LibreVNA/Software/PC_Application/Traces/trace.cpp
2020-11-01 22:56:31 +01:00

402 lines
10 KiB
C++

#include "trace.h"
#include <math.h>
#include "fftcomplex.h"
using namespace std;
Trace::Trace(QString name, QColor color, LiveParameter live)
: tdr_users(0),
_name(name),
_color(color),
_liveType(LivedataType::Overwrite),
_liveParam(live),
reflection(true),
visible(true),
paused(false),
touchstone(false),
calibration(false)
{
}
Trace::~Trace()
{
emit deleted(this);
}
void Trace::clear() {
if(paused) {
return;
}
_data.clear();
emit cleared(this);
emit dataChanged();
}
void Trace::addData(Trace::Data d) {
// add or replace data in vector while keeping it sorted with increasing frequency
auto lower = lower_bound(_data.begin(), _data.end(), d, [](const Data &lhs, const Data &rhs) -> bool {
return lhs.frequency < rhs.frequency;
});
if(lower == _data.end()) {
// highest frequency yet, add to vector
_data.push_back(d);
} else if(lower->frequency == d.frequency) {
switch(_liveType) {
case LivedataType::Overwrite:
// replace this data element
*lower = d;
break;
case LivedataType::MaxHold:
// replace this data element
if(abs(d.S) > abs(lower->S)) {
*lower = d;
}
break;
case LivedataType::MinHold:
// replace this data element
if(abs(d.S) < abs(lower->S)) {
*lower = d;
}
break;
}
} else {
// insert at this position
_data.insert(lower, d);
}
emit dataAdded(this, d);
emit dataChanged();
if(lower == _data.begin()) {
// received the first point, which means the last sweep just finished
if(tdr_users) {
updateTimeDomainData();
}
}
}
void Trace::setName(QString name) {
_name = name;
emit nameChanged();
}
void Trace::fillFromTouchstone(Touchstone &t, unsigned int parameter, QString filename)
{
if(parameter >= t.ports()*t.ports()) {
throw runtime_error("Parameter for touchstone out of range");
}
clear();
setTouchstoneParameter(parameter);
setTouchstoneFilename(filename);
for(unsigned int i=0;i<t.points();i++) {
auto tData = t.point(i);
Data d;
d.frequency = tData.frequency;
d.S = t.point(i).S[parameter];
addData(d);
}
// check if parameter is square (e.i. S11/S22/S33/...)
parameter++;
bool isSquare = false;
for (unsigned int i = 1; i * i <= parameter; i++) {
// If (i * i = n)
if ((parameter % i == 0) && (parameter / i == i)) {
isSquare = true;
break;
}
}
if(isSquare == 1) {
reflection = true;
} else {
reflection = false;
}
touchstone = true;
emit typeChanged(this);
}
void Trace::fromLivedata(Trace::LivedataType type, LiveParameter param)
{
touchstone = false;
_liveType = type;
_liveParam = param;
if(param == LiveParameter::S11 || param == LiveParameter::S22) {
reflection = true;
} else {
reflection = false;
}
emit typeChanged(this);
}
void Trace::setColor(QColor color) {
if(_color != color) {
_color = color;
emit colorChanged(this);
}
}
void Trace::addMarker(TraceMarker *m)
{
markers.insert(m);
emit markerAdded(m);
}
void Trace::removeMarker(TraceMarker *m)
{
markers.erase(m);
emit markerRemoved(m);
}
//#include <iostream>
//#include <chrono>
void Trace::updateTimeDomainData()
{
// using namespace std::chrono;
// auto starttime = duration_cast< milliseconds >(
// system_clock::now().time_since_epoch()
// ).count();
auto steps = size();
auto firstStep = minFreq();
if(firstStep == 0) {
// zero as first step would result in infinite number of points, skip and start with second
firstStep = _data[1].frequency;
steps--;
}
if(firstStep * steps != maxFreq()) {
// data is not available with correct frequency spacing, calculate required steps
steps = maxFreq() / firstStep;
}
const double PI = 3.141592653589793238463;
// reserve vector for negative frequenies and DC as well
vector<complex<double>> frequencyDomain(2*steps + 1);
// copy frequencies, use the flipped conjugate for negative part
for(unsigned int i = 1;i<=steps;i++) {
auto S = getData(firstStep * i);
constexpr double alpha0 = 0.54;
auto hamming = alpha0 - (1.0 - alpha0) * -cos(PI * i / steps);
S *= hamming;
frequencyDomain[2 * steps - i + 1] = conj(S);
frequencyDomain[i] = S;
}
// use simple extrapolation from lowest two points to extract DC value
auto abs_DC = 2.0 * abs(frequencyDomain[1]) - abs(frequencyDomain[2]);
auto phase_DC = 2.0 * arg(frequencyDomain[1]) - arg(frequencyDomain[2]);
frequencyDomain[0] = polar(abs_DC, phase_DC);
auto fft_bins = frequencyDomain.size();
timeDomain.clear();
timeDomain.resize(fft_bins);
const double fs = 1.0 / (firstStep * fft_bins);
double last_step = 0.0;
Fft::transform(frequencyDomain, true);
constexpr double c = 299792458;
for(unsigned int i = 0;i<fft_bins;i++) {
TimedomainData t;
t.time = fs * i;
t.distance = t.time * c * 0.66; // TODO user settable velocity factor
if(isReflection()) {
t.distance /= 2;
}
t.impulseResponse = real(frequencyDomain[i]) / fft_bins;
t.stepResponse = last_step;
last_step += t.impulseResponse;
timeDomain.push_back(t);
}
// auto duration = duration_cast< milliseconds >(
// system_clock::now().time_since_epoch()
// ).count() - starttime;
// cout << "TDR: " << this << " (took " << duration << "ms)" <<endl;
}
void Trace::setReflection(bool value)
{
reflection = value;
}
void Trace::addTDRinterest()
{
if(tdr_users == 0) {
// no recent time domain data available, calculate now
updateTimeDomainData();
}
tdr_users++;
}
void Trace::removeTDRinterest()
{
if(tdr_users > 0) {
tdr_users--;
}
}
void Trace::setCalibration(bool value)
{
calibration = value;
}
std::set<TraceMarker *> Trace::getMarkers() const
{
return markers;
}
void Trace::setVisible(bool visible)
{
if(visible != this->visible) {
this->visible = visible;
emit visibilityChanged(this);
}
}
bool Trace::isVisible()
{
return visible;
}
void Trace::pause()
{
paused = true;
}
void Trace::resume()
{
paused = false;
}
bool Trace::isPaused()
{
return paused;
}
bool Trace::isTouchstone()
{
return touchstone;
}
bool Trace::isCalibration()
{
return calibration;
}
bool Trace::isLive()
{
return !isCalibration() && !isTouchstone();
}
bool Trace::isReflection()
{
return reflection;
}
double Trace::findExtremumFreq(bool max)
{
double compare = max ? numeric_limits<double>::min() : numeric_limits<double>::max();
double freq = 0.0;
for(auto d : _data) {
double amplitude = abs(d.S);
if((max && (amplitude > compare)) || (!max && (amplitude < compare))) {
// higher/lower extremum found
compare = amplitude;
freq = d.frequency;
}
}
return freq;
}
std::vector<double> Trace::findPeakFrequencies(unsigned int maxPeaks, double minLevel, double minValley)
{
using peakInfo = struct peakinfo {
double frequency;
double level_dbm;
};
vector<peakInfo> peaks;
double frequency = 0.0;
double max_dbm = -200.0;
double min_dbm = 200.0;
for(auto d : _data) {
double dbm = 20*log10(abs(d.S));
if((dbm >= max_dbm) && (min_dbm <= dbm - minValley)) {
// potential peak frequency
frequency = d.frequency;
max_dbm = dbm;
}
if(dbm <= min_dbm) {
min_dbm = dbm;
}
if((dbm <= max_dbm - minValley) && (max_dbm >= minLevel)) {
// peak was high enough and dropped below minValley afterwards
peakInfo peak;
peak.frequency = frequency;
peak.level_dbm = max_dbm;
peaks.push_back(peak);
// reset
frequency = 0.0;
max_dbm = min_dbm = dbm;
}
}
if(peaks.size() > maxPeaks) {
// found more peaks than requested, remove excess peaks
// sort with descending peak level
sort(peaks.begin(), peaks.end(), [](peakInfo higher, peakInfo lower) {
return higher.level_dbm >= lower.level_dbm;
});
// only keep the requested number of peaks
peaks.resize(maxPeaks);
// sort again with ascending frequencies
sort(peaks.begin(), peaks.end(), [](peakInfo lower, peakInfo higher) {
return higher.frequency >= lower.frequency;
});
}
vector<double> frequencies;
for(auto p : peaks) {
frequencies.push_back(p.frequency);
}
return frequencies;
}
QString Trace::getTouchstoneFilename() const
{
return touchstoneFilename;
}
void Trace::setTouchstoneFilename(const QString &value)
{
touchstoneFilename = value;
}
unsigned int Trace::getTouchstoneParameter() const
{
return touchstoneParameter;
}
std::complex<double> Trace::getData(double frequency)
{
if(_data.size() == 0 || frequency < minFreq() || frequency > maxFreq()) {
return std::numeric_limits<std::complex<double>>::quiet_NaN();
}
auto i = index(frequency);
if(_data.at(i).frequency == frequency) {
return _data[i].S;
} else {
// no exact frequency match, needs to interpolate
auto high = _data[i];
auto low = _data[i-1];
double alpha = (frequency - low.frequency) / (high.frequency - low.frequency);
return low.S * (1 - alpha) + high.S * alpha;
}
}
int Trace::index(double frequency)
{
auto lower = lower_bound(_data.begin(), _data.end(), frequency, [](const Data &lhs, const double freq) -> bool {
return lhs.frequency < freq;
});
return lower - _data.begin();
}
void Trace::setTouchstoneParameter(int value)
{
touchstoneParameter = value;
}