159 lines
5.4 KiB
C++
159 lines
5.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_MATRIXBASEEIGENVALUES_H
|
|
#define EIGEN_MATRIXBASEEIGENVALUES_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template<typename Derived, bool IsComplex>
|
|
struct eigenvalues_selector
|
|
{
|
|
// this is the implementation for the case IsComplex = true
|
|
static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
|
|
run(const MatrixBase<Derived>& m)
|
|
{
|
|
typedef typename Derived::PlainObject PlainObject;
|
|
PlainObject m_eval(m);
|
|
return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues();
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct eigenvalues_selector<Derived, false>
|
|
{
|
|
static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
|
|
run(const MatrixBase<Derived>& m)
|
|
{
|
|
typedef typename Derived::PlainObject PlainObject;
|
|
PlainObject m_eval(m);
|
|
return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
/** \brief Computes the eigenvalues of a matrix
|
|
* \returns Column vector containing the eigenvalues.
|
|
*
|
|
* \eigenvalues_module
|
|
* This function computes the eigenvalues with the help of the EigenSolver
|
|
* class (for real matrices) or the ComplexEigenSolver class (for complex
|
|
* matrices).
|
|
*
|
|
* The eigenvalues are repeated according to their algebraic multiplicity,
|
|
* so there are as many eigenvalues as rows in the matrix.
|
|
*
|
|
* The SelfAdjointView class provides a better algorithm for selfadjoint
|
|
* matrices.
|
|
*
|
|
* Example: \include MatrixBase_eigenvalues.cpp
|
|
* Output: \verbinclude MatrixBase_eigenvalues.out
|
|
*
|
|
* \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
|
|
* SelfAdjointView::eigenvalues()
|
|
*/
|
|
template<typename Derived>
|
|
inline typename MatrixBase<Derived>::EigenvaluesReturnType
|
|
MatrixBase<Derived>::eigenvalues() const
|
|
{
|
|
return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived());
|
|
}
|
|
|
|
/** \brief Computes the eigenvalues of a matrix
|
|
* \returns Column vector containing the eigenvalues.
|
|
*
|
|
* \eigenvalues_module
|
|
* This function computes the eigenvalues with the help of the
|
|
* SelfAdjointEigenSolver class. The eigenvalues are repeated according to
|
|
* their algebraic multiplicity, so there are as many eigenvalues as rows in
|
|
* the matrix.
|
|
*
|
|
* Example: \include SelfAdjointView_eigenvalues.cpp
|
|
* Output: \verbinclude SelfAdjointView_eigenvalues.out
|
|
*
|
|
* \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
|
|
*/
|
|
template<typename MatrixType, unsigned int UpLo>
|
|
EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
|
|
SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
|
|
{
|
|
PlainObject thisAsMatrix(*this);
|
|
return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
|
|
}
|
|
|
|
|
|
|
|
/** \brief Computes the L2 operator norm
|
|
* \returns Operator norm of the matrix.
|
|
*
|
|
* \eigenvalues_module
|
|
* This function computes the L2 operator norm of a matrix, which is also
|
|
* known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be
|
|
* \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f]
|
|
* where the maximum is over all vectors and the norm on the right is the
|
|
* Euclidean vector norm. The norm equals the largest singular value, which is
|
|
* the square root of the largest eigenvalue of the positive semi-definite
|
|
* matrix \f$ A^*A \f$.
|
|
*
|
|
* The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed
|
|
* by SelfAdjointView::eigenvalues(), to compute the operator norm of a
|
|
* matrix. The SelfAdjointView class provides a better algorithm for
|
|
* selfadjoint matrices.
|
|
*
|
|
* Example: \include MatrixBase_operatorNorm.cpp
|
|
* Output: \verbinclude MatrixBase_operatorNorm.out
|
|
*
|
|
* \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()
|
|
*/
|
|
template<typename Derived>
|
|
inline typename MatrixBase<Derived>::RealScalar
|
|
MatrixBase<Derived>::operatorNorm() const
|
|
{
|
|
using std::sqrt;
|
|
typename Derived::PlainObject m_eval(derived());
|
|
// FIXME if it is really guaranteed that the eigenvalues are already sorted,
|
|
// then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
|
|
return sqrt((m_eval*m_eval.adjoint())
|
|
.eval()
|
|
.template selfadjointView<Lower>()
|
|
.eigenvalues()
|
|
.maxCoeff()
|
|
);
|
|
}
|
|
|
|
/** \brief Computes the L2 operator norm
|
|
* \returns Operator norm of the matrix.
|
|
*
|
|
* \eigenvalues_module
|
|
* This function computes the L2 operator norm of a self-adjoint matrix. For a
|
|
* self-adjoint matrix, the operator norm is the largest eigenvalue.
|
|
*
|
|
* The current implementation uses the eigenvalues of the matrix, as computed
|
|
* by eigenvalues(), to compute the operator norm of the matrix.
|
|
*
|
|
* Example: \include SelfAdjointView_operatorNorm.cpp
|
|
* Output: \verbinclude SelfAdjointView_operatorNorm.out
|
|
*
|
|
* \sa eigenvalues(), MatrixBase::operatorNorm()
|
|
*/
|
|
template<typename MatrixType, unsigned int UpLo>
|
|
EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
|
|
SelfAdjointView<MatrixType, UpLo>::operatorNorm() const
|
|
{
|
|
return eigenvalues().cwiseAbs().maxCoeff();
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif
|