|
|
bool harmonic_mixing = false;
|
|
uint64_t freq = s.f_start + (s.f_stop - s.f_start) * i / (points - 1);
|
|
|
|
if(freq > 6000000000ULL) {
|
|
harmonic_mixing = true;
|
|
}
|
|
|
|
// SetFrequency only manipulates the register content in RAM, no SPI communication is done.
|
|
// No mode-switch of FPGA necessary here.
|
|
|
|
bool needs_halt = false;
|
|
uint64_t actualSourceFreq;
|
|
bool lowband = false;
|
|
if (freq < HW::BandSwitchFrequency) {
|
|
needs_halt = true;
|
|
lowband = true;
|
|
actualSourceFreq = freq;
|
|
} else {
|
|
uint64_t srcFreq = freq;
|
|
if(harmonic_mixing) {
|
|
srcFreq /= sourceHarmonic;
|
|
}
|
|
Source.SetFrequency(srcFreq);
|
|
actualSourceFreq = Source.GetActualFrequency();
|
|
if(harmonic_mixing) {
|
|
actualSourceFreq *= sourceHarmonic;
|
|
}
|
|
}
|
|
if (last_lowband && !lowband) {
|
|
// additional halt before first highband point to enable highband source
|
|
needs_halt = true;
|
|
}
|
|
uint64_t LOFreq = freq + HW::IF1;
|
|
if(harmonic_mixing) {
|
|
LOFreq /= LOHarmonic;
|
|
}
|
|
LO1.SetFrequency(LOFreq);
|
|
uint64_t actualLO1 = LO1.GetActualFrequency();
|
|
if(harmonic_mixing) {
|
|
actualLO1 *= LOHarmonic;
|
|
}
|
|
uint32_t actualFirstIF = actualLO1 - actualSourceFreq;
|
|
uint32_t actualFinalIF = actualFirstIF - last_LO2;
|
|
uint32_t IFdeviation = abs(actualFinalIF - HW::IF2);
|
|
bool needs_LO2_shift = false;
|
|
if(IFdeviation > actualBandwidth / 2) {
|
|
needs_LO2_shift = true;
|
|
}
|
|
if (s.suppressPeaks && needs_LO2_shift) {
|
|
if (IFTableIndexCnt < IFTableNumEntries) {
|
|
// still room in table
|
|
needs_halt = true;
|
|
IFTable[IFTableIndexCnt].pointCnt = i;
|
|
if(IFTableIndexCnt < IFTableNumEntries - 1) {
|
|
// Configure LO2 for the changed IF1. This is not necessary right now but it will generate
|
|
// the correct clock settings
|
|
last_LO2 = actualFirstIF - HW::IF2;
|
|
LOG_INFO("Changing 2.LO to %lu at point %lu (%lu%06luHz) to reach correct 2.IF frequency",
|
|
last_LO2, i, (uint32_t ) (freq / 1000000),
|
|
(uint32_t ) (freq % 1000000));
|
|
} else {
|
|
// last entry in IF table, revert LO2 to default
|
|
last_LO2 = HW::IF1 - HW::IF2;
|
|
}
|
|
Si5351.SetCLK(SiChannel::RefLO2, last_LO2,
|
|
Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
// store calculated clock configuration for later change
|
|
Si5351.ReadRawCLKConfig(SiChannel::RefLO2, IFTable[IFTableIndexCnt].clkconfig);
|
|
IFTableIndexCnt++;
|
|
needs_LO2_shift = false;
|
|
}
|
|
}
|
|
if(needs_LO2_shift) {
|
|
// if shift is still needed either peak suppression is disabled or no more room in IFTable was available
|
|
LOG_WARN(
|
|
"PLL deviation of %luHz for measurement at %lu%06luHz, will cause a peak",
|
|
IFdeviation, (uint32_t ) (freq / 1000000), (uint32_t ) (freq % 1000000));
|
|
}
|
|
|
|
// halt on regular intervals to prevent USB buffer overflow
|
|
if(!needs_halt) {
|
|
pointsWithoutHalt++;
|
|
if(pointsWithoutHalt > maxPointsBetweenHalts) {
|
|
needs_halt = true;
|
|
}
|
|
}
|
|
if(needs_halt) {
|
|
pointsWithoutHalt = 0;
|
|
}
|
|
|
|
FPGA::WriteSweepConfig(i, lowband, Source.GetRegisters(),
|
|
LO1.GetRegisters(), attenuator, freq, FPGA::SettlingTime::us20,
|
|
FPGA::Samples::SPPRegister, needs_halt);
|
|
last_lowband = lowband;
|
|
}
|
|
// revert clk configuration to previous value (might have been changed in sweep calculation)
|
|
Si5351.SetCLK(SiChannel::RefLO2, HW::IF1 - HW::IF2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.ResetPLL(Si5351C::PLL::B);
|
|
// Enable mixers/amplifier/PLLs
|
|
FPGA::SetWindow(FPGA::Window::None);
|
|
FPGA::Enable(FPGA::Periphery::Port1Mixer);
|
|
FPGA::Enable(FPGA::Periphery::Port2Mixer);
|
|
FPGA::Enable(FPGA::Periphery::RefMixer);
|
|
FPGA::Enable(FPGA::Periphery::Amplifier);
|
|
FPGA::Enable(FPGA::Periphery::SourceChip);
|
|
FPGA::Enable(FPGA::Periphery::SourceRF);
|
|
FPGA::Enable(FPGA::Periphery::LO1Chip);
|
|
FPGA::Enable(FPGA::Periphery::LO1RF);
|
|
FPGA::Enable(FPGA::Periphery::ExcitePort1, s.excitePort1);
|
|
FPGA::Enable(FPGA::Periphery::ExcitePort2, s.excitePort2);
|
|
FPGA::Enable(FPGA::Periphery::PortSwitch);
|
|
pointCnt = 0;
|
|
// starting port depends on whether port 1 is active in sweep
|
|
excitingPort1 = s.excitePort1;
|
|
IFTableIndexCnt = 0;
|
|
adcShifted = false;
|
|
active = true;
|
|
// Enable new data and sweep halt interrupt
|
|
FPGA::EnableInterrupt(FPGA::Interrupt::NewData);
|
|
FPGA::EnableInterrupt(FPGA::Interrupt::SweepHalted);
|
|
// Start the sweep
|
|
FPGA::StartSweep();
|
|
return true;
|
|
}
|
|
|
|
static void PassOnData() {
|
|
Protocol::PacketInfo info;
|
|
info.type = Protocol::PacketType::Datapoint;
|
|
info.datapoint = data;
|
|
Communication::Send(info);
|
|
}
|
|
|
|
bool VNA::MeasurementDone(const FPGA::SamplingResult &result) {
|
|
if(!active) {
|
|
return false;
|
|
}
|
|
if(result.pointNum != pointCnt || !result.activePort != excitingPort1) {
|
|
LOG_WARN("Indicated point does not match (%u != %u, %d != %d)", result.pointNum, pointCnt, result.activePort, !excitingPort1);
|
|
FPGA::AbortSweep();
|
|
return false;
|
|
}
|
|
// normal sweep mode
|
|
auto port1_raw = std::complex<float>(result.P1I, result.P1Q);
|
|
auto port2_raw = std::complex<float>(result.P2I, result.P2Q);
|
|
auto ref = std::complex<float>(result.RefI, result.RefQ);
|
|
auto port1 = port1_raw / ref;
|
|
auto port2 = port2_raw / ref;
|
|
data.pointNum = pointCnt;
|
|
data.frequency = settings.f_start + (settings.f_stop - settings.f_start) * pointCnt / (settings.points - 1);
|
|
if(excitingPort1) {
|
|
data.real_S11 = port1.real();
|
|
data.imag_S11 = port1.imag();
|
|
data.real_S21 = port2.real();
|
|
data.imag_S21 = port2.imag();
|
|
} else {
|
|
data.real_S12 = port1.real();
|
|
data.imag_S12 = port1.imag();
|
|
data.real_S22 = port2.real();
|
|
data.imag_S22 = port2.imag();
|
|
}
|
|
// figure out whether this sweep point is complete and which port gets excited next
|
|
bool pointComplete = false;
|
|
if(settings.excitePort1 == 1 && settings.excitePort2 == 1) {
|
|
// point is complete when port 2 was active
|
|
pointComplete = !excitingPort1;
|
|
// next measurement will be from other port
|
|
excitingPort1 = !excitingPort1;
|
|
} else {
|
|
// only one port active, point is complete after every measurement
|
|
pointComplete = true;
|
|
}
|
|
if(pointComplete) {
|
|
STM::DispatchToInterrupt(PassOnData);
|
|
pointCnt++;
|
|
if (pointCnt >= settings.points) {
|
|
// reached end of sweep, start again
|
|
pointCnt = 0;
|
|
IFTableIndexCnt = 0;
|
|
// request to trigger work function
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void VNA::Work() {
|
|
// end of sweep
|
|
HW::Ref::update();
|
|
// Compile info packet
|
|
Protocol::PacketInfo packet;
|
|
packet.type = Protocol::PacketType::DeviceInfo;
|
|
HW::fillDeviceInfo(&packet.info, true);
|
|
Communication::Send(packet);
|
|
// Start next sweep
|
|
FPGA::StartSweep();
|
|
}
|
|
|
|
void VNA::SweepHalted() {
|
|
if(!active) {
|
|
return;
|
|
}
|
|
LOG_DEBUG("Halted before point %d", pointCnt);
|
|
// Check if IF table has entry at this point
|
|
if (IFTableIndexCnt < IFTableNumEntries && IFTable[IFTableIndexCnt].pointCnt == pointCnt) {
|
|
Si5351.WriteRawCLKConfig(SiChannel::Port1LO2, IFTable[IFTableIndexCnt].clkconfig);
|
|
Si5351.WriteRawCLKConfig(SiChannel::Port2LO2, IFTable[IFTableIndexCnt].clkconfig);
|
|
Si5351.WriteRawCLKConfig(SiChannel::RefLO2, IFTable[IFTableIndexCnt].clkconfig);
|
|
Si5351.ResetPLL(Si5351C::PLL::B);
|
|
IFTableIndexCnt++;
|
|
// PLL reset causes the 2.LO to turn off briefly and then ramp on back, needs delay before next point
|
|
Delay::us(1300);
|
|
}
|
|
uint64_t frequency = settings.f_start
|
|
+ (settings.f_stop - settings.f_start) * pointCnt
|
|
/ (settings.points - 1);
|
|
bool adcShiftRequired = false;
|
|
if (frequency < HW::BandSwitchFrequency) {
|
|
// need the Si5351 as Source
|
|
Si5351.SetCLK(SiChannel::LowbandSource, frequency, Si5351C::PLL::B,
|
|
sourceHighPower ? Si5351C::DriveStrength::mA8 : Si5351C::DriveStrength::mA4);
|
|
if (pointCnt == 0) {
|
|
// First point in sweep, enable CLK
|
|
Si5351.Enable(SiChannel::LowbandSource);
|
|
FPGA::Disable(FPGA::Periphery::SourceRF);
|
|
Delay::us(1300);
|
|
}
|
|
|
|
// At low frequencies the 1.LO feedtrough mixes with the 2.LO in the second mixer.
|
|
// Depending on the stimulus frequency, the resulting mixing product might alias to the 2.IF
|
|
// in the ADC which causes a spike. Check for this and shift the ADC sampling frequency if necessary
|
|
uint32_t LO_mixing = (HW::IF1 + frequency) - (HW::IF1 - HW::IF2);
|
|
if(abs(Util::Alias(LO_mixing, HW::ADCSamplerate) - HW::IF2) <= actualBandwidth * 2) {
|
|
// the image is in or near the IF bandwidth and would cause a peak
|
|
// Use a slightly different ADC samplerate
|
|
adcShiftRequired = true;
|
|
}
|
|
} else if(!FPGA::IsEnabled(FPGA::Periphery::SourceRF)){
|
|
// first sweep point in highband is also halted, disable lowband source
|
|
Si5351.Disable(SiChannel::LowbandSource);
|
|
FPGA::Enable(FPGA::Periphery::SourceRF);
|
|
}
|
|
|
|
if(adcShiftRequired) {
|
|
FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, alternativePrescaler);
|
|
FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, alternativePhaseInc);
|
|
adcShifted = true;
|
|
} else if(adcShifted) {
|
|
// reset to default value
|
|
FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, HW::ADCprescaler);
|
|
FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, HW::DFTphaseInc);
|
|
adcShifted = false;
|
|
}
|
|
|
|
if(usb_available_buffer() >= reservedUSBbuffer) {
|
|
// enough space available, can resume immediately
|
|
FPGA::ResumeHaltedSweep();
|
|
} else {
|
|
// USB buffer could potentially overflow before next halted point, wait until more space is available.
|
|
// This function is called from a low level interrupt, need to dispatch to lower priority to allow USB
|
|
// handling to continue
|
|
STM::DispatchToInterrupt([](){
|
|
while(usb_available_buffer() < reservedUSBbuffer);
|
|
FPGA::ResumeHaltedSweep();
|
|
});
|
|
}
|
|
}
|
|
|
|
void VNA::Stop() {
|
|
active = false;
|
|
FPGA::AbortSweep();
|
|
}
|