LibreVNA/Software/PC_Application/LibreVNA-GUI/Device/devicedriver.cpp
2023-10-31 18:49:08 +01:00

174 lines
5.9 KiB
C++

#include "devicedriver.h"
#include "LibreVNA/librevnatcpdriver.h"
#include "LibreVNA/librevnausbdriver.h"
#include "LibreVNA/Compound/compounddriver.h"
#include "SSA3000X/ssa3000xdriver.h"
#include "SNA5000A/sna5000adriver.h"
DeviceDriver *DeviceDriver::activeDriver = nullptr;
DeviceDriver::~DeviceDriver()
{
for(auto a : specificActions) {
delete a;
}
}
std::vector<DeviceDriver *> DeviceDriver::getDrivers()
{
static std::vector<DeviceDriver*> ret;
if (ret.size() == 0) {
// first function call
ret.push_back(new LibreVNAUSBDriver);
ret.push_back(new LibreVNATCPDriver);
ret.push_back(new CompoundDriver);
ret.push_back(new SSA3000XDriver);
ret.push_back(new SNA5000ADriver);
}
return ret;
}
bool DeviceDriver::connectDevice(QString serial, bool isIndepedentDriver)
{
if(!isIndepedentDriver) {
if(activeDriver && activeDriver != this) {
activeDriver->disconnect();
}
}
if(connectTo(serial)) {
if(!isIndepedentDriver) {
activeDriver = this;
}
return true;
} else {
return false;
}
}
void DeviceDriver::disconnectDevice()
{
disconnect();
activeDriver = nullptr;
}
unsigned int DeviceDriver::SApoints() {
if(activeDriver) {
return activeDriver->getSApoints();
} else {
// return default value instead
return 1001;
}
}
Sparam DeviceDriver::VNAMeasurement::toSparam(int port1, int port2) const
{
Sparam S;
S.m11 = measurements.at("S"+QString::number(port1)+QString::number(port1));
S.m12 = measurements.at("S"+QString::number(port1)+QString::number(port2));
S.m21 = measurements.at("S"+QString::number(port2)+QString::number(port1));
S.m22 = measurements.at("S"+QString::number(port2)+QString::number(port2));
return S;
}
void DeviceDriver::VNAMeasurement::fromSparam(Sparam S, int port1, int port2)
{
QString s11 = "S"+QString::number(port1)+QString::number(port1);
QString s12 = "S"+QString::number(port1)+QString::number(port2);
QString s21 = "S"+QString::number(port2)+QString::number(port1);
QString s22 = "S"+QString::number(port2)+QString::number(port2);
if(measurements.count(s11)) {
measurements[s11] = S.m11;
}
if(measurements.count(s12)) {
measurements[s12] = S.m12;
}
if(measurements.count(s21)) {
measurements[s21] = S.m21;
}
if(measurements.count(s22)) {
measurements[s22] = S.m22;
}
}
DeviceDriver::VNAMeasurement DeviceDriver::VNAMeasurement::interpolateTo(const DeviceDriver::VNAMeasurement &to, double a)
{
VNAMeasurement ret;
ret.frequency = frequency * (1.0 - a) + to.frequency * a;
ret.dBm = dBm * (1.0 - a) + to.dBm * a;
ret.Z0 = Z0 * (1.0 - a) + to.Z0 * a;
for(auto m : measurements) {
if(to.measurements.count(m.first) == 0) {
throw std::runtime_error("Nothing to interpolate to, expected measurement +\""+m.first.toStdString()+"\"");
}
ret.measurements[m.first] = measurements[m.first] * (1.0 - a) + to.measurements.at(m.first) * a;
}
return ret;
}
DeviceDriver::Info::Info()
{
firmware_version = "missing";
hardware_version = "missing";
Limits.VNA.ports = 2;
Limits.VNA.minFreq = 0;
Limits.VNA.maxFreq = 100000000000;
Limits.VNA.mindBm = -100;
Limits.VNA.maxdBm = 30;
Limits.VNA.minIFBW = 1;
Limits.VNA.maxIFBW = 100000000;
Limits.VNA.maxPoints = 65535;
Limits.Generator.ports = 2;
Limits.Generator.minFreq = 0;
Limits.Generator.maxFreq = 100000000000;
Limits.Generator.mindBm = -100;
Limits.Generator.maxdBm = 30;
Limits.SA.ports = 2;
Limits.SA.minFreq = 0;
Limits.SA.maxFreq = 100000000000;
Limits.SA.mindBm = -100;
Limits.SA.maxdBm = 30;
Limits.SA.minRBW = 1;
Limits.SA.maxRBW = 100000000;
}
void DeviceDriver::Info::subset(const DeviceDriver::Info &info)
{
if (info.firmware_version != firmware_version) {
firmware_version = "Mixed";
}
if (info.hardware_version != hardware_version) {
hardware_version = "Mixed";
}
Limits.VNA.ports += info.Limits.VNA.ports;
Limits.VNA.minFreq = std::max(Limits.VNA.minFreq, info.Limits.VNA.minFreq);
Limits.VNA.maxFreq = std::min(Limits.VNA.maxFreq, info.Limits.VNA.maxFreq);
Limits.VNA.mindBm = std::max(Limits.VNA.mindBm, info.Limits.VNA.mindBm);
Limits.VNA.maxdBm = std::min(Limits.VNA.maxdBm, info.Limits.VNA.maxdBm);
Limits.VNA.minIFBW = std::max(Limits.VNA.minIFBW, info.Limits.VNA.minIFBW);
Limits.VNA.maxIFBW = std::min(Limits.VNA.maxIFBW, info.Limits.VNA.maxIFBW);
Limits.VNA.maxPoints = std::min(Limits.VNA.maxPoints, info.Limits.VNA.maxPoints);
Limits.Generator.ports += info.Limits.Generator.ports;
Limits.Generator.minFreq = std::max(Limits.Generator.minFreq, info.Limits.Generator.minFreq);
Limits.Generator.maxFreq = std::min(Limits.Generator.maxFreq, info.Limits.Generator.maxFreq);
Limits.Generator.mindBm = std::max(Limits.Generator.mindBm, info.Limits.Generator.mindBm);
Limits.Generator.maxdBm = std::min(Limits.Generator.maxdBm, info.Limits.Generator.maxdBm);
Limits.SA.ports += info.Limits.SA.ports;
Limits.SA.minFreq = std::max(Limits.SA.minFreq, info.Limits.SA.minFreq);
Limits.SA.maxFreq = std::min(Limits.SA.maxFreq, info.Limits.SA.maxFreq);
Limits.SA.mindBm = std::max(Limits.SA.mindBm, info.Limits.SA.mindBm);
Limits.SA.maxdBm = std::min(Limits.SA.maxdBm, info.Limits.SA.maxdBm);
Limits.SA.minRBW = std::max(Limits.SA.minRBW, info.Limits.SA.minRBW);
Limits.SA.maxRBW = std::min(Limits.SA.maxRBW, info.Limits.SA.maxRBW);
std::set<Feature> intersectFeatures;
std::set_intersection(supportedFeatures.begin(), supportedFeatures.end(), info.supportedFeatures.begin(), info.supportedFeatures.end(),
std::inserter(intersectFeatures, intersectFeatures.begin()));
supportedFeatures = intersectFeatures;
}