clear; clc; close all %% Radar parameters c = physconst('LightSpeed'); %speed of light BW = 150e6; %bandwidth fc = 77e9; % carrier frequency numADC = 256; % # of adc samples numChirps = 256; % # of chirps per frame numCPI = 10; T = 10e-6; % PRI PRF = 1/T; F = numADC/T; % sampling frequency dt = 1/F; % sampling interval slope = BW/T; lambda = c/fc; N = numChirps*numADC*numCPI; % total # of adc samples t = linspace(0,T*numChirps*numCPI,N); % time axis, one frame % t= 0:dt:dt*numADC*numChirps-dt; t_onePulse = 0:dt:dt*numADC-dt; numTX = 1; numRX = 8; Vmax = lambda/(T*4); % Max Unamb velocity m/s DFmax = 1/2*PRF; % = Vmax/(c/fc/2); % Max Unamb Dopp Freq dR = c/(2*BW); % range resol Rmax = F*c/(2*slope); % TI's MIMO Radar doc Rmax2 = c/2/PRF; % lecture 2.3 dV = lambda/(2*numChirps*T); % velocity resol, lambda/(2*framePeriod) d_rx = lambda/2; % dist. between rxs d_tx = 4*d_rx; % dist. between txs N_Dopp = numChirps; % length of doppler FFT N_range = numADC; % length of range FFT N_azimuth = numTX*numRX; R = 0:dR:Rmax-dR; % range axis V = linspace(-Vmax, Vmax, numChirps); % Velocity axis ang_ax = -90:90; % angle axis %% Targets r1_radial = 50; tar1_angle = -15; r1_y = cosd(tar1_angle)*r1_radial; r1_x = sind(tar1_angle)*r1_radial; v1_radial = 10; % velocity 1 v1_y = cosd(tar1_angle)*v1_radial; v1_x = sind(tar1_angle)*v1_radial; r1 = [r1_x r1_y 0]; r2_radial = 100; tar2_angle = 10; r2_y = cosd(tar2_angle)*r2_radial; r2_x = sind(tar2_angle)*r2_radial; v2_radial = -15; % velocity 2 v2_y = cosd(tar2_angle)*v2_radial; v2_x = sind(tar2_angle)*v2_radial; r2 = [r2_x r2_y 0]; tx_loc = cell(1,numTX); for i = 1:numTX tx_loc{i} = [(i-1)*d_tx 0 0]; scatter3(tx_loc{i}(1),tx_loc{i}(2),tx_loc{i}(3),'b','filled') hold on end rx_loc = cell(1,numRX); for i = 1:numRX rx_loc{i} = [tx_loc{numTX}(1)+d_tx+(i-1)*d_rx 0 0]; scatter3(rx_loc{i}(1),rx_loc{i}(2),rx_loc{i}(3),'r','filled') end tar1_loc = zeros(length(t),3); tar2_loc = zeros(length(t),3); tar1_loc(:,1) = r1(1) + v1_x*t; tar2_loc(:,1) = r2(1) + v2_x*t; tar1_loc(:,2) = r1(2) + v1_y*t; tar2_loc(:,2) = r2(2) + v2_y*t; % for i = 1:1000:length(t) % scatter3(tar1_loc(i,1),tar1_loc(i,2),tar1_loc(i,3),'m') % hold on % scatter3(tar2_loc(i,1),tar2_loc(i,2),tar2_loc(i,3),'k') % end %% TX delays_tar1 = cell(numTX,numRX); delays_tar2 = cell(numTX,numRX); r1_at_t = cell(numTX,numRX); r2_at_t = cell(numTX,numRX); tar1_angles = cell(numTX,numRX); tar2_angles = cell(numTX,numRX); tar1_velocities = cell(numTX,numRX); tar2_velocities = cell(numTX,numRX); for i = 1:numTX for j = 1:numRX delays_tar1{i,j} = (vecnorm(tar1_loc-repmat(rx_loc{j},N,1),2,2)+vecnorm(tar1_loc-repmat(tx_loc{i},N,1),2,2))/c; delays_tar2{i,j} = (vecnorm(tar2_loc-repmat(rx_loc{j},N,1),2,2)+vecnorm(tar2_loc-repmat(tx_loc{i},N,1),2,2))/c; % r1_at_t{i,j} = vecnorm(tar1_loc-repmat(rx_loc{j},N,1),2,2); % r2_at_t{i,j} = vecnorm(tar2_loc-repmat(rx_loc{j},N,1),2,2); % tar1_angles{i,j} = acosd(r1(2)./r1_at_t{i,j}); % tar2_angles{i,j} = acosd(r2(2)./r2_at_t{i,j}); % tar1_velocities{i,j} = v1 * cosd(tar1_angles{i,j}); % tar2_velocities{i,j} = v2 * cosd(tar2_angles{i,j}); end end %% Complex signal phase = @(tx,fx) 2*pi*(fx.*tx+slope/2*tx.^2); % transmitted phase2 = @(tx,fx,r,v) 2*pi*(2*fx*r/c+tx.*(2*fx*v/c + 2*slope*r/c)); % downconverted % f_oneChirp = slope*t(1:sum(t<=T)); % f_t = repmat(f_oneChirp,1,numChirps*numCPI)-(BW/2); % transmit freq % f_t = BW/2*sawtooth(t/T*2*pi); fr1 = 2*r1(2)*slope/c; fr2 = 2*r2(2)*slope/c; fd1 = 2*v1_radial*fc/c; % doppler freq fd2 = 2*v2_radial*fc/c; f_if1 = fr1 + fd1; % beat or IF freq f_if2 = fr2 + fd2; % mixed1 = cell(numTX,numRX); % mixed2 = cell(numTX,numRX); mixed = cell(numTX,numRX); for i = 1:numTX for j = 1:numRX disp(['Processing Channel: ' num2str(j) '/' num2str(numRX)]); for k = 1:numChirps*numCPI phase_t = phase(t_onePulse,fc); phase_1 = phase(t_onePulse-delays_tar1{i,j}(k*numADC),fc); % received phase_2 = phase(t_onePulse-delays_tar2{i,j}(k*numADC),fc); signal_t((k-1)*numADC+1:k*numADC) = exp(1j*phase_t); signal_1((k-1)*numADC+1:k*numADC) = exp(1j*(phase_t - phase_1)); signal_2((k-1)*numADC+1:k*numADC) = exp(1j*(phase_t - phase_2)); end mixed{i,j} = signal_1 + signal_2; end end figure subplot(3,1,1) p1 = plot(t, real(signal_t)); title('TX') xlim([0 0.1e-4]) xlabel('Time (sec)'); ylabel('Amplitude'); subplot(3,1,2) p2 = plot(t, real(signal_1)); title('RX') xlim([0 0.1e-4]) xlabel('Time (sec)'); ylabel('Amplitude'); subplot(3,1,3) p3 = plot(t,real(mixed{i,j})); title('Mixed') xlim([0 0.1e-4]) xlabel('Time (sec)'); ylabel('Amplitude'); %% Post processing - 2-D FFT RDC = reshape(cat(3,mixed{:}),numADC,numChirps*numCPI,numRX*numTX); % radar data cube RDMs = zeros(numADC,numChirps,numTX*numRX,numCPI); for i = 1:numCPI RD_frame = RDC(:,(i-1)*numChirps+1:i*numChirps,:); RDMs(:,:,:,i) = fftshift(fft2(RD_frame,N_range,N_Dopp),2); end figure imagesc(V,R,20*log10(abs(RDMs(:,:,1,1))/max(max(abs(RDMs(:,:,1,1)))))); colormap(jet(256)) % set(gca,'YDir','normal') clim = get(gca,'clim'); caxis([clim(1)/2 0]) xlabel('Velocity (m/s)'); ylabel('Range (m)'); %% CA-CFAR numGuard = 2; % # of guard cells numTrain = numGuard*2; % # of training cells P_fa = 1e-5; % desired false alarm rate SNR_OFFSET = -5; % dB RDM_dB = 10*log10(abs(RDMs(:,:,1,1))/max(max(abs(RDMs(:,:,1,1))))); [RDM_mask, cfar_ranges, cfar_dopps, K] = ca_cfar(RDM_dB, numGuard, numTrain, P_fa, SNR_OFFSET); figure h=imagesc(V,R,RDM_mask); xlabel('Velocity (m/s)') ylabel('Range (m)') title('CA-CFAR') %% Angle Estimation - FFT rangeFFT = fft(RDC(:,1:numChirps,:),N_range); angleFFT = fftshift(fft(rangeFFT,length(ang_ax),3),3); range_az = squeeze(sum(angleFFT,2)); % range-azimuth map figure colormap(jet) imagesc(ang_ax,R,20*log10(abs(range_az)./max(abs(range_az(:))))); xlabel('Azimuth Angle') ylabel('Range (m)') title('FFT Range-Angle Map') set(gca,'clim', [-35, 0]) doas = zeros(K,181); % direction of arrivals figure hold on; grid on; for i = 1:K doas(i,:) = fftshift(fft(rangeFFT(cfar_ranges(i),cfar_dopps(i),:),181)); plot(ang_ax,10*log10(abs(doas(i,:)))) end xlabel('Azimuth Angle') ylabel('dB') %% Angle Estimation - MUSIC Pseudo Spectrum d = 0.5; M = numCPI; % # of snapshots for k=1:length(ang_ax) a1(:,k)=exp(-1i*2*pi*(d*(0:numTX*numRX-1)'*sin(ang_ax(k).'*pi/180))); end for i = 1:K Rxx = zeros(numTX*numRX,numTX*numRX); for m = 1:M A = squeeze(RDMs(cfar_ranges(i),cfar_dopps(i),:,m)); Rxx = Rxx + 1/M * (A*A'); end [Q,D] = eig(Rxx); % Q: eigenvectors (columns), D: eigenvalues [D, I] = sort(diag(D),'descend'); Q = Q(:,I); % Sort the eigenvectors to put signal eigenvectors first Qs = Q(:,1); % Get the signal eigenvectors Qn = Q(:,2:end); % Get the noise eigenvectors for k=1:length(ang_ax) music_spectrum(i,k)=(a1(:,k)'*a1(:,k))/(a1(:,k)'*(Qn*Qn')*a1(:,k)); end end figure hold on grid on title('MUSIC Spectrum') xlabel('Angle in degrees') for k = 1:K plot(ang_ax,log10(abs(music_spectrum(k,:)))); end %% Point Cloud [~, I] = max(music_spectrum(2,:)); angle1 = ang_ax(I); [~, I] = max(music_spectrum(1,:)); angle2 = ang_ax(I); coor1 = [cfar_ranges(2)*sind(angle1) cfar_ranges(2)*cosd(angle1) 0]; coor2 = [cfar_ranges(1)*sind(angle2) cfar_ranges(1)*cosd(angle2) 0]; figure hold on; title('3D Coordinates (Point Cloud) of the targets') scatter3(coor1(1),coor1(2),coor1(3),100,'m','filled','linewidth',9) scatter3(coor2(1),coor2(2),coor2(3),100,'b','filled','linewidth',9) xlabel('Range (m) X') ylabel('Range (m) Y') zlabel('Range (m) Z') %% MUSIC Range-AoA map rangeFFT = fft(RDC); for i = 1:N_range Rxx = zeros(numTX*numRX,numTX*numRX); for m = 1:M A = squeeze(sum(rangeFFT(i,(m-1)*numChirps+1:m*numChirps,:),2)); Rxx = Rxx + 1/M * (A*A'); end % Rxx = Rxx + sqrt(noise_pow/2)*(randn(size(Rxx))+1j*randn(size(Rxx))); [Q,D] = eig(Rxx); % Q: eigenvectors (columns), D: eigenvalues [D, I] = sort(diag(D),'descend'); Q = Q(:,I); % Sort the eigenvectors to put signal eigenvectors first Qs = Q(:,1); % Get the signal eigenvectors Qn = Q(:,2:end); % Get the noise eigenvectors for k=1:length(ang_ax) music_spectrum2(k)=(a1(:,k)'*a1(:,k))/(a1(:,k)'*(Qn*Qn')*a1(:,k)); end range_az_music(i,:) = music_spectrum2; end figure colormap(jet) imagesc(ang_ax,R,20*log10(abs(range_az_music)./max(abs(range_az_music(:))))); xlabel('Azimuth') ylabel('Range (m)') title('MUSIC Range-Angle Map') clim = get(gca,'clim');