188 lines
5.0 KiB
C++
188 lines
5.0 KiB
C++
#ifndef TPARAM_H
|
|
#define TPARAM_H
|
|
|
|
#include <complex>
|
|
|
|
using Type = std::complex<double>;
|
|
|
|
class Parameters {
|
|
public:
|
|
Parameters(Type m11, Type m12, Type m21, Type m22)
|
|
: m11(m11), m12(m12), m21(m21), m22(m22){};
|
|
Parameters(){};
|
|
|
|
Type m11, m12, m21, m22;
|
|
};
|
|
|
|
// forward declaration of parameter classes
|
|
class Sparam;
|
|
class Tparam;
|
|
class ABCDparam;
|
|
|
|
class Sparam : public Parameters {
|
|
public:
|
|
using Parameters::Parameters;
|
|
Sparam(const Tparam &t);
|
|
Sparam(const ABCDparam &a, Type Z01, Type Z02);
|
|
Sparam(const ABCDparam &a, Type Z0);
|
|
Sparam operator+(const Sparam &r) {
|
|
Sparam p;
|
|
p.m11 = this->m11+r.m11;
|
|
p.m12 = this->m12+r.m12;
|
|
p.m21 = this->m21+r.m21;
|
|
p.m22 = this->m22+r.m22;
|
|
return p;
|
|
}
|
|
Sparam operator*(const Type &r) {
|
|
Sparam p(m11*r, m12*r, m21*r, m22*r);
|
|
return p;
|
|
}
|
|
};
|
|
|
|
class ABCDparam : public Parameters {
|
|
public:
|
|
using Parameters::Parameters;
|
|
ABCDparam(const Sparam &s, Type Z01, Type Z02);
|
|
ABCDparam(const Sparam &s, Type Z0);
|
|
ABCDparam operator*(const ABCDparam &r) {
|
|
ABCDparam p;
|
|
p.m11 = this->m11*r.m11 + this->m12*r.m21;
|
|
p.m12 = this->m11*r.m12 + this->m12*r.m22;
|
|
p.m21 = this->m21*r.m11 + this->m22*r.m21;
|
|
p.m22 = this->m21*r.m12 + this->m22*r.m22;
|
|
return p;
|
|
}
|
|
ABCDparam inverse() {
|
|
ABCDparam i;
|
|
Type det = m11*m22 - m12*m21;
|
|
i.m11 = m22 / det;
|
|
i.m12 = -m12 / det;
|
|
i.m21 = -m21 / det;
|
|
i.m22 = m11 / det;
|
|
return i;
|
|
}
|
|
ABCDparam operator*(const Type &r) {
|
|
ABCDparam p(m11*r, m12*r, m21*r, m22*r);
|
|
return p;
|
|
}
|
|
ABCDparam root() {
|
|
// calculate root of 2x2 matrix, according to https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix (choose positive roots)
|
|
auto tau = m11 + m22;
|
|
auto sigma = m11*m22 - m12*m21;
|
|
auto s = sqrt(sigma);
|
|
auto t = sqrt(tau + 2.0*s);
|
|
ABCDparam r = *this;
|
|
r.m11 += s;
|
|
r.m22 += s;
|
|
r = r * (1.0/t);
|
|
return r;
|
|
}
|
|
};
|
|
|
|
class Tparam : public Parameters {
|
|
public:
|
|
using Parameters::Parameters;
|
|
Tparam(const Sparam &s);
|
|
Tparam operator*(const Tparam &r) {
|
|
Tparam p;
|
|
p.m11 = this->m11*r.m11 + this->m12*r.m21;
|
|
p.m12 = this->m11*r.m12 + this->m12*r.m22;
|
|
p.m21 = this->m21*r.m11 + this->m22*r.m21;
|
|
p.m22 = this->m21*r.m12 + this->m22*r.m22;
|
|
return p;
|
|
}
|
|
Tparam operator+(const Tparam &r) {
|
|
Tparam p;
|
|
p.m11 = this->m11+r.m11;
|
|
p.m12 = this->m12+r.m12;
|
|
p.m21 = this->m21+r.m21;
|
|
p.m22 = this->m22+r.m22;
|
|
return p;
|
|
}
|
|
Tparam inverse() {
|
|
Tparam i;
|
|
Type det = m11*m22 - m12*m21;
|
|
i.m11 = m22 / det;
|
|
i.m12 = -m12 / det;
|
|
i.m21 = -m21 / det;
|
|
i.m22 = m11 / det;
|
|
return i;
|
|
}
|
|
Tparam operator*(const Type &r) {
|
|
Tparam p(m11*r, m12*r, m21*r, m22*r);
|
|
return p;
|
|
}
|
|
Tparam root() {
|
|
// calculate root of 2x2 matrix, according to https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix (choose positive roots)
|
|
auto tau = m11 + m22;
|
|
auto sigma = m11*m22 - m12*m21;
|
|
auto s = sqrt(sigma);
|
|
auto t = sqrt(tau + 2.0*s);
|
|
Tparam r = *this;
|
|
r.m11 += s;
|
|
r.m22 += s;
|
|
r = r * (1.0/t);
|
|
return r;
|
|
}
|
|
};
|
|
|
|
//template<typename T>
|
|
//class Tparam {
|
|
//public:
|
|
// Tparam(){};
|
|
// Tparam(T t11, T t12, T t21, T t22)
|
|
// : t11(t11), t12(t12), t21(t21), t22(t22){};
|
|
// void fromSparam(T S11, T S21, T S12, T S22) {
|
|
// t11 = -(S11*S22 - S12*S21) / S21;
|
|
// t12 = S11 / S21;
|
|
// t21 = -S22 / S21;
|
|
// t22 = 1.0 / S21;
|
|
// }
|
|
// void toSparam(T &S11, T &S21, T &S12, T &S22) {
|
|
// S11 = t12 / t22;
|
|
// S21 = T(1) / t22;
|
|
// S12 = (t11*t22 - t12*t21) / t22;
|
|
// S22 = -t21 / t22;
|
|
// }
|
|
// Tparam inverse() {
|
|
// Tparam i;
|
|
// T det = t11*t22 - t12*t21;
|
|
// i.t11 = t22 / det;
|
|
// i.t12 = -t12 / det;
|
|
// i.t21 = -t21 / det;
|
|
// i.t22 = t11 / det;
|
|
// return i;
|
|
// }
|
|
// Tparam root() {
|
|
// // calculate root of 2x2 matrix, according to https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix (choose positive roots)
|
|
// auto tau = t11 + t22;
|
|
// auto sigma = t11*t22 - t12*t21;
|
|
// auto s = sqrt(sigma);
|
|
// auto t = sqrt(tau + 2.0*s);
|
|
// Tparam r = *this;
|
|
// r.t11 += s;
|
|
// r.t22 += s;
|
|
// r = r * (1.0/t);
|
|
// return r;
|
|
// }
|
|
// Tparam operator*(const Tparam &r) {
|
|
// Tparam p;
|
|
// p.t11 = t11*r.t11 + t12*r.t21;
|
|
// p.t12 = t11*r.t12 + t12*r.t22;
|
|
// p.t21 = t21*r.t11 + t22*r.t21;
|
|
// p.t22 = t21*r.t12 + t22*r.t22;
|
|
// return p;
|
|
// }
|
|
// Tparam operator*(const T &r) {
|
|
// Tparam p;
|
|
// p.t11 = t11 * r;
|
|
// p.t12 = t12 * r;
|
|
// p.t21 = t21 * r;
|
|
// p.t22 = t22 * r;
|
|
// return p;
|
|
// }
|
|
// T t11, t12, t21, t22;
|
|
//};
|
|
|
|
#endif // TPARAM_H
|