RFToolSDR/linux-app/spectrum-analyser/ad9361/ad9361.c
David Shah 4a753eff6a Linux App Improvements
- Fix some memory access bugs
 - Add optional support for CUDA FFTs
 - Compile a shared library, as part of a gnuradio integration project
2017-04-15 10:54:50 +01:00

6742 lines
202 KiB
C

/***************************************************************************//**
* @file ad9361.c
* @brief Implementation of AD9361 Driver.
********************************************************************************
* Copyright 2014-2015(c) Analog Devices, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Analog Devices, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* - The use of this software may or may not infringe the patent rights
* of one or more patent holders. This license does not release you
* from the requirement that you obtain separate licenses from these
* patent holders to use this software.
* - Use of the software either in source or binary form, must be run
* on or directly connected to an Analog Devices Inc. component.
*
* THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************/
/******************************************************************************/
/***************************** Include Files **********************************/
/******************************************************************************/
#include <malloc.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "ad9361.h"
#include "platform.h"
#include "util.h"
#include "config.h"
/* Used for static code size optimization: please see config.h */
const bool has_split_gt = HAVE_SPLIT_GAIN_TABLE;
const bool have_tdd_tables = HAVE_TDD_SYNTH_TABLE;
#define SYNTH_LUT_SIZE 53
static const struct SynthLUT SynthLUT_FDD[LUT_FTDD_ENT][SYNTH_LUT_SIZE] = {
{
{ 12605, 10, 0, 4, 0, 15, 8, 8, 12, 3, 14, 15, 11 }, /* 40 MHz */
{ 12245, 10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11 },
{ 11906, 10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11 },
{ 11588, 10, 0, 4, 0, 15, 8, 10, 12, 3, 14, 15, 11 },
{ 11288, 10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11 },
{ 11007, 10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11 },
{ 10742, 10, 0, 4, 0, 14, 8, 12, 12, 3, 14, 15, 11 },
{ 10492, 10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11 },
{ 10258, 10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11 },
{ 10036, 10, 0, 5, 1, 14, 9, 14, 12, 3, 14, 15, 11 },
{ 9827, 10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11 },
{ 9631, 10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11 },
{ 9445, 10, 0, 5, 1, 14, 9, 16, 12, 3, 14, 15, 11 },
{ 9269, 10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11 },
{ 9103, 10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11 },
{ 8946, 10, 0, 5, 1, 14, 9, 18, 12, 3, 14, 15, 11 },
{ 8797, 10, 1, 6, 1, 15, 11, 13, 12, 3, 14, 15, 11 },
{ 8655, 10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11 },
{ 8520, 10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11 },
{ 8392, 10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11 },
{ 8269, 10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11 },
{ 8153, 10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11 },
{ 8041, 10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11 },
{ 7934, 10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11 },
{ 7831, 10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11 },
{ 7733, 10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11 },
{ 7638, 10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11 },
{ 7547, 10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11 },
{ 7459, 10, 1, 6, 1, 15, 11, 19, 12, 3, 14, 15, 11 },
{ 7374, 10, 1, 7, 2, 15, 12, 19, 12, 3, 14, 15, 11 },
{ 7291, 10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11 },
{ 7212, 10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11 },
{ 7135, 10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11 },
{ 7061, 10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11 },
{ 6988, 10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11 },
{ 6918, 10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11 },
{ 6850, 10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11 },
{ 6784, 10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11 },
{ 6720, 10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11 },
{ 6658, 10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11 },
{ 6597, 10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11 },
{ 6539, 10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11 },
{ 6482, 10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11 },
{ 6427, 10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11 },
{ 6373, 10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11 },
{ 6321, 10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11 },
{ 6270, 10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11 },
{ 6222, 10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11 },
{ 6174, 10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11 },
{ 6128, 10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11 },
{ 6083, 10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11 },
{ 6040, 10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11 },
{ 5997, 10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11 },
}, {
{ 12605, 10, 0, 4, 0, 15, 8, 10, 15, 4, 13, 15, 10 }, /* 60 MHz */
{ 12245, 10, 0, 4, 0, 15, 8, 11, 15, 4, 13, 15, 10 },
{ 11906, 10, 0, 4, 0, 15, 8, 11, 15, 4, 13, 15, 10 },
{ 11588, 10, 0, 4, 0, 15, 8, 12, 15, 4, 13, 15, 10 },
{ 11288, 10, 0, 4, 0, 15, 8, 13, 15, 4, 13, 15, 10 },
{ 11007, 10, 0, 4, 0, 14, 8, 14, 15, 4, 13, 15, 10 },
{ 10742, 10, 0, 4, 0, 14, 8, 15, 15, 4, 13, 15, 10 },
{ 10492, 10, 0, 5, 1, 14, 9, 15, 15, 4, 13, 15, 10 },
{ 10258, 10, 0, 5, 1, 14, 9, 16, 15, 4, 13, 15, 10 },
{ 10036, 10, 0, 5, 1, 14, 9, 17, 15, 4, 13, 15, 10 },
{ 9827, 10, 0, 5, 1, 14, 9, 18, 15, 4, 13, 15, 10 },
{ 9631, 10, 0, 5, 1, 14, 9, 19, 15, 4, 13, 15, 10 },
{ 9445, 10, 0, 5, 1, 14, 9, 19, 15, 4, 13, 15, 10 },
{ 9269, 10, 0, 5, 1, 14, 9, 20, 15, 4, 13, 15, 10 },
{ 9103, 10, 0, 5, 1, 13, 9, 21, 15, 4, 13, 15, 10 },
{ 8946, 10, 0, 5, 1, 13, 9, 22, 15, 4, 13, 15, 10 },
{ 8797, 10, 1, 6, 1, 15, 11, 16, 15, 4, 13, 15, 10 },
{ 8655, 10, 1, 6, 1, 15, 11, 17, 15, 4, 13, 15, 10 },
{ 8520, 10, 1, 6, 1, 15, 11, 17, 15, 4, 13, 15, 10 },
{ 8392, 10, 1, 6, 1, 15, 11, 18, 15, 4, 13, 15, 10 },
{ 8269, 10, 1, 6, 1, 15, 11, 18, 15, 4, 13, 15, 10 },
{ 8153, 10, 1, 6, 1, 15, 11, 19, 15, 4, 13, 15, 10 },
{ 8041, 10, 1, 6, 1, 15, 11, 19, 15, 4, 13, 15, 10 },
{ 7934, 10, 1, 6, 1, 15, 11, 20, 15, 4, 13, 15, 10 },
{ 7831, 10, 1, 6, 1, 15, 11, 21, 15, 4, 13, 15, 10 },
{ 7733, 10, 1, 6, 1, 15, 11, 21, 15, 4, 13, 15, 10 },
{ 7638, 10, 1, 6, 1, 15, 11, 22, 15, 4, 13, 15, 10 },
{ 7547, 10, 1, 6, 1, 15, 11, 22, 15, 4, 13, 15, 10 },
{ 7459, 10, 1, 6, 1, 15, 11, 23, 15, 4, 13, 15, 10 },
{ 7374, 10, 1, 7, 2, 15, 12, 23, 15, 4, 13, 15, 10 },
{ 7291, 10, 1, 7, 2, 15, 12, 24, 15, 4, 13, 15, 10 },
{ 7212, 10, 1, 7, 2, 15, 12, 25, 15, 4, 13, 15, 10 },
{ 7135, 10, 1, 7, 2, 15, 14, 25, 15, 4, 13, 15, 10 },
{ 7061, 10, 1, 7, 2, 15, 14, 26, 15, 4, 13, 15, 10 },
{ 6988, 10, 1, 7, 2, 15, 14, 26, 15, 4, 13, 15, 10 },
{ 6918, 10, 1, 7, 2, 15, 14, 27, 15, 4, 13, 15, 10 },
{ 6850, 10, 1, 7, 2, 15, 14, 27, 15, 4, 13, 15, 10 },
{ 6784, 10, 1, 7, 2, 15, 14, 28, 15, 4, 13, 15, 10 },
{ 6720, 10, 1, 7, 2, 15, 14, 29, 15, 4, 13, 15, 10 },
{ 6658, 10, 1, 7, 2, 15, 14, 29, 15, 4, 13, 15, 10 },
{ 6597, 10, 1, 7, 2, 15, 14, 30, 15, 4, 13, 15, 10 },
{ 6539, 10, 1, 7, 2, 15, 14, 30, 15, 4, 13, 15, 10 },
{ 6482, 10, 1, 7, 2, 15, 14, 31, 15, 4, 13, 15, 10 },
{ 6427, 10, 1, 7, 2, 15, 14, 32, 15, 4, 13, 15, 10 },
{ 6373, 10, 3, 7, 3, 15, 12, 20, 15, 4, 13, 15, 10 },
{ 6321, 10, 3, 7, 3, 15, 12, 21, 15, 4, 13, 15, 10 },
{ 6270, 10, 3, 7, 3, 15, 12, 21, 15, 4, 13, 15, 10 },
{ 6222, 10, 3, 7, 3, 15, 12, 21, 15, 4, 13, 15, 10 },
{ 6174, 10, 3, 7, 3, 15, 12, 22, 15, 4, 13, 15, 10 },
{ 6128, 10, 3, 7, 3, 15, 12, 22, 15, 4, 13, 15, 10 },
{ 6083, 10, 3, 7, 3, 15, 12, 22, 15, 4, 13, 15, 10 },
{ 6040, 10, 3, 7, 3, 15, 12, 23, 15, 4, 13, 15, 10 },
{ 5997, 10, 3, 7, 3, 15, 12, 23, 15, 4, 13, 15, 10 },
}, {
{ 12605, 10, 0, 4, 0, 15, 8, 8, 13, 4, 13, 15, 9 }, /* 80 MHz */
{ 12245, 10, 0, 4, 0, 15, 8, 9, 13, 4, 13, 15, 9 },
{ 11906, 10, 0, 4, 0, 15, 8, 10, 13, 4, 13, 15, 9 },
{ 11588, 10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9 },
{ 11288, 10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9 },
{ 11007, 10, 0, 4, 0, 14, 8, 12, 13, 4, 13, 15, 9 },
{ 10742, 10, 0, 4, 0, 14, 8, 13, 13, 4, 13, 15, 9 },
{ 10492, 10, 0, 5, 1, 14, 9, 13, 13, 4, 13, 15, 9 },
{ 10258, 10, 0, 5, 1, 14, 9, 14, 13, 4, 13, 15, 9 },
{ 10036, 10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9 },
{ 9827, 10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9 },
{ 9631, 10, 0, 5, 1, 13, 9, 16, 13, 4, 13, 15, 9 },
{ 9445, 10, 0, 5, 1, 13, 9, 17, 13, 4, 13, 15, 9 },
{ 9269, 10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9 },
{ 9103, 10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9 },
{ 8946, 10, 0, 5, 1, 13, 9, 19, 13, 4, 13, 15, 9 },
{ 8797, 10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9 },
{ 8655, 10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9 },
{ 8520, 10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9 },
{ 8392, 10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9 },
{ 8269, 10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9 },
{ 8153, 10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9 },
{ 8041, 10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9 },
{ 7934, 10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9 },
{ 7831, 10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9 },
{ 7733, 10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9 },
{ 7638, 10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9 },
{ 7547, 10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9 },
{ 7459, 10, 1, 6, 1, 15, 11, 20, 13, 4, 13, 15, 9 },
{ 7374, 10, 1, 7, 2, 15, 12, 20, 13, 4, 13, 15, 9 },
{ 7291, 10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9 },
{ 7212, 10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9 },
{ 7135, 10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9 },
{ 7061, 10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9 },
{ 6988, 10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9 },
{ 6918, 10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9 },
{ 6850, 10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9 },
{ 6784, 10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9 },
{ 6720, 10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9 },
{ 6658, 10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9 },
{ 6597, 10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9 },
{ 6539, 10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9 },
{ 6482, 10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9 },
{ 6427, 10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9 },
{ 6373, 10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9 },
{ 6321, 10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9 },
{ 6270, 10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9 },
{ 6222, 10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9 },
{ 6174, 10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9 },
{ 6128, 10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9 },
{ 6083, 10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9 },
{ 6040, 10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9 },
{ 5997, 10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9 },
} };
static const struct SynthLUT SynthLUT_TDD[LUT_FTDD_ENT][SYNTH_LUT_SIZE] = {
{
{ 12605, 13, 0, 4, 0, 14, 0, 10, 12, 3, 14, 15, 11 }, /* 40 MHz */
{ 12245, 13, 0, 4, 0, 13, 0, 10, 12, 3, 14, 15, 11 },
{ 11906, 13, 0, 4, 0, 12, 0, 11, 12, 3, 14, 15, 11 },
{ 11588, 13, 0, 4, 0, 12, 0, 12, 12, 3, 14, 15, 11 },
{ 11288, 13, 0, 4, 0, 12, 0, 13, 12, 3, 14, 15, 11 },
{ 11007, 13, 0, 4, 0, 11, 0, 13, 12, 3, 14, 15, 11 },
{ 10742, 13, 0, 4, 0, 11, 0, 14, 12, 3, 14, 15, 11 },
{ 10492, 13, 0, 5, 1, 11, 0, 15, 12, 3, 14, 15, 11 },
{ 10258, 13, 0, 5, 1, 10, 0, 16, 12, 3, 14, 15, 11 },
{ 10036, 13, 0, 5, 1, 10, 0, 17, 12, 3, 14, 15, 11 },
{ 9827, 13, 0, 5, 1, 10, 0, 17, 12, 3, 14, 15, 11 },
{ 9631, 13, 0, 5, 1, 10, 0, 18, 12, 3, 14, 15, 11 },
{ 9445, 13, 0, 5, 1, 9, 0, 19, 12, 3, 14, 15, 11 },
{ 9269, 10, 0, 6, 1, 12, 0, 17, 12, 3, 14, 15, 11 },
{ 9103, 10, 0, 6, 1, 12, 0, 17, 12, 3, 14, 15, 11 },
{ 8946, 10, 0, 6, 1, 11, 0, 18, 12, 3, 14, 15, 11 },
{ 8797, 10, 0, 6, 1, 11, 0, 19, 12, 3, 14, 15, 11 },
{ 8655, 10, 0, 6, 1, 11, 0, 19, 12, 3, 14, 15, 11 },
{ 8520, 10, 0, 6, 1, 11, 0, 20, 12, 3, 14, 15, 11 },
{ 8392, 10, 0, 6, 1, 11, 0, 21, 12, 3, 14, 15, 11 },
{ 8269, 10, 0, 6, 1, 11, 0, 21, 12, 3, 14, 15, 11 },
{ 8153, 10, 0, 6, 1, 11, 0, 22, 12, 3, 14, 15, 11 },
{ 8041, 10, 0, 6, 1, 11, 0, 23, 12, 3, 14, 15, 11 },
{ 7934, 10, 0, 6, 1, 11, 0, 23, 12, 3, 14, 15, 11 },
{ 7831, 10, 0, 6, 1, 10, 0, 24, 12, 3, 14, 15, 11 },
{ 7733, 10, 0, 6, 1, 10, 0, 25, 12, 3, 14, 15, 11 },
{ 7638, 10, 0, 6, 1, 10, 0, 25, 12, 3, 14, 15, 11 },
{ 7547, 10, 0, 6, 1, 10, 0, 26, 12, 3, 14, 15, 11 },
{ 7459, 10, 0, 6, 1, 10, 0, 27, 12, 3, 14, 15, 11 },
{ 7374, 10, 0, 7, 2, 10, 0, 27, 12, 3, 14, 15, 11 },
{ 7291, 10, 0, 7, 2, 9, 0, 28, 12, 3, 14, 15, 11 },
{ 7212, 10, 0, 7, 2, 9, 0, 29, 12, 3, 14, 15, 11 },
{ 7135, 10, 0, 7, 2, 9, 0, 29, 12, 3, 14, 15, 11 },
{ 7061, 10, 0, 7, 2, 9, 0, 30, 12, 3, 14, 15, 11 },
{ 6988, 10, 0, 7, 2, 9, 0, 31, 12, 3, 14, 15, 11 },
{ 6918, 10, 0, 7, 2, 9, 0, 31, 12, 3, 14, 15, 11 },
{ 6850, 10, 0, 7, 2, 8, 0, 32, 12, 3, 14, 15, 11 },
{ 6784, 10, 0, 7, 2, 8, 0, 33, 12, 3, 14, 15, 11 },
{ 6720, 10, 0, 7, 2, 8, 0, 33, 12, 3, 14, 15, 11 },
{ 6658, 10, 0, 7, 2, 8, 0, 34, 12, 3, 14, 15, 11 },
{ 6597, 10, 0, 7, 2, 8, 0, 35, 12, 3, 14, 15, 11 },
{ 6539, 10, 0, 7, 2, 8, 0, 35, 12, 3, 14, 15, 11 },
{ 6482, 10, 0, 7, 2, 8, 0, 36, 12, 3, 14, 15, 11 },
{ 6427, 10, 0, 7, 2, 7, 0, 37, 12, 3, 14, 15, 11 },
{ 6373, 10, 0, 7, 3, 7, 0, 37, 12, 3, 14, 15, 11 },
{ 6321, 10, 0, 7, 3, 7, 0, 38, 12, 3, 14, 15, 11 },
{ 6270, 10, 0, 7, 3, 7, 0, 39, 12, 3, 14, 15, 11 },
{ 6222, 10, 0, 7, 3, 7, 0, 39, 12, 3, 14, 15, 11 },
{ 6174, 10, 0, 7, 3, 7, 0, 40, 12, 3, 14, 15, 11 },
{ 6128, 10, 0, 7, 3, 7, 0, 41, 12, 3, 14, 15, 11 },
{ 6083, 10, 0, 7, 3, 7, 0, 41, 12, 3, 14, 15, 11 },
{ 6040, 10, 0, 7, 3, 6, 0, 42, 12, 3, 14, 15, 11 },
{ 5997, 10, 0, 7, 3, 6, 0, 42, 12, 3, 14, 15, 11 },
}, {
{ 12605, 13, 0, 4, 0, 14, 0, 12, 15, 4, 13, 15, 10 }, /* 60 MHz */
{ 12245, 13, 0, 4, 0, 13, 0, 13, 15, 4, 13, 15, 10 },
{ 11906, 13, 0, 4, 0, 13, 0, 14, 15, 4, 13, 15, 10 },
{ 11588, 13, 0, 4, 0, 12, 0, 14, 15, 4, 13, 15, 10 },
{ 11288, 13, 0, 4, 0, 12, 0, 15, 15, 4, 13, 15, 10 },
{ 11007, 13, 0, 4, 0, 12, 0, 16, 15, 4, 13, 15, 10 },
{ 10742, 13, 0, 4, 0, 11, 0, 17, 15, 4, 13, 15, 10 },
{ 10492, 13, 0, 5, 1, 11, 0, 18, 15, 4, 13, 15, 10 },
{ 10258, 13, 0, 5, 1, 11, 0, 19, 15, 4, 13, 15, 10 },
{ 10036, 13, 0, 5, 1, 10, 0, 20, 15, 4, 13, 15, 10 },
{ 9827, 13, 0, 5, 1, 10, 0, 21, 15, 4, 13, 15, 10 },
{ 9631, 13, 0, 5, 1, 10, 0, 22, 15, 4, 13, 15, 10 },
{ 9445, 13, 0, 5, 1, 10, 0, 23, 15, 4, 13, 15, 10 },
{ 9269, 10, 0, 6, 1, 12, 0, 20, 15, 4, 13, 15, 10 },
{ 9103, 10, 0, 6, 1, 12, 0, 21, 15, 4, 13, 15, 10 },
{ 8946, 10, 0, 6, 1, 12, 0, 22, 15, 4, 13, 15, 10 },
{ 8797, 10, 0, 6, 1, 12, 0, 23, 15, 4, 13, 15, 10 },
{ 8655, 10, 0, 6, 1, 12, 0, 23, 15, 4, 13, 15, 10 },
{ 8520, 10, 0, 6, 1, 12, 0, 24, 15, 4, 13, 15, 10 },
{ 8392, 10, 0, 6, 1, 12, 0, 25, 15, 4, 13, 15, 10 },
{ 8269, 10, 0, 6, 1, 12, 0, 26, 15, 4, 13, 15, 10 },
{ 8153, 10, 0, 6, 1, 12, 0, 27, 15, 4, 13, 15, 10 },
{ 8041, 10, 0, 6, 1, 12, 0, 27, 15, 4, 13, 15, 10 },
{ 7934, 10, 0, 6, 1, 11, 0, 28, 15, 4, 13, 15, 10 },
{ 7831, 10, 0, 6, 1, 11, 0, 29, 15, 4, 13, 15, 10 },
{ 7733, 10, 0, 6, 1, 11, 0, 30, 15, 4, 13, 15, 10 },
{ 7638, 10, 0, 6, 1, 11, 0, 31, 15, 4, 13, 15, 10 },
{ 7547, 10, 0, 6, 1, 11, 0, 31, 15, 4, 13, 15, 10 },
{ 7459, 10, 0, 6, 1, 11, 0, 32, 15, 4, 13, 15, 10 },
{ 7374, 10, 0, 7, 2, 11, 0, 33, 15, 4, 13, 15, 10 },
{ 7291, 10, 0, 7, 2, 11, 0, 34, 15, 4, 13, 15, 10 },
{ 7212, 10, 0, 7, 2, 11, 0, 35, 15, 4, 13, 15, 10 },
{ 7135, 10, 0, 7, 2, 10, 0, 35, 15, 4, 13, 15, 10 },
{ 7061, 10, 0, 7, 2, 10, 0, 36, 15, 4, 13, 15, 10 },
{ 6988, 10, 0, 7, 2, 10, 0, 37, 15, 4, 13, 15, 10 },
{ 6918, 10, 0, 7, 2, 10, 0, 38, 15, 4, 13, 15, 10 },
{ 6850, 10, 0, 7, 2, 10, 0, 39, 15, 4, 13, 15, 10 },
{ 6784, 10, 0, 7, 2, 10, 0, 39, 15, 4, 13, 15, 10 },
{ 6720, 10, 0, 7, 2, 10, 0, 40, 15, 4, 13, 15, 10 },
{ 6658, 10, 0, 7, 2, 9, 0, 41, 15, 4, 13, 15, 10 },
{ 6597, 10, 0, 7, 2, 9, 0, 42, 15, 4, 13, 15, 10 },
{ 6539, 10, 0, 7, 2, 9, 0, 43, 15, 4, 13, 15, 10 },
{ 6482, 10, 0, 7, 2, 9, 0, 43, 15, 4, 13, 15, 10 },
{ 6427, 10, 0, 7, 2, 9, 0, 44, 15, 4, 13, 15, 10 },
{ 6373, 10, 0, 7, 3, 9, 0, 45, 15, 4, 13, 15, 10 },
{ 6321, 10, 0, 7, 3, 9, 0, 46, 15, 4, 13, 15, 10 },
{ 6270, 10, 0, 7, 3, 9, 0, 47, 15, 4, 13, 15, 10 },
{ 6222, 10, 0, 7, 3, 9, 0, 47, 15, 4, 13, 15, 10 },
{ 6174, 10, 0, 7, 3, 9, 0, 48, 15, 4, 13, 15, 10 },
{ 6128, 10, 0, 7, 3, 9, 0, 49, 15, 4, 13, 15, 10 },
{ 6083, 10, 0, 7, 3, 9, 0, 50, 15, 4, 13, 15, 10 },
{ 6040, 10, 0, 7, 3, 9, 0, 51, 15, 4, 13, 15, 10 },
{ 5997, 10, 0, 7, 3, 8, 0, 51, 15, 4, 13, 15, 10 },
}, {
{ 12605, 13, 0, 4, 0, 14, 0, 10, 13, 4, 13, 15, 9 }, /* 80 MHz */
{ 12245, 13, 0, 4, 0, 13, 0, 11, 13, 4, 13, 15, 9 },
{ 11906, 13, 0, 4, 0, 12, 0, 12, 13, 4, 13, 15, 9 },
{ 11588, 13, 0, 4, 0, 12, 0, 13, 13, 4, 13, 15, 9 },
{ 11288, 13, 0, 4, 0, 12, 0, 13, 13, 4, 13, 15, 9 },
{ 11007, 13, 0, 4, 0, 11, 0, 14, 13, 4, 13, 15, 9 },
{ 10742, 13, 0, 4, 0, 11, 0, 15, 13, 4, 13, 15, 9 },
{ 10492, 13, 0, 5, 1, 11, 0, 16, 13, 4, 13, 15, 9 },
{ 10258, 13, 0, 5, 1, 10, 0, 17, 13, 4, 13, 15, 9 },
{ 10036, 13, 0, 5, 1, 10, 0, 17, 13, 4, 13, 15, 9 },
{ 9827, 13, 0, 5, 1, 10, 0, 18, 13, 4, 13, 15, 9 },
{ 9631, 13, 0, 5, 1, 10, 0, 19, 13, 4, 13, 15, 9 },
{ 9445, 13, 0, 5, 1, 9, 0, 20, 13, 4, 13, 15, 9 },
{ 9269, 10, 0, 6, 1, 12, 0, 18, 13, 4, 13, 15, 9 },
{ 9103, 10, 0, 6, 1, 12, 0, 18, 13, 4, 13, 15, 9 },
{ 8946, 10, 0, 6, 1, 11, 0, 19, 13, 4, 13, 15, 9 },
{ 8797, 10, 0, 6, 1, 11, 0, 20, 13, 4, 13, 15, 9 },
{ 8655, 10, 0, 6, 1, 11, 0, 20, 13, 4, 13, 15, 9 },
{ 8520, 10, 0, 6, 1, 11, 0, 21, 13, 4, 13, 15, 9 },
{ 8392, 10, 0, 6, 1, 11, 0, 22, 13, 4, 13, 15, 9 },
{ 8269, 10, 0, 6, 1, 11, 0, 22, 13, 4, 13, 15, 9 },
{ 8153, 10, 0, 6, 1, 11, 0, 23, 13, 4, 13, 15, 9 },
{ 8041, 10, 0, 6, 1, 11, 0, 24, 13, 4, 13, 15, 9 },
{ 7934, 10, 0, 6, 1, 11, 0, 25, 13, 4, 13, 15, 9 },
{ 7831, 10, 0, 6, 1, 10, 0, 25, 13, 4, 13, 15, 9 },
{ 7733, 10, 0, 6, 1, 10, 0, 26, 13, 4, 13, 15, 9 },
{ 7638, 10, 0, 6, 1, 10, 0, 27, 13, 4, 13, 15, 9 },
{ 7547, 10, 0, 6, 1, 10, 0, 27, 13, 4, 13, 15, 9 },
{ 7459, 10, 0, 6, 1, 10, 0, 28, 13, 4, 13, 15, 9 },
{ 7374, 10, 0, 7, 2, 10, 0, 29, 13, 4, 13, 15, 9 },
{ 7291, 10, 0, 7, 2, 9, 0, 29, 13, 4, 13, 15, 9 },
{ 7212, 10, 0, 7, 2, 9, 0, 30, 13, 4, 13, 15, 9 },
{ 7135, 10, 0, 7, 2, 9, 0, 31, 13, 4, 13, 15, 9 },
{ 7061, 10, 0, 7, 2, 9, 0, 32, 13, 4, 13, 15, 9 },
{ 6988, 10, 0, 7, 2, 9, 0, 32, 13, 4, 13, 15, 9 },
{ 6918, 10, 0, 7, 2, 9, 0, 33, 13, 4, 13, 15, 9 },
{ 6850, 10, 0, 7, 2, 8, 0, 34, 13, 4, 13, 15, 9 },
{ 6784, 10, 0, 7, 2, 8, 0, 34, 13, 4, 13, 15, 9 },
{ 6720, 10, 0, 7, 2, 8, 0, 35, 13, 4, 13, 15, 9 },
{ 6658, 10, 0, 7, 2, 8, 0, 36, 13, 4, 13, 15, 9 },
{ 6597, 10, 0, 7, 2, 8, 0, 36, 13, 4, 13, 15, 9 },
{ 6539, 10, 0, 7, 2, 8, 0, 37, 13, 4, 13, 15, 9 },
{ 6482, 10, 0, 7, 2, 8, 0, 38, 13, 4, 13, 15, 9 },
{ 6427, 10, 0, 7, 2, 7, 0, 39, 13, 4, 13, 15, 9 },
{ 6373, 10, 0, 7, 3, 7, 0, 39, 13, 4, 13, 15, 9 },
{ 6321, 10, 0, 7, 3, 7, 0, 40, 13, 4, 13, 15, 9 },
{ 6270, 10, 0, 7, 3, 7, 0, 41, 13, 4, 13, 15, 9 },
{ 6222, 10, 0, 7, 3, 7, 0, 41, 13, 4, 13, 15, 9 },
{ 6174, 10, 0, 7, 3, 7, 0, 42, 13, 4, 13, 15, 9 },
{ 6128, 10, 0, 7, 3, 7, 0, 43, 13, 4, 13, 15, 9 },
{ 6083, 10, 0, 7, 3, 7, 0, 44, 13, 4, 13, 15, 9 },
{ 6040, 10, 0, 7, 3, 6, 0, 44, 13, 4, 13, 15, 9 },
{ 5997, 10, 0, 7, 3, 6, 0, 44, 13, 4, 13, 15, 9 },
} };
/* Rx Gain Tables */
#define SIZE_FULL_TABLE 77
static const uint8_t full_gain_table[RXGAIN_TBLS_END][SIZE_FULL_TABLE][3] =
{ { /* 800 MHz */
{ 0x00, 0x00, 0x20 }, { 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00 },
{ 0x00, 0x01, 0x00 }, { 0x00, 0x02, 0x00 }, { 0x00, 0x03, 0x00 },
{ 0x00, 0x04, 0x00 }, { 0x00, 0x05, 0x00 }, { 0x01, 0x03, 0x20 },
{ 0x01, 0x04, 0x00 }, { 0x01, 0x05, 0x00 }, { 0x01, 0x06, 0x00 },
{ 0x01, 0x07, 0x00 }, { 0x01, 0x08, 0x00 }, { 0x01, 0x09, 0x00 },
{ 0x01, 0x0A, 0x00 }, { 0x01, 0x0B, 0x00 }, { 0x01, 0x0C, 0x00 },
{ 0x01, 0x0D, 0x00 }, { 0x01, 0x0E, 0x00 }, { 0x02, 0x09, 0x20 },
{ 0x02, 0x0A, 0x00 }, { 0x02, 0x0B, 0x00 }, { 0x02, 0x0C, 0x00 },
{ 0x02, 0x0D, 0x00 }, { 0x02, 0x0E, 0x00 }, { 0x02, 0x0F, 0x00 },
{ 0x02, 0x10, 0x00 }, { 0x02, 0x2B, 0x20 }, { 0x02, 0x2C, 0x00 },
{ 0x04, 0x28, 0x20 }, { 0x04, 0x29, 0x00 }, { 0x04, 0x2A, 0x00 },
{ 0x04, 0x2B, 0x00 }, { 0x24, 0x20, 0x20 }, { 0x24, 0x21, 0x00 },
{ 0x44, 0x20, 0x20 }, { 0x44, 0x21, 0x00 }, { 0x44, 0x22, 0x00 },
{ 0x44, 0x23, 0x00 }, { 0x44, 0x24, 0x00 }, { 0x44, 0x25, 0x00 },
{ 0x44, 0x26, 0x00 }, { 0x44, 0x27, 0x00 }, { 0x44, 0x28, 0x00 },
{ 0x44, 0x29, 0x00 }, { 0x44, 0x2A, 0x00 }, { 0x44, 0x2B, 0x00 },
{ 0x44, 0x2C, 0x00 }, { 0x44, 0x2D, 0x00 }, { 0x44, 0x2E, 0x00 },
{ 0x44, 0x2F, 0x00 }, { 0x44, 0x30, 0x00 }, { 0x44, 0x31, 0x00 },
{ 0x44, 0x32, 0x00 }, { 0x64, 0x2E, 0x20 }, { 0x64, 0x2F, 0x00 },
{ 0x64, 0x30, 0x00 }, { 0x64, 0x31, 0x00 }, { 0x64, 0x32, 0x00 },
{ 0x64, 0x33, 0x00 }, { 0x64, 0x34, 0x00 }, { 0x64, 0x35, 0x00 },
{ 0x64, 0x36, 0x00 }, { 0x64, 0x37, 0x00 }, { 0x64, 0x38, 0x00 },
{ 0x65, 0x38, 0x20 }, { 0x66, 0x38, 0x20 }, { 0x67, 0x38, 0x20 },
{ 0x68, 0x38, 0x20 }, { 0x69, 0x38, 0x20 }, { 0x6A, 0x38, 0x20 },
{ 0x6B, 0x38, 0x20 }, { 0x6C, 0x38, 0x20 }, { 0x6D, 0x38, 0x20 },
{ 0x6E, 0x38, 0x20 }, { 0x6F, 0x38, 0x20 }
}, { /* 2300 MHz */
{ 0x00, 0x00, 0x20 }, { 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00 },
{ 0x00, 0x01, 0x00 }, { 0x00, 0x02, 0x00 }, { 0x00, 0x03, 0x00 },
{ 0x00, 0x04, 0x00 }, { 0x00, 0x05, 0x00 }, { 0x01, 0x03, 0x20 },
{ 0x01, 0x04, 0x00 }, { 0x01, 0x05, 0x00 }, { 0x01, 0x06, 0x00 },
{ 0x01, 0x07, 0x00 }, { 0x01, 0x08, 0x00 }, { 0x01, 0x09, 0x00 },
{ 0x01, 0x0A, 0x00 }, { 0x01, 0x0B, 0x00 }, { 0x01, 0x0C, 0x00 },
{ 0x01, 0x0D, 0x00 }, { 0x01, 0x0E, 0x00 }, { 0x02, 0x09, 0x20 },
{ 0x02, 0x0A, 0x00 }, { 0x02, 0x0B, 0x00 }, { 0x02, 0x0C, 0x00 },
{ 0x02, 0x0D, 0x00 }, { 0x02, 0x0E, 0x00 }, { 0x02, 0x0F, 0x00 },
{ 0x02, 0x10, 0x00 }, { 0x02, 0x2B, 0x20 }, { 0x02, 0x2C, 0x00 },
{ 0x04, 0x27, 0x20 }, { 0x04, 0x28, 0x00 }, { 0x04, 0x29, 0x00 },
{ 0x04, 0x2A, 0x00 }, { 0x04, 0x2B, 0x00 }, { 0x24, 0x21, 0x20 },
{ 0x24, 0x22, 0x00 }, { 0x44, 0x20, 0x20 }, { 0x44, 0x21, 0x00 },
{ 0x44, 0x22, 0x00 }, { 0x44, 0x23, 0x00 }, { 0x44, 0x24, 0x00 },
{ 0x44, 0x25, 0x00 }, { 0x44, 0x26, 0x00 }, { 0x44, 0x27, 0x00 },
{ 0x44, 0x28, 0x00 }, { 0x44, 0x29, 0x00 }, { 0x44, 0x2A, 0x00 },
{ 0x44, 0x2B, 0x00 }, { 0x44, 0x2C, 0x00 }, { 0x44, 0x2D, 0x00 },
{ 0x44, 0x2E, 0x00 }, { 0x44, 0x2F, 0x00 }, { 0x44, 0x30, 0x00 },
{ 0x44, 0x31, 0x00 }, { 0x64, 0x2E, 0x20 }, { 0x64, 0x2F, 0x00 },
{ 0x64, 0x30, 0x00 }, { 0x64, 0x31, 0x00 }, { 0x64, 0x32, 0x00 },
{ 0x64, 0x33, 0x00 }, { 0x64, 0x34, 0x00 }, { 0x64, 0x35, 0x00 },
{ 0x64, 0x36, 0x00 }, { 0x64, 0x37, 0x00 }, { 0x64, 0x38, 0x00 },
{ 0x65, 0x38, 0x20 }, { 0x66, 0x38, 0x20 }, { 0x67, 0x38, 0x20 },
{ 0x68, 0x38, 0x20 }, { 0x69, 0x38, 0x20 }, { 0x6A, 0x38, 0x20 },
{ 0x6B, 0x38, 0x20 }, { 0x6C, 0x38, 0x20 }, { 0x6D, 0x38, 0x20 },
{ 0x6E, 0x38, 0x20 }, { 0x6F, 0x38, 0x20 },
}, { /* 5500 MHz */
{ 0x00, 0x00, 0x20 }, { 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00 }, { 0x00, 0x01, 0x00 },
{ 0x00, 0x02, 0x00 }, { 0x00, 0x03, 0x00 }, { 0x01, 0x01, 0x20 },
{ 0x01, 0x02, 0x00 }, { 0x01, 0x03, 0x00 }, { 0x01, 0x04, 0x20 },
{ 0x01, 0x05, 0x00 }, { 0x01, 0x06, 0x00 }, { 0x01, 0x07, 0x00 },
{ 0x01, 0x08, 0x00 }, { 0x01, 0x09, 0x00 }, { 0x01, 0x0A, 0x00 },
{ 0x01, 0x0B, 0x00 }, { 0x01, 0x0C, 0x00 }, { 0x02, 0x08, 0x20 },
{ 0x02, 0x09, 0x00 }, { 0x02, 0x0A, 0x00 }, { 0x02, 0x0B, 0x20 },
{ 0x02, 0x0C, 0x00 }, { 0x02, 0x0D, 0x00 }, { 0x02, 0x0E, 0x00 },
{ 0x02, 0x0F, 0x00 }, { 0x02, 0x2A, 0x20 }, { 0x02, 0x2B, 0x00 },
{ 0x04, 0x27, 0x20 }, { 0x04, 0x28, 0x00 }, { 0x04, 0x29, 0x00 },
{ 0x04, 0x2A, 0x00 }, { 0x04, 0x2B, 0x00 }, { 0x04, 0x2C, 0x00 },
{ 0x04, 0x2D, 0x00 }, { 0x24, 0x20, 0x20 }, { 0x24, 0x21, 0x00 },
{ 0x24, 0x22, 0x00 }, { 0x44, 0x20, 0x20 }, { 0x44, 0x21, 0x00 },
{ 0x44, 0x22, 0x00 }, { 0x44, 0x23, 0x00 }, { 0x44, 0x24, 0x00 },
{ 0x44, 0x25, 0x00 }, { 0x44, 0x26, 0x00 }, { 0x44, 0x27, 0x00 },
{ 0x44, 0x28, 0x00 }, { 0x44, 0x29, 0x00 }, { 0x44, 0x2A, 0x00 },
{ 0x44, 0x2B, 0x00 }, { 0x44, 0x2C, 0x00 }, { 0x44, 0x2D, 0x00 },
{ 0x44, 0x2E, 0x00 }, { 0x64, 0x2E, 0x20 }, { 0x64, 0x2F, 0x00 },
{ 0x64, 0x30, 0x00 }, { 0x64, 0x31, 0x00 }, { 0x64, 0x32, 0x00 },
{ 0x64, 0x33, 0x00 }, { 0x64, 0x34, 0x00 }, { 0x64, 0x35, 0x00 },
{ 0x64, 0x36, 0x00 }, { 0x64, 0x37, 0x00 }, { 0x64, 0x38, 0x00 },
{ 0x65, 0x38, 0x20 }, { 0x66, 0x38, 0x20 }, { 0x67, 0x38, 0x20 },
{ 0x68, 0x38, 0x20 }, { 0x69, 0x38, 0x20 }, { 0x6A, 0x38, 0x20 },
{ 0x6B, 0x38, 0x20 }, { 0x6C, 0x38, 0x20 }, { 0x6D, 0x38, 0x20 },
{ 0x6E, 0x38, 0x20 }, { 0x6F, 0x38, 0x20 }
} };
#define SIZE_SPLIT_TABLE 41
static const uint8_t split_gain_table[RXGAIN_TBLS_END][SIZE_SPLIT_TABLE][3] =
{ { /* 800 MHz */
{ 0x00, 0x18, 0x20 }, { 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 },
{ 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 },
{ 0x00, 0x18, 0x20 }, { 0x01, 0x18, 0x20 }, { 0x02, 0x18, 0x20 },
{ 0x04, 0x18, 0x20 }, { 0x04, 0x38, 0x20 }, { 0x05, 0x38, 0x20 },
{ 0x06, 0x38, 0x20 }, { 0x07, 0x38, 0x20 }, { 0x08, 0x38, 0x20 },
{ 0x09, 0x38, 0x20 }, { 0x0A, 0x38, 0x20 }, { 0x0B, 0x38, 0x20 },
{ 0x0C, 0x38, 0x20 }, { 0x0D, 0x38, 0x20 }, { 0x0E, 0x38, 0x20 },
{ 0x0F, 0x38, 0x20 }, { 0x24, 0x38, 0x20 }, { 0x25, 0x38, 0x20 },
{ 0x44, 0x38, 0x20 }, { 0x45, 0x38, 0x20 }, { 0x46, 0x38, 0x20 },
{ 0x47, 0x38, 0x20 }, { 0x48, 0x38, 0x20 }, { 0x64, 0x38, 0x20 },
{ 0x65, 0x38, 0x20 }, { 0x66, 0x38, 0x20 }, { 0x67, 0x38, 0x20 },
{ 0x68, 0x38, 0x20 }, { 0x69, 0x38, 0x20 }, { 0x6A, 0x38, 0x20 },
{ 0x6B, 0x38, 0x20 }, { 0x6C, 0x38, 0x20 }, { 0x6D, 0x38, 0x20 },
{ 0x6E, 0x38, 0x20 }, { 0x6F, 0x38, 0x20 },
}, { /* 2300 MHz */
{ 0x00, 0x18, 0x20 }, { 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 },
{ 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 },
{ 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x20 }, { 0x01, 0x18, 0x20 },
{ 0x02, 0x18, 0x20 }, { 0x04, 0x18, 0x20 }, { 0x04, 0x38, 0x20 },
{ 0x05, 0x38, 0x20 }, { 0x06, 0x38, 0x20 }, { 0x07, 0x38, 0x20 },
{ 0x08, 0x38, 0x20 }, { 0x09, 0x38, 0x20 }, { 0x0A, 0x38, 0x20 },
{ 0x0B, 0x38, 0x20 }, { 0x0C, 0x38, 0x20 }, { 0x0D, 0x38, 0x20 },
{ 0x0E, 0x38, 0x20 }, { 0x0F, 0x38, 0x20 }, { 0x25, 0x38, 0x20 },
{ 0x26, 0x38, 0x20 }, { 0x44, 0x38, 0x20 }, { 0x45, 0x38, 0x20 },
{ 0x46, 0x38, 0x20 }, { 0x47, 0x38, 0x20 }, { 0x64, 0x38, 0x20 },
{ 0x65, 0x38, 0x20 }, { 0x66, 0x38, 0x20 }, { 0x67, 0x38, 0x20 },
{ 0x68, 0x38, 0x20 }, { 0x69, 0x38, 0x20 }, { 0x6A, 0x38, 0x20 },
{ 0x6B, 0x38, 0x20 }, { 0x6C, 0x38, 0x20 }, { 0x6D, 0x38, 0x20 },
{ 0x6E, 0x38, 0x20 }, { 0x6F, 0x38, 0x20 },
}, { /* 5500 MHz */
{ 0x00, 0x18, 0x20 }, { 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 },
{ 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 },
{ 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 }, { 0x00, 0x18, 0x00 },
{ 0x00, 0x18, 0x00 }, { 0x01, 0x18, 0x20 }, { 0x02, 0x18, 0x20 },
{ 0x04, 0x18, 0x20 }, { 0x04, 0x38, 0x20 }, { 0x05, 0x38, 0x20 },
{ 0x06, 0x38, 0x20 }, { 0x07, 0x38, 0x20 }, { 0x08, 0x38, 0x20 },
{ 0x09, 0x38, 0x20 }, { 0x0A, 0x38, 0x20 }, { 0x0B, 0x38, 0x20 },
{ 0x0C, 0x38, 0x20 }, { 0x0D, 0x38, 0x20 }, { 0x0E, 0x38, 0x20 },
{ 0x0F, 0x38, 0x20 }, { 0x62, 0x38, 0x20 }, { 0x25, 0x38, 0x20 },
{ 0x26, 0x38, 0x20 }, { 0x44, 0x38, 0x20 }, { 0x64, 0x38, 0x20 },
{ 0x65, 0x38, 0x20 }, { 0x66, 0x38, 0x20 }, { 0x67, 0x38, 0x20 },
{ 0x68, 0x38, 0x20 }, { 0x69, 0x38, 0x20 }, { 0x6A, 0x38, 0x20 },
{ 0x6B, 0x38, 0x20 }, { 0x6C, 0x38, 0x20 }, { 0x6D, 0x38, 0x20 },
{ 0x6E, 0x38, 0x20 }, { 0x6F, 0x38, 0x20 },
} };
/* Mixer GM Sub-table */
static const uint8_t gm_st_gain[16] = { 0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60,
0x5C, 0x58, 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x0 };
static const uint8_t gm_st_ctrl[16] = { 0x0, 0xD, 0x15, 0x1B, 0x21, 0x25, 0x29,
0x2C, 0x2F, 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E };
static const int8_t lna_table[RXGAIN_TBLS_END][4] = {
{5, 17, 19, 24}, {3, 14, 17, 21}, {-4, 10, 13, 14}};
static const int8_t tia_table[] = { -6, 0 };
static const int8_t mixer_table[RXGAIN_TBLS_END][16] = {
{0, 3, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25},
{0, 3, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26},
{0, 3, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}};
/******************************************************************************/
/********************** Macros and Constants Definitions **********************/
/******************************************************************************/
const char *ad9361_ensm_states[] = {
"sleep", "", "", "", "", "alert", "tx", "tx flush",
"rx", "rx_flush", "fdd", "fdd_flush"
};
/**
* SPI multiple bytes register read.
* @param spi
* @param reg The register address.
* @param rbuf The data buffer.
* @param num The number of bytes to read.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_spi_readm(struct spi_device *spi, uint32_t reg,
uint8_t *rbuf, uint32_t num)
{
uint8_t buf[2];
int32_t ret;
uint16_t cmd;
if (num > MAX_MBYTE_SPI)
return -EINVAL;
cmd = AD_READ | AD_CNT(num) | AD_ADDR(reg);
buf[0] = cmd >> 8;
buf[1] = cmd & 0xFF;
ret = spi_write_then_read(spi, &buf[0], 2, rbuf, num);
if (ret < 0) {
dev_err(&spi->dev, "Read Error %"PRId32, ret);
return ret;
}
#ifdef _DEBUG
{
int32_t i;
for (i = 0; i < num; i++)
dev_dbg(&spi->dev, "%s: reg 0x%"PRIX32" val 0x%X",
__func__, reg--, rbuf[i]);
}
#endif
return 0;
}
/**
* SPI register read.
* @param spi
* @param reg The register address.
* @return The register value or negative error code in case of failure.
*/
int32_t ad9361_spi_read(struct spi_device *spi, uint32_t reg)
{
uint8_t buf;
int32_t ret;
ret = ad9361_spi_readm(spi, reg, &buf, 1);
if (ret < 0)
return ret;
return buf;
}
/**
* SPI register bits read.
* @param spi
* @param reg The register address.
* @param mask The bits mask.
* @param offset The mask offset.
* @return The bits value or negative error code in case of failure.
*/
static int32_t __ad9361_spi_readf(struct spi_device *spi, uint32_t reg,
uint32_t mask, uint32_t offset)
{
uint8_t buf;
int32_t ret;
if (!mask)
return -EINVAL;
ret = ad9361_spi_readm(spi, reg, &buf, 1);
if (ret < 0)
return ret;
buf &= mask;
buf >>= offset;
return buf;
}
/**
* SPI register bits read.
* @param spi
* @param reg The register address.
* @param mask The bits mask.
* @return The bits value or negative error code in case of failure.
*/
#define ad9361_spi_readf(spi, reg, mask) \
__ad9361_spi_readf(spi, reg, mask, __the_real_ffs(mask))
/**
* SPI register write.
* @param spi
* @param reg The register address.
* @param val The value of the register.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_spi_write(struct spi_device *spi,
uint32_t reg, uint32_t val)
{
uint8_t buf[3];
int32_t ret;
uint16_t cmd;
cmd = AD_WRITE | AD_CNT(1) | AD_ADDR(reg);
buf[0] = cmd >> 8;
buf[1] = cmd & 0xFF;
buf[2] = val;
ret = spi_write_then_read(spi, buf, 3, NULL, 0);
if (ret < 0) {
dev_err(&spi->dev, "Write Error %"PRId32, ret);
return ret;
}
#ifdef _DEBUG
dev_dbg(&spi->dev, "%s: reg 0x%"PRIX32" val 0x%X", __func__, reg, buf[2]);
#endif
return 0;
}
/**
* SPI register bits write.
* @param spi
* @param reg The register address.
* @param mask The bits mask.
* @param offset The mask offset.
* @param val The bits value.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t __ad9361_spi_writef(struct spi_device *spi, uint32_t reg,
uint32_t mask, uint32_t offset, uint32_t val)
{
//printf("writef %04x %02x %02x %02x\n", reg, mask, offset, val);
uint8_t buf;
int32_t ret;
if (!mask)
return -EINVAL;
ret = ad9361_spi_readm(spi, reg, &buf, 1);
if (ret < 0)
return ret;
//printf("orig %02x\n", buf);
buf &= ~mask;
buf |= ((val << offset) & mask);
return ad9361_spi_write(spi, reg, buf);
}
/**
* SPI register bits write.
* @param spi
* @param reg The register address.
* @param mask The bits mask.
* @param val The bits value.
* @return 0 in case of success, negative error code otherwise.
*/
#define ad9361_spi_writef(spi, reg, mask, val) \
__ad9361_spi_writef(spi, reg, mask, __the_real_ffs(mask), val)
/**
* SPI multiple bytes register write.
* @param spi
* @param reg The register address.
* @param tbuf The data buffer.
* @param num The number of bytes to read.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_spi_writem(struct spi_device *spi,
uint32_t reg, uint8_t *tbuf, uint32_t num)
{
uint8_t buf[10];
int32_t ret;
uint16_t cmd;
if (num > MAX_MBYTE_SPI)
return -EINVAL;
cmd = AD_WRITE | AD_CNT(num) | AD_ADDR(reg);
buf[0] = cmd >> 8;
buf[1] = cmd & 0xFF;
memcpy(&buf[2], tbuf, num);
ret = spi_write_then_read(spi, buf, num + 2, NULL, 0);
if (ret < 0) {
dev_err(&spi->dev, "Write Error %"PRId32, ret);
return ret;
}
#ifdef _DEBUG
{
int32_t i;
for (i = 0; i < num; i++)
dev_dbg(&spi->dev, "Reg 0x%"PRIX32" val 0x%X", reg--, tbuf[i]);
}
#endif
return 0;
}
/**
* Find optimal value.
* @param field
* @param ret_start
* @return The optimal delay in case of success, negative error code otherwise.
*/
int32_t ad9361_find_opt(uint8_t *field, uint32_t size, uint32_t *ret_start)
{
int32_t i, cnt = 0, max_cnt = 0, start, max_start = 0;
for(i = 0, start = -1; i < (int64_t)size; i++) {
if (field[i] == 0) {
if (start == -1)
start = i;
cnt++;
} else {
if (cnt > max_cnt) {
max_cnt = cnt;
max_start = start;
}
start = -1;
cnt = 0;
}
}
if (cnt > max_cnt) {
max_cnt = cnt;
max_start = start;
}
*ret_start = max_start;
return max_cnt;
}
/**
* AD9361 Device Reset
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_reset(struct ad9361_rf_phy *phy)
{
if (gpio_is_valid(phy->pdata->gpio_resetb)) {
gpio_set_value(phy->pdata->gpio_resetb, 0);
mdelay(1);
gpio_set_value(phy->pdata->gpio_resetb, 1);
mdelay(1);
dev_dbg(&phy->spi->dev, "%s: by GPIO", __func__);
return 0;
}
/* SPI Soft Reset was removed from the register map, since it doesn't
* work reliably. Without a prober HW reset randomness may happen.
* Please specify a RESET GPIO.
*/
ad9361_spi_write(phy->spi, REG_SPI_CONF, SOFT_RESET | _SOFT_RESET);
ad9361_spi_write(phy->spi, REG_SPI_CONF, 0x0);
dev_err(&phy->spi->dev,
"%s: by SPI, this may cause unpredicted behavior!", __func__);
return -ENODEV;
}
/**
* BIST loopback mode.
* @param phy The AD9361 state structure.
* @param mode BIST loopback mode.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_bist_loopback(struct ad9361_rf_phy *phy, int32_t mode)
{
uint32_t sp_hd, reg;
dev_dbg(&phy->spi->dev, "%s: mode %"PRId32, __func__, mode);
reg = ad9361_spi_read(phy->spi, REG_OBSERVE_CONFIG);
phy->bist_loopback_mode = mode;
switch (mode) {
case 0:
ad9361_hdl_loopback(phy, false);
reg &= ~(DATA_PORT_SP_HD_LOOP_TEST_OE |
DATA_PORT_LOOP_TEST_ENABLE);
return ad9361_spi_write(phy->spi, REG_OBSERVE_CONFIG, reg);
case 1:
/* loopback (AD9361 internal) TX->RX */
ad9361_hdl_loopback(phy, false);
sp_hd = ad9361_spi_read(phy->spi, REG_PARALLEL_PORT_CONF_3);
if ((sp_hd & SINGLE_PORT_MODE) && (sp_hd & HALF_DUPLEX_MODE))
reg |= DATA_PORT_SP_HD_LOOP_TEST_OE;
else
reg &= ~DATA_PORT_SP_HD_LOOP_TEST_OE;
reg |= DATA_PORT_LOOP_TEST_ENABLE;
return ad9361_spi_write(phy->spi, REG_OBSERVE_CONFIG, reg);
case 2:
/* loopback (FPGA internal) RX->TX */
ad9361_hdl_loopback(phy, true);
reg &= ~(DATA_PORT_SP_HD_LOOP_TEST_OE |
DATA_PORT_LOOP_TEST_ENABLE);
return ad9361_spi_write(phy->spi, REG_OBSERVE_CONFIG, reg);
default:
return -EINVAL;
}
}
/**
* Get BIST loopback mode.
* @param phy The AD9361 state structure.
* @param mode BIST loopback mode.
* @return 0 in case of success, negative error code otherwise.
*/
void ad9361_get_bist_loopback(struct ad9361_rf_phy *phy, int32_t *mode)
{
*mode = phy->bist_loopback_mode;
}
/**
* BIST mode.
* @param phy The AD9361 state structure.
* @param mode Bist mode.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_bist_prbs(struct ad9361_rf_phy *phy, enum ad9361_bist_mode mode)
{
uint32_t reg = 0;
dev_dbg(&phy->spi->dev, "%s: mode %d", __func__, mode);
phy->bist_prbs_mode = mode;
switch (mode) {
case BIST_DISABLE:
reg = 0;
break;
case BIST_INJ_TX:
reg = BIST_CTRL_POINT(0) | BIST_ENABLE;
break;
case BIST_INJ_RX:
reg = BIST_CTRL_POINT(2) | BIST_ENABLE;
break;
};
return ad9361_spi_write(phy->spi, REG_BIST_CONFIG, reg);
}
/**
* Get BIST mode settings.
* @param phy The AD9361 state structure.
* @param mode Bist mode.
* @return 0 in case of success, negative error code otherwise.
*/
void ad9361_get_bist_prbs(struct ad9361_rf_phy *phy, enum ad9361_bist_mode *mode)
{
*mode = phy->bist_prbs_mode;
}
/**
* BIST tone.
* @param phy The AD9361 state structure.
* @param mode Bist tone mode.
* @param freq_Hz Bist tone frequency.
* @param level_dB Bist tone level.
* @param mask Bist reg mask.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_bist_tone(struct ad9361_rf_phy *phy,
enum ad9361_bist_mode mode, uint32_t freq_Hz,
uint32_t level_dB, uint32_t mask)
{
uint32_t clk = 0;
uint32_t reg = 0, reg1, reg_mask;
dev_dbg(&phy->spi->dev, "%s: mode %d", __func__, mode);
phy->bist_tone_mode = mode;
phy->bist_tone_freq_Hz = freq_Hz;
phy->bist_tone_level_dB = level_dB;
phy->bist_tone_mask = mask;
switch (mode) {
case BIST_DISABLE:
reg = 0;
break;
case BIST_INJ_TX:
clk = clk_get_rate(phy, phy->ref_clk_scale[TX_SAMPL_CLK]);
reg = BIST_CTRL_POINT(0) | BIST_ENABLE;
break;
case BIST_INJ_RX:
clk = clk_get_rate(phy, phy->ref_clk_scale[RX_SAMPL_CLK]);
reg = BIST_CTRL_POINT(2) | BIST_ENABLE;
break;
};
reg |= TONE_PRBS;
reg |= TONE_LEVEL(level_dB / 6);
if (freq_Hz < 4) {
reg |= TONE_FREQ(freq_Hz);
}
else {
if (clk)
reg |= TONE_FREQ(DIV_ROUND_CLOSEST(freq_Hz * 32, clk) - 1);
}
reg_mask = BIST_MASK_CHANNEL_1_I_DATA | BIST_MASK_CHANNEL_1_Q_DATA |
BIST_MASK_CHANNEL_2_I_DATA | BIST_MASK_CHANNEL_2_Q_DATA;
reg1 = ((mask << 2) & reg_mask);
ad9361_spi_write(phy->spi, REG_BIST_AND_DATA_PORT_TEST_CONFIG, reg1);
return ad9361_spi_write(phy->spi, REG_BIST_CONFIG, reg);
}
/**
* Get BIST tone settings.
* @param phy The AD9361 state structure.
* @param mode Bist tone mode.
* @param freq_Hz Bist tone frequency.
* @param level_dB Bist tone level.
* @param mask Bist reg mask.
* @return 0 in case of success, negative error code otherwise.
*/
void ad9361_get_bist_tone(struct ad9361_rf_phy *phy,
enum ad9361_bist_mode *mode, uint32_t *freq_Hz,
uint32_t *level_dB, uint32_t *mask)
{
*mode = phy->bist_tone_mode;
*freq_Hz = phy->bist_tone_freq_Hz;
*level_dB = phy->bist_tone_level_dB;
*mask = phy->bist_tone_mask;
}
/**
* Check the calibration done bit.
* @param phy The AD9361 state structure.
* @param reg The register address.
* @param mask The bit mask.
* @param done_state The done state [0,1].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_check_cal_done(struct ad9361_rf_phy *phy, uint32_t reg,
uint32_t mask, bool done_state)
{
uint32_t timeout = 5000; /* RFDC_CAL can take long */
uint32_t state;
do {
state = ad9361_spi_readf(phy->spi, reg, mask);
if (state == done_state)
return 0;
if (reg == REG_CALIBRATION_CTRL)
udelay(1200);
else
udelay(120);
} while (timeout--);
dev_err(&phy->spi->dev, "Calibration TIMEOUT (0x%"PRIX32", 0x%"PRIX32")", reg, mask);
return -ETIMEDOUT;
}
/**
* Run an AD9361 calibration and check the calibration done bit.
* @param phy The AD9361 state structure.
* @param mask The calibration bit mask[RX_BB_TUNE_CAL, TX_BB_TUNE_CAL,
* RX_QUAD_CAL, TX_QUAD_CAL, RX_GAIN_STEP_CAL, TXMON_CAL,
* RFDC_CAL, BBDC_CAL].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_run_calibration(struct ad9361_rf_phy *phy, uint32_t mask)
{
int32_t ret = ad9361_spi_write(phy->spi, REG_CALIBRATION_CTRL, mask);
if (ret < 0)
return ret;
dev_dbg(&phy->spi->dev, "%s: CAL Mask 0x%"PRIx32, __func__, mask);
return ad9361_check_cal_done(phy, REG_CALIBRATION_CTRL, mask, 0);
}
/**
* Choose the right RX gain table index for the selected frequency.
* @param freq The frequency value [Hz].
* @return The index to the RX gain table.
*/
static enum rx_gain_table_name ad9361_gt_tableindex(uint64_t freq)
{
if (freq <= 1300000000ULL)
return TBL_200_1300_MHZ;
if (freq <= 4000000000ULL)
return TBL_1300_4000_MHZ;
return TBL_4000_6000_MHZ;
}
/**
* Shift the real frequency value, so it fits type unsigned long
* Note: PLL operates between 47 .. 6000 MHz which is > 2^32.
* @param freq The frequency value [Hz].
* @return The shifted frequency value.
*/
uint32_t ad9361_to_clk(uint64_t freq)
{
return (uint32_t)(freq >> 1);
}
/**
* Shift back the frequency value, so it reflects the real value.
* Note: PLL operates between 47 .. 6000 MHz which is > 2^32.
* @param freq The frequency value [Hz].
* @return The shifted frequency value.
*/
uint64_t ad9361_from_clk(uint32_t freq)
{
return ((uint64_t)freq << 1);
}
/**
* Load the gain table for the selected frequency range and receiver.
* @param phy The AD9361 state structure.
* @param freq The frequency value [Hz].
* @param dest The destination [GT_RX1, GT_RX2].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_load_gt(struct ad9361_rf_phy *phy, uint64_t freq, uint32_t dest)
{
struct spi_device *spi = phy->spi;
const uint8_t(*tab)[3];
enum rx_gain_table_name band;
uint32_t index_max, i, lna;
dev_dbg(&phy->spi->dev, "%s: frequency %"PRIu64, __func__, freq);
band = ad9361_gt_tableindex(freq);
dev_dbg(&phy->spi->dev, "%s: frequency %"PRIu64" (band %d)",
__func__, freq, band);
/* check if table is present */
if (phy->current_table == band)
return 0;
ad9361_spi_writef(spi, REG_AGC_CONFIG_2,
AGC_USE_FULL_GAIN_TABLE, !phy->pdata->split_gt);
if (has_split_gt && phy->pdata->split_gt) {
tab = &split_gain_table[band][0];
index_max = SIZE_SPLIT_TABLE;
}
else {
tab = &full_gain_table[band][0];
index_max = SIZE_FULL_TABLE;
}
lna = phy->pdata->elna_ctrl.elna_in_gaintable_all_index_en ?
EXT_LNA_CTRL : 0;
ad9361_spi_write(spi, REG_GAIN_TABLE_CONFIG, START_GAIN_TABLE_CLOCK |
RECEIVER_SELECT(dest)); /* Start Gain Table Clock */
for (i = 0; i < index_max; i++) {
ad9361_spi_write(spi, REG_GAIN_TABLE_ADDRESS, i); /* Gain Table Index */
ad9361_spi_write(spi, REG_GAIN_TABLE_WRITE_DATA1, tab[i][0] | lna); /* Ext LNA, Int LNA, & Mixer Gain Word */
ad9361_spi_write(spi, REG_GAIN_TABLE_WRITE_DATA2, tab[i][1]); /* TIA & LPF Word */
ad9361_spi_write(spi, REG_GAIN_TABLE_WRITE_DATA3, tab[i][2]); /* DC Cal bit & Dig Gain Word */
ad9361_spi_write(spi, REG_GAIN_TABLE_CONFIG,
START_GAIN_TABLE_CLOCK |
WRITE_GAIN_TABLE |
RECEIVER_SELECT(dest)); /* Gain Table Index */
ad9361_spi_write(spi, REG_GAIN_TABLE_READ_DATA1, 0); /* Dummy Write to delay 3 ADCCLK/16 cycles */
ad9361_spi_write(spi, REG_GAIN_TABLE_READ_DATA1, 0); /* Dummy Write to delay ~1u */
}
ad9361_spi_write(spi, REG_GAIN_TABLE_CONFIG, START_GAIN_TABLE_CLOCK |
RECEIVER_SELECT(dest)); /* Clear Write Bit */
ad9361_spi_write(spi, REG_GAIN_TABLE_READ_DATA1, 0); /* Dummy Write to delay ~1u */
ad9361_spi_write(spi, REG_GAIN_TABLE_READ_DATA1, 0); /* Dummy Write to delay ~1u */
ad9361_spi_write(spi, REG_GAIN_TABLE_CONFIG, 0); /* Stop Gain Table Clock */
phy->current_table = band;
return 0;
}
/**
* Setup the external low-noise amplifier (LNA).
* @param phy The AD9361 state structure.
* @param ctrl Pointer to eLNA control structure.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_setup_ext_lna(struct ad9361_rf_phy *phy,
struct elna_control *ctrl)
{
ad9361_spi_writef(phy->spi, REG_EXTERNAL_LNA_CTRL, EXTERNAL_LNA1_CTRL,
ctrl->elna_1_control_en);
ad9361_spi_writef(phy->spi, REG_EXTERNAL_LNA_CTRL, EXTERNAL_LNA2_CTRL,
ctrl->elna_2_control_en);
ad9361_spi_write(phy->spi, REG_EXT_LNA_HIGH_GAIN,
EXT_LNA_HIGH_GAIN(ctrl->gain_mdB / 500));
return ad9361_spi_write(phy->spi, REG_EXT_LNA_LOW_GAIN,
EXT_LNA_LOW_GAIN(ctrl->bypass_loss_mdB / 500));
}
/**
* Set the clock output mode.
* @param phy The AD9361 state structure.
* @param mode The clock output mode [].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_clkout_control(struct ad9361_rf_phy *phy,
enum ad9361_clkout mode)
{
if (mode == CLKOUT_DISABLE)
return ad9361_spi_writef(phy->spi, REG_BBPLL, CLKOUT_ENABLE, 0);
return ad9361_spi_writef(phy->spi, REG_BBPLL,
CLKOUT_ENABLE | CLKOUT_SELECT(~0),
((mode - 1) << 1) | 0x1);
}
/**
* Load the Gm Sub Table.
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_load_mixer_gm_subtable(struct ad9361_rf_phy *phy)
{
int32_t i, addr;
dev_dbg(&phy->spi->dev, "%s", __func__);
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_CONFIG,
START_GM_SUB_TABLE_CLOCK); /* Start Clock */
for (i = 0, addr = ARRAY_SIZE(gm_st_ctrl); i < (int64_t)ARRAY_SIZE(gm_st_ctrl); i++) {
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_ADDRESS, --addr); /* Gain Table Index */
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_BIAS_WRITE, 0); /* Bias */
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_GAIN_WRITE, gm_st_gain[i]); /* Gain */
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_CTRL_WRITE, gm_st_ctrl[i]); /* Control */
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_CONFIG,
WRITE_GM_SUB_TABLE | START_GM_SUB_TABLE_CLOCK); /* Write Words */
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_GAIN_READ, 0); /* Dummy Delay */
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_GAIN_READ, 0); /* Dummy Delay */
}
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_CONFIG, START_GM_SUB_TABLE_CLOCK); /* Clear Write */
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_GAIN_READ, 0); /* Dummy Delay */
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_GAIN_READ, 0); /* Dummy Delay */
ad9361_spi_write(phy->spi, REG_GM_SUB_TABLE_CONFIG, 0); /* Stop Clock */
return 0;
}
/**
* Set the attenuation for the selected TX channels.
* @param phy The AD9361 state structure.
* @param atten_mdb Attenuation value [mdB].
* @param tx1 Set true, the attenuation of the TX1 will be affected.
* @param tx2 Set true, the attenuation of the TX2 will be affected.
* @param immed Set true, an immediate update will take place.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_set_tx_atten(struct ad9361_rf_phy *phy, uint32_t atten_mdb,
bool tx1, bool tx2, bool immed)
{
uint8_t buf[2];
int32_t ret = 0;
dev_dbg(&phy->spi->dev, "%s : attenuation %"PRIu32" mdB tx1=%d tx2=%d",
__func__, atten_mdb, tx1, tx2);
if (atten_mdb > 89750) /* 89.75 dB */
return -EINVAL;
atten_mdb /= 250; /* Scale to 0.25dB / LSB */
buf[0] = atten_mdb >> 8;
buf[1] = atten_mdb & 0xFF;
ad9361_spi_writef(phy->spi, REG_TX2_DIG_ATTEN,
IMMEDIATELY_UPDATE_TPC_ATTEN, 0);
if (tx1)
ret = ad9361_spi_writem(phy->spi, REG_TX1_ATTEN_1, buf, 2);
if (tx2)
ret = ad9361_spi_writem(phy->spi, REG_TX2_ATTEN_1, buf, 2);
if (immed)
ad9361_spi_writef(phy->spi, REG_TX2_DIG_ATTEN,
IMMEDIATELY_UPDATE_TPC_ATTEN, 1);
return ret;
}
/**
* Get the attenuation for the selected TX channel.
* @param phy The AD9361 state structure.
* @param tx_num The selected channel [1, 2].
* @return The attenuation value [mdB] or negative error code in case of failure.
*/
int32_t ad9361_get_tx_atten(struct ad9361_rf_phy *phy, uint32_t tx_num)
{
uint8_t buf[2];
int32_t ret = 0;
uint32_t code;
ret = ad9361_spi_readm(phy->spi, (tx_num == 1) ?
REG_TX1_ATTEN_1 : REG_TX2_ATTEN_1, buf, 2);
if (ret < 0)
return ret;
code = (buf[0] << 8) | buf[1];
code *= 250;
return code;
}
/**
* Choose the right RF VCO table index for the selected frequency.
* @param freq The frequency value [Hz].
* @return The index from the RF VCO table.
*/
static uint32_t ad9361_rfvco_tableindex(uint32_t freq)
{
if (freq < 50000000UL)
return LUT_FTDD_40;
if (freq <= 70000000UL)
return LUT_FTDD_60;
return LUT_FTDD_80;
}
/**
* Initialize the RFPLL VCO.
* @param phy The AD9361 state structure.
* @param tx Set true for TX_RFPLL.
* @param vco_freq The VCO frequency [Hz].
* @param ref_clk The reference clock frequency [Hz].
* @return 0 in case of success
*/
static int32_t ad9361_rfpll_vco_init(struct ad9361_rf_phy *phy,
bool tx, uint64_t vco_freq,
uint32_t ref_clk)
{
struct spi_device *spi = phy->spi;
const struct SynthLUT(*tab);
int32_t i = 0;
uint32_t range, offs = 0;
range = ad9361_rfvco_tableindex(ref_clk);
dev_dbg(&phy->spi->dev, "%s : vco_freq %"PRIu64" : ref_clk %"PRIu32" : range %"PRIu32,
__func__, vco_freq, ref_clk, range);
do_div(&vco_freq, 1000000UL); /* vco_freq in MHz */
if (phy->pdata->fdd || phy->pdata->tdd_use_fdd_tables) {
tab = &SynthLUT_FDD[range][0];
} else if (have_tdd_tables) {
tab = &SynthLUT_TDD[range][0];
}
if (tx)
offs = REG_TX_VCO_OUTPUT - REG_RX_VCO_OUTPUT;
while (i < SYNTH_LUT_SIZE && tab[i].VCO_MHz > vco_freq)
i++;
dev_dbg(&phy->spi->dev, "%s : freq %d MHz : index %"PRId32,
__func__, tab[i].VCO_MHz, i);
ad9361_spi_write(spi, REG_RX_VCO_OUTPUT + offs,
VCO_OUTPUT_LEVEL(tab[i].VCO_Output_Level) |
PORB_VCO_LOGIC);
ad9361_spi_writef(spi, REG_RX_ALC_VARACTOR + offs,
VCO_VARACTOR(~0), tab[i].VCO_Varactor);
ad9361_spi_write(spi, REG_RX_VCO_BIAS_1 + offs,
VCO_BIAS_REF(tab[i].VCO_Bias_Ref) |
VCO_BIAS_TCF(tab[i].VCO_Bias_Tcf));
ad9361_spi_write(spi, REG_RX_FORCE_VCO_TUNE_1 + offs,
VCO_CAL_OFFSET(tab[i].VCO_Cal_Offset));
ad9361_spi_write(spi, REG_RX_VCO_VARACTOR_CTRL_1 + offs,
VCO_VARACTOR_REFERENCE(
tab[i].VCO_Varactor_Reference));
ad9361_spi_write(spi, REG_RX_VCO_CAL_REF + offs, VCO_CAL_REF_TCF(0));
ad9361_spi_write(spi, REG_RX_VCO_VARACTOR_CTRL_0 + offs,
VCO_VARACTOR_OFFSET(0) |
VCO_VARACTOR_REFERENCE_TCF(7));
ad9361_spi_writef(spi, REG_RX_CP_CURRENT + offs, CHARGE_PUMP_CURRENT(~0),
tab[i].Charge_Pump_Current);
ad9361_spi_write(spi, REG_RX_LOOP_FILTER_1 + offs,
LOOP_FILTER_C2(tab[i].LF_C2) |
LOOP_FILTER_C1(tab[i].LF_C1));
ad9361_spi_write(spi, REG_RX_LOOP_FILTER_2 + offs,
LOOP_FILTER_R1(tab[i].LF_R1) |
LOOP_FILTER_C3(tab[i].LF_C3));
ad9361_spi_write(spi, REG_RX_LOOP_FILTER_3 + offs,
LOOP_FILTER_R3(tab[i].LF_R3));
return 0;
}
/**
* Get the current gain in Split Gain Table Mode
* @param phy The AD9361 state structure.
* @param idx_reg Register base address for the selected receiver
* @param rx_gain A rf_rx_gain struct to store the RF gain.
* @return 0 in case of success,
*/
static int32_t ad9361_get_split_table_gain(struct ad9361_rf_phy *phy, uint32_t idx_reg,
struct rf_rx_gain *rx_gain)
{
struct spi_device *spi = phy->spi;
uint32_t val, tbl_addr;
int32_t rc = 0;
rx_gain->fgt_lmt_index = ad9361_spi_readf(spi, idx_reg,
FULL_TABLE_GAIN_INDEX(~0));
tbl_addr = ad9361_spi_read(spi, REG_GAIN_TABLE_ADDRESS);
ad9361_spi_write(spi, REG_GAIN_TABLE_ADDRESS, rx_gain->fgt_lmt_index);
val = ad9361_spi_read(spi, REG_GAIN_TABLE_READ_DATA1);
rx_gain->lna_index = TO_LNA_GAIN(val);
rx_gain->mixer_index = TO_MIXER_GM_GAIN(val);
rx_gain->tia_index = ad9361_spi_readf(spi, REG_GAIN_TABLE_READ_DATA2, TIA_GAIN);
rx_gain->lmt_gain = lna_table[phy->current_table][rx_gain->lna_index] +
mixer_table[phy->current_table][rx_gain->mixer_index] +
tia_table[rx_gain->tia_index];
ad9361_spi_write(spi, REG_GAIN_TABLE_ADDRESS, tbl_addr);
/* Read LPF Index */
rx_gain->lpf_gain = ad9361_spi_readf(spi, idx_reg + 1, LPF_GAIN_RX(~0));
/* Read Digital Gain */
rx_gain->digital_gain = ad9361_spi_readf(spi, idx_reg + 2,
DIGITAL_GAIN_RX(~0));
rx_gain->gain_db = rx_gain->lmt_gain + rx_gain->lpf_gain +
rx_gain->digital_gain;
return rc;
}
/**
* Get the current gain in Full Gain Table Mode
* @param phy The AD9361 state structure.
* @param idx_reg Register base address for the selected receiver
* @param rx_gain A rf_rx_gain struct to store the RF gain.
* @return 0 in case of success
*/
static int32_t ad9361_get_full_table_gain(struct ad9361_rf_phy *phy, uint32_t idx_reg,
struct rf_rx_gain *rx_gain)
{
struct spi_device *spi = phy->spi;
int32_t val;
enum rx_gain_table_name tbl;
struct rx_gain_info *gain_info;
int32_t rc = 0, rx_gain_db;
tbl = ad9361_gt_tableindex(
ad9361_from_clk(clk_get_rate(phy, phy->ref_clk_scale[RX_RFPLL])));
rx_gain->fgt_lmt_index = val = ad9361_spi_readf(spi, idx_reg,
FULL_TABLE_GAIN_INDEX(~0));
gain_info = &phy->rx_gain[tbl];
if (val > gain_info->idx_step_offset) {
val = val - gain_info->idx_step_offset;
rx_gain_db = gain_info->starting_gain_db +
((val)* gain_info->gain_step_db);
}
else {
rx_gain_db = gain_info->starting_gain_db;
}
/* Read Digital Gain */
rx_gain->digital_gain = ad9361_spi_readf(spi, idx_reg + 2,
DIGITAL_GAIN_RX(~0));
rx_gain->gain_db = rx_gain_db;
return rc;
}
/**
* Get current RX gain for the selected channel.
* @param phy The AD9361 state structure.
* @param rx_id The desired channel number (0, 1).
* @param rx_gain A rf_rx_gain struct to store the RF gain.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_get_rx_gain(struct ad9361_rf_phy *phy,
uint32_t rx_id, struct rf_rx_gain *rx_gain)
{
struct spi_device *spi = phy->spi;
uint32_t val, idx_reg;
uint8_t gain_ctl_shift, rx_enable_mask;
uint8_t fast_atk_shift;
int32_t rc = 0;
if (rx_id == 1) {
gain_ctl_shift = RX1_GAIN_CTRL_SHIFT;
idx_reg = REG_GAIN_RX1;
rx_enable_mask = RX_CHANNEL_ENABLE(RX_1);
fast_atk_shift = RX1_FAST_ATK_SHIFT;
}
else if (rx_id == 2) {
gain_ctl_shift = RX2_GAIN_CTRL_SHIFT;
idx_reg = REG_GAIN_RX2;
rx_enable_mask = RX_CHANNEL_ENABLE(RX_2);
fast_atk_shift = RX2_FAST_ATK_SHIFT;
}
else {
dev_err(dev, "Unknown Rx path %"PRIu32, rx_id);
rc = -EINVAL;
goto out;
}
val = ad9361_spi_readf(spi, REG_RX_ENABLE_FILTER_CTRL, rx_enable_mask);
if (!val) {
dev_dbg(dev, "Rx%"PRIu32" is not enabled", rx_gain->ant);
rc = -EAGAIN;
goto out;
}
val = ad9361_spi_read(spi, REG_AGC_CONFIG_1);
val = (val >> gain_ctl_shift) & RX_GAIN_CTL_MASK;
if (val == RX_GAIN_CTL_AGC_FAST_ATK) {
/* In fast attack mode check whether Fast attack state machine
* has locked gain, if not then we can not read gain.
*/
val = ad9361_spi_read(spi, REG_FAST_ATTACK_STATE);
val = (val >> fast_atk_shift) & FAST_ATK_MASK;
if (val != FAST_ATK_GAIN_LOCKED) {
dev_warn(dev, "Failed to read gain, state m/c at %"PRIx32,
val);
rc = -EAGAIN;
goto out;
}
}
if (has_split_gt && phy->pdata->split_gt)
rc = ad9361_get_split_table_gain(phy, idx_reg, rx_gain);
else
rc = ad9361_get_full_table_gain(phy, idx_reg, rx_gain);
out:
return rc;
}
/**
* Force Enable State Machine (ENSM) to the desired state (internally used only).
* @param phy The AD9361 state structure.
* @param ensm_state The ENSM state [ENSM_STATE_SLEEP_WAIT, ENSM_STATE_ALERT,
* ENSM_STATE_TX, ENSM_STATE_TX_FLUSH, ENSM_STATE_RX,
* ENSM_STATE_RX_FLUSH, ENSM_STATE_FDD, ENSM_STATE_FDD_FLUSH].
* @return None.
*/
void ad9361_ensm_force_state(struct ad9361_rf_phy *phy, uint8_t ensm_state)
{
struct spi_device *spi = phy->spi;
uint8_t dev_ensm_state;
int32_t rc;
uint32_t val;
dev_ensm_state = ad9361_spi_readf(spi, REG_STATE, ENSM_STATE(~0));
phy->prev_ensm_state = dev_ensm_state;
if (dev_ensm_state == ensm_state) {
dev_dbg(dev, "Nothing to do, device is already in %d state",
ensm_state);
goto out;
}
dev_dbg(dev, "Device is in %x state, forcing to %x", dev_ensm_state,
ensm_state);
val = ad9361_spi_read(spi, REG_ENSM_CONFIG_1);
/* Enable control through SPI writes, and take out from
* Alert
*/
if (val & ENABLE_ENSM_PIN_CTRL) {
val &= ~ENABLE_ENSM_PIN_CTRL;
phy->ensm_pin_ctl_en = true;
}
else {
phy->ensm_pin_ctl_en = false;
}
if (dev_ensm_state)
val &= ~(TO_ALERT);
switch (ensm_state) {
case ENSM_STATE_TX:
case ENSM_STATE_FDD:
val |= FORCE_TX_ON;
break;
case ENSM_STATE_RX:
val |= FORCE_RX_ON;
break;
case ENSM_STATE_ALERT:
val &= ~(FORCE_TX_ON | FORCE_RX_ON);
val |= TO_ALERT | FORCE_ALERT_STATE;
break;
default:
dev_err(dev, "No handling for forcing %d ensm state",
ensm_state);
goto out;
}
ad9361_spi_write(spi, REG_ENSM_CONFIG_1, TO_ALERT | FORCE_ALERT_STATE);
rc = ad9361_spi_write(spi, REG_ENSM_CONFIG_1, val);
if (rc)
dev_err(dev, "Failed to restore state");
out:
return;
}
/**
* Restore the previous Enable State Machine (ENSM) state.
* @param phy The AD9361 state structure.
* @return None.
*/
void ad9361_ensm_restore_prev_state(struct ad9361_rf_phy *phy)
{
struct spi_device *spi = phy->spi;
int32_t rc;
uint32_t val;
val = ad9361_spi_read(spi, REG_ENSM_CONFIG_1);
/* We are restoring state only, so clear State bits first
* which might have set while forcing a particular state
*/
val &= ~(FORCE_TX_ON | FORCE_RX_ON |
TO_ALERT | FORCE_ALERT_STATE);
switch (phy->prev_ensm_state) {
case ENSM_STATE_TX:
case ENSM_STATE_FDD:
val |= FORCE_TX_ON;
break;
case ENSM_STATE_RX:
val |= FORCE_RX_ON;
break;
case ENSM_STATE_ALERT:
val |= TO_ALERT;
break;
case ENSM_STATE_INVALID:
dev_dbg(dev, "No need to restore, ENSM state wasn't saved");
goto out;
default:
dev_dbg(dev, "Could not restore to %d ENSM state",
phy->prev_ensm_state);
goto out;
}
ad9361_spi_write(spi, REG_ENSM_CONFIG_1, TO_ALERT | FORCE_ALERT_STATE);
rc = ad9361_spi_write(spi, REG_ENSM_CONFIG_1, val);
if (rc) {
dev_err(dev, "Failed to write ENSM_CONFIG_1");
goto out;
}
if (phy->ensm_pin_ctl_en) {
val |= ENABLE_ENSM_PIN_CTRL;
rc = ad9361_spi_write(spi, REG_ENSM_CONFIG_1, val);
if (rc)
dev_err(dev, "Failed to write ENSM_CONFIG_1");
}
out:
return;
}
/**
* Set gain in Split Gain Table Mode (used only in Manual Gain Control Mode).
* @param phy The AD9361 state structure.
* @param idx_reg Register base address for the selected receiver
* @param rx_gain The rf_rx_gain struct containing the RF gain.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t set_split_table_gain(struct ad9361_rf_phy *phy, uint32_t idx_reg,
struct rf_rx_gain *rx_gain)
{
struct spi_device *spi = phy->spi;
int32_t rc = 0;
if ((rx_gain->fgt_lmt_index > MAX_LMT_INDEX) ||
(rx_gain->lpf_gain > MAX_LPF_GAIN) ||
(rx_gain->digital_gain > MAX_DIG_GAIN)) {
dev_err(dev, "LMT_INDEX missing or greater than max value %d",
MAX_LMT_INDEX);
dev_err(dev, "LPF_GAIN missing or greater than max value %d",
MAX_LPF_GAIN);
dev_err(dev, "DIGITAL_GAIN cannot be more than %d",
MAX_DIG_GAIN);
rc = -EINVAL;
goto out;
}
if (rx_gain->gain_db > 0)
dev_dbg(dev, "Ignoring rx_gain value in split table mode.");
if (rx_gain->fgt_lmt_index == 0 && rx_gain->lpf_gain == 0 &&
rx_gain->digital_gain == 0) {
dev_err(dev,
"In split table mode, All LMT/LPF/digital gains cannot be 0");
rc = -EINVAL;
goto out;
}
ad9361_spi_writef(spi, idx_reg, RX_FULL_TBL_IDX_MASK, rx_gain->fgt_lmt_index);
ad9361_spi_writef(spi, idx_reg + 1, RX_LPF_IDX_MASK, rx_gain->lpf_gain);
if (phy->pdata->gain_ctrl.dig_gain_en) {
ad9361_spi_writef(spi, idx_reg + 2, RX_DIGITAL_IDX_MASK, rx_gain->digital_gain);
}
else if (rx_gain->digital_gain > 0) {
dev_err(dev, "Digital gain is disabled and cannot be set");
}
out:
return rc;
}
/**
* Set gain in Full Gain Table Mode (used only in Manual Gain Control Mode).
* @param phy The AD9361 state structure.
* @param idx_reg Register base address for the selected receiver
* @param rx_gain The rf_rx_gain struct containing the RF gain.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t set_full_table_gain(struct ad9361_rf_phy *phy, uint32_t idx_reg,
struct rf_rx_gain *rx_gain)
{
struct spi_device *spi = phy->spi;
enum rx_gain_table_name tbl;
struct rx_gain_info *gain_info;
uint32_t val;
int32_t rc = 0;
if (rx_gain->fgt_lmt_index != (uint32_t)~0 || (int64_t)rx_gain->lpf_gain != (uint32_t)~0 ||
rx_gain->digital_gain > 0)
dev_dbg(dev,
"Ignoring lmt/lpf/digital gains in Single Table mode");
tbl = ad9361_gt_tableindex(
ad9361_from_clk(clk_get_rate(phy, phy->ref_clk_scale[RX_RFPLL])));
gain_info = &phy->rx_gain[tbl];
if ((rx_gain->gain_db < gain_info->starting_gain_db) ||
(rx_gain->gain_db > gain_info->max_gain_db)) {
dev_err(dev, "Invalid gain %"PRId32", supported range [%"PRId32" - %"PRId32"]",
rx_gain->gain_db, gain_info->starting_gain_db,
gain_info->max_gain_db);
rc = -EINVAL;
goto out;
}
val = ((rx_gain->gain_db - gain_info->starting_gain_db) /
gain_info->gain_step_db) + gain_info->idx_step_offset;
ad9361_spi_writef(spi, idx_reg, RX_FULL_TBL_IDX_MASK, val);
out:
return rc;
}
/**
* Set the RX gain for the selected channel.
* @param phy The AD9361 state structure.
* @param rx_id The desired channel number (0, 1).
* @param rx_gain The rf_rx_gain struct containing the RF gain.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_set_rx_gain(struct ad9361_rf_phy *phy,
uint32_t rx_id, struct rf_rx_gain *rx_gain)
{
struct spi_device *spi = phy->spi;
uint32_t val, idx_reg;
uint8_t gain_ctl_shift;
int32_t rc = 0;
if (rx_id == 1) {
gain_ctl_shift = RX1_GAIN_CTRL_SHIFT;
idx_reg = REG_RX1_MANUAL_LMT_FULL_GAIN;
}
else if (rx_id == 2) {
gain_ctl_shift = RX2_GAIN_CTRL_SHIFT;
idx_reg = REG_RX2_MANUAL_LMT_FULL_GAIN;
}
else {
dev_err(dev, "Unknown Rx path %"PRIu32, rx_id);
rc = -EINVAL;
goto out;
}
val = ad9361_spi_read(spi, REG_AGC_CONFIG_1);
val = (val >> gain_ctl_shift) & RX_GAIN_CTL_MASK;
if (val != RX_GAIN_CTL_MGC) {
dev_dbg(dev, "Rx gain can be set in MGC mode only");
goto out;
}
if (has_split_gt && phy->pdata->split_gt)
rc = set_split_table_gain(phy, idx_reg, rx_gain);
else
rc = set_full_table_gain(phy, idx_reg, rx_gain);
if (rc) {
dev_err(dev, "Unable to write gain tbl idx reg: %"PRIu32, idx_reg);
goto out;
}
out:
return rc;
}
/**
* Initialize the rx_gain_info structure.
* @param rx_gain The rx_gain_info structure pointer.
* @param type Either Full or Split Table
* @param starting_gain The starting gain value.
* @param max_gain The maximum gain value.
* @param gain_step The gain step.
* @param max_idx The max table size.
* @param idx_offset Offset in the table where linear progression starts
* @return None
*/
static void ad9361_init_gain_info(struct rx_gain_info *rx_gain,
enum rx_gain_table_type type, int32_t starting_gain,
int32_t max_gain, int32_t gain_step, int32_t max_idx, int32_t idx_offset)
{
rx_gain->tbl_type = type;
rx_gain->starting_gain_db = starting_gain;
rx_gain->max_gain_db = max_gain;
rx_gain->gain_step_db = gain_step;
rx_gain->max_idx = max_idx;
rx_gain->idx_step_offset = idx_offset;
}
/**
* Initialize the gain table information.
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_init_gain_tables(struct ad9361_rf_phy *phy)
{
struct rx_gain_info *rx_gain;
/* Intialize Meta data according to default gain tables
* of AD9631. Changing/Writing of gain tables is not
* supported yet.
*/
rx_gain = &phy->rx_gain[TBL_200_1300_MHZ];
ad9361_init_gain_info(rx_gain, RXGAIN_FULL_TBL, 1, 77, 1,
SIZE_FULL_TABLE, 0);
rx_gain = &phy->rx_gain[TBL_1300_4000_MHZ];
ad9361_init_gain_info(rx_gain, RXGAIN_FULL_TBL, -4, 71, 1,
SIZE_FULL_TABLE, 1);
rx_gain = &phy->rx_gain[TBL_4000_6000_MHZ];
ad9361_init_gain_info(rx_gain, RXGAIN_FULL_TBL, -10, 62, 1,
SIZE_FULL_TABLE, 4);
return 0;
}
/**
* Enable/disable the desired TX channel.
* @param phy The AD9361 state structure.
* @param tx_if The desired channel number [1, 2].
* @param enable Enable/disable option.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_en_dis_tx(struct ad9361_rf_phy *phy, uint32_t tx_if, uint32_t enable)
{
if (tx_if == 2 && !phy->pdata->rx2tx2 && enable)
return -EINVAL;
return ad9361_spi_writef(phy->spi, REG_TX_ENABLE_FILTER_CTRL,
TX_CHANNEL_ENABLE(tx_if), enable);
}
/**
* Enable/disable the desired RX channel.
* @param phy The AD9361 state structure.
* @param tx_if The desired channel number [1, 2].
* @param enable Enable/disable option.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_en_dis_rx(struct ad9361_rf_phy *phy, uint32_t rx_if, uint32_t enable)
{
if (rx_if == 2 && !phy->pdata->rx2tx2 && enable)
return -EINVAL;
return ad9361_spi_writef(phy->spi, REG_RX_ENABLE_FILTER_CTRL,
RX_CHANNEL_ENABLE(rx_if), enable);
}
/**
* Update the Gain Control.
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_gc_update(struct ad9361_rf_phy *phy)
{
struct spi_device *spi = phy->spi;
uint32_t clkrf;
uint32_t reg, delay_lna, settling_delay, dec_pow_meas_dur;
int32_t ret;
uint32_t fir_div;
clkrf = clk_get_rate(phy, phy->ref_clk_scale[CLKRF_CLK]);
delay_lna = phy->pdata->elna_ctrl.settling_delay_ns;
/*
* AGC Attack Delay (us)=ceiling((((0.2+Delay_LNA)*ClkRF+14))/(2*ClkRF))+1
* ClkRF in MHz, delay in us
*/
reg = (200 * delay_lna) / 2 + (14000000UL / (clkrf / 500U));
reg = DIV_ROUND_UP(reg, 1000UL) +
phy->pdata->gain_ctrl.agc_attack_delay_extra_margin_us;
reg = clamp_t(uint8_t, reg, 0U, 31U);
ret = ad9361_spi_writef(spi, REG_AGC_ATTACK_DELAY,
AGC_ATTACK_DELAY(~0), reg);
/*
* Peak Overload Wait Time (ClkRF cycles)=ceiling((0.1+Delay_LNA) *clkRF+1)
*/
reg = (delay_lna + 100UL) * (clkrf / 1000UL);
reg = DIV_ROUND_UP(reg, 1000000UL) + 1;
reg = clamp_t(uint8_t, reg, 0U, 31U);
ret |= ad9361_spi_writef(spi, REG_PEAK_WAIT_TIME,
PEAK_OVERLOAD_WAIT_TIME(~0), reg);
/*
* Settling Delay in 0x111. Applies to all gain control modes:
* 0x111[D4:D0]= ceiling(((0.2+Delay_LNA)*clkRF
dodebug = false;+14)/2)
*/
reg = (delay_lna + 200UL) * (clkrf / 2000UL);
reg = DIV_ROUND_UP(reg, 1000000UL) + 7;
reg = settling_delay = clamp_t(uint8_t, reg, 0U, 31U);
ret |= ad9361_spi_writef(spi, REG_FAST_CONFIG_2_SETTLING_DELAY,
SETTLING_DELAY(~0), reg);
/*
* Gain Update Counter [15:0]= round((((time*ClkRF-0x111[D4:D0]*2)-2))/2)
*/
reg = phy->pdata->gain_ctrl.gain_update_interval_us * (clkrf / 1000UL) -
settling_delay * 2000UL - 2000UL;
reg = DIV_ROUND_CLOSEST(reg, 2000UL);
reg = clamp_t(uint32_t, reg, 0U, 131071UL);
if (phy->agc_mode[0] == RF_GAIN_FASTATTACK_AGC ||
phy->agc_mode[1] == RF_GAIN_FASTATTACK_AGC) {
dec_pow_meas_dur =
phy->pdata->gain_ctrl.f_agc_dec_pow_measuremnt_duration;
} else {
fir_div = DIV_ROUND_CLOSEST(clkrf,
clk_get_rate(phy, phy->ref_clk_scale[RX_SAMPL_CLK]));
dec_pow_meas_dur = phy->pdata->gain_ctrl.dec_pow_measuremnt_duration;
if (((reg * 2 / fir_div) / dec_pow_meas_dur) < 2) {
dec_pow_meas_dur = reg / fir_div;
}
}
/* Power Measurement Duration */
ad9361_spi_writef(spi, REG_DEC_POWER_MEASURE_DURATION_0,
DEC_POWER_MEASUREMENT_DURATION(~0),
ilog2(dec_pow_meas_dur / 16));
ret |= ad9361_spi_writef(spi, REG_DIGITAL_SAT_COUNTER,
DOUBLE_GAIN_COUNTER, reg > 65535);
if (reg > 65535)
reg /= 2;
ret |= ad9361_spi_write(spi, REG_GAIN_UPDATE_COUNTER1, reg & 0xFF);
ret |= ad9361_spi_write(spi, REG_GAIN_UPDATE_COUNTER2, reg >> 8);
/*
* Fast AGC State Wait Time - Energy Detect Count
*/
reg = DIV_ROUND_CLOSEST(phy->pdata->gain_ctrl.f_agc_state_wait_time_ns *
(clkrf / 1000UL), 1000000UL);
reg = clamp_t(uint32_t, reg, 0U, 31U);
ret |= ad9361_spi_writef(spi, REG_FAST_ENERGY_DETECT_COUNT,
ENERGY_DETECT_COUNT(~0), reg);
return ret;
}
/**
* Set the gain control mode.
* @param phy The AD9361 state structure.
* @param rf_gain_ctrl A rf_gain_ctrl struct that contains the the desired
* channel information and the gain control mode.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_set_gain_ctrl_mode(struct ad9361_rf_phy *phy,
struct rf_gain_ctrl *gain_ctrl)
{
struct spi_device *spi = phy->spi;
int32_t rc = 0;
uint32_t gain_ctl_shift, mode;
uint8_t val;
rc = ad9361_spi_readm(spi, REG_AGC_CONFIG_1, &val, 1);
if (rc) {
dev_err(dev, "Unable to read AGC config1 register: %x",
REG_AGC_CONFIG_1);
goto out;
}
switch (gain_ctrl->mode) {
case RF_GAIN_MGC:
mode = RX_GAIN_CTL_MGC;
break;
case RF_GAIN_FASTATTACK_AGC:
mode = RX_GAIN_CTL_AGC_FAST_ATK;
break;
case RF_GAIN_SLOWATTACK_AGC:
mode = RX_GAIN_CTL_AGC_SLOW_ATK;
break;
case RF_GAIN_HYBRID_AGC:
mode = RX_GAIN_CTL_AGC_SLOW_ATK_HYBD;
break;
default:
rc = -EINVAL;
goto out;
}
if (gain_ctrl->ant == 1) {
gain_ctl_shift = RX1_GAIN_CTRL_SHIFT;
}
else if (gain_ctrl->ant == 2) {
gain_ctl_shift = RX2_GAIN_CTRL_SHIFT;
}
else {
dev_err(dev, "Unknown Rx path %"PRIu32, gain_ctrl->ant);
rc = -EINVAL;
goto out;
}
rc = ad9361_en_dis_rx(phy, gain_ctrl->ant, RX_DISABLE);
if (rc) {
dev_err(dev, "Unable to disable rx%"PRIu32, gain_ctrl->ant);
goto out;
}
val &= ~(RX_GAIN_CTL_MASK << gain_ctl_shift);
val |= mode << gain_ctl_shift;
if (mode == RX_GAIN_CTL_AGC_SLOW_ATK_HYBD)
val |= SLOW_ATTACK_HYBRID_MODE;
else
val &= ~SLOW_ATTACK_HYBRID_MODE;
rc = ad9361_spi_write(spi, REG_AGC_CONFIG_1, val);
if (rc) {
dev_err(dev, "Unable to write AGC config1 register: %x",
REG_AGC_CONFIG_1);
goto out;
}
ad9361_en_dis_rx(phy, gain_ctrl->ant, RX_ENABLE);
rc = ad9361_gc_update(phy);
out:
return rc;
}
/**
* Get the RSSI.
* @param phy The AD9361 state structure.
* @param rssi A rf_rssi struct to store the RSSI.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_read_rssi(struct ad9361_rf_phy *phy, struct rf_rssi *rssi)
{
struct spi_device *spi = phy->spi;
uint8_t reg_val_buf[6];
int32_t rc;
rc = ad9361_spi_readm(spi, REG_PREAMBLE_LSB,
reg_val_buf, ARRAY_SIZE(reg_val_buf));
if (rssi->ant == 1) {
rssi->symbol = RSSI_RESOLUTION *
((reg_val_buf[5] << RSSI_LSB_SHIFT) +
(reg_val_buf[1] & RSSI_LSB_MASK1));
rssi->preamble = RSSI_RESOLUTION *
((reg_val_buf[4] << RSSI_LSB_SHIFT) +
(reg_val_buf[0] & RSSI_LSB_MASK1));
}
else if (rssi->ant == 2) {
rssi->symbol = RSSI_RESOLUTION *
((reg_val_buf[3] << RSSI_LSB_SHIFT) +
((reg_val_buf[1] & RSSI_LSB_MASK2) >> 1));
rssi->preamble = RSSI_RESOLUTION *
((reg_val_buf[2] << RSSI_LSB_SHIFT) +
((reg_val_buf[0] & RSSI_LSB_MASK2) >> 1));
}
else
rc = -EFAULT;
rssi->multiplier = RSSI_MULTIPLIER;
return rc;
}
/**
* Setup the RX ADC.
* @param phy The AD9361 state structure.
* @param bbpll_freq The BBPLL frequency [Hz].
* @param adc_sampl_freq_Hz The ADC sampling frequency [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_rx_adc_setup(struct ad9361_rf_phy *phy, uint32_t bbpll_freq,
uint32_t adc_sampl_freq_Hz)
{
uint32_t scale_snr_1e3, maxsnr, sqrt_inv_rc_tconst_1e3, tmp_1e3,
scaled_adc_clk_1e6, inv_scaled_adc_clk_1e3, sqrt_term_1e3,
min_sqrt_term_1e3, bb_bw_Hz;
uint64_t tmp, invrc_tconst_1e6;
uint8_t data[40];
uint32_t i;
int32_t ret;
uint8_t c3_msb = ad9361_spi_read(phy->spi, REG_RX_BBF_C3_MSB);
uint8_t c3_lsb = ad9361_spi_read(phy->spi, REG_RX_BBF_C3_LSB);
uint8_t r2346 = ad9361_spi_read(phy->spi, REG_RX_BBF_R2346);
/*
* BBBW = (BBPLL / RxTuneDiv) * ln(2) / (1.4 * 2PI )
* We assume ad9361_rx_bb_analog_filter_calib() is always run prior
*/
tmp = bbpll_freq * 10000ULL;
do_div(&tmp, 126906UL * phy->rxbbf_div);
bb_bw_Hz = tmp;
dev_dbg(&phy->spi->dev, "%s : BBBW %"PRIu32" : ADCfreq %"PRIu32,
__func__, bb_bw_Hz, adc_sampl_freq_Hz);
dev_dbg(&phy->spi->dev, "c3_msb 0x%X : c3_lsb 0x%X : r2346 0x%X : ",
c3_msb, c3_lsb, r2346);
bb_bw_Hz = clamp(bb_bw_Hz, 200000UL, 28000000UL);
if (adc_sampl_freq_Hz < 80000000)
scale_snr_1e3 = 1000;
else
scale_snr_1e3 = 1585; /* pow(10, scale_snr_dB/10); */
if (bb_bw_Hz >= 18000000) {
invrc_tconst_1e6 = (160975ULL * r2346 *
(160 * c3_msb + 10 * c3_lsb + 140) *
(bb_bw_Hz)* (1000 + (10 * (bb_bw_Hz - 18000000) / 1000000)));
do_div(&invrc_tconst_1e6, 1000UL);
}
else {
invrc_tconst_1e6 = (160975ULL * r2346 *
(160 * c3_msb + 10 * c3_lsb + 140) *
(bb_bw_Hz));
}
do_div(&invrc_tconst_1e6, 1000000000UL);
if (invrc_tconst_1e6 > ULONG_MAX)
dev_err(&phy->spi->dev, "invrc_tconst_1e6 > ULONG_MAX");
sqrt_inv_rc_tconst_1e3 = int_sqrt((uint32_t)invrc_tconst_1e6);
maxsnr = 640 / 160;
scaled_adc_clk_1e6 = DIV_ROUND_CLOSEST(adc_sampl_freq_Hz, 640);
inv_scaled_adc_clk_1e3 = DIV_ROUND_CLOSEST(640000000,
DIV_ROUND_CLOSEST(adc_sampl_freq_Hz, 1000));
tmp_1e3 = DIV_ROUND_CLOSEST(980000 + 20 * max_t(uint32_t, 1000U,
DIV_ROUND_CLOSEST(inv_scaled_adc_clk_1e3, maxsnr)), 1000);
sqrt_term_1e3 = int_sqrt(scaled_adc_clk_1e6);
min_sqrt_term_1e3 = min_t(uint32_t, 1000U,
int_sqrt(maxsnr * scaled_adc_clk_1e6));
dev_dbg(&phy->spi->dev, "invrc_tconst_1e6 %"PRIu64", sqrt_inv_rc_tconst_1e3 %"PRIu32,
invrc_tconst_1e6, sqrt_inv_rc_tconst_1e3);
dev_dbg(&phy->spi->dev, "scaled_adc_clk_1e6 %"PRIu32", inv_scaled_adc_clk_1e3 %"PRIu32,
scaled_adc_clk_1e6, inv_scaled_adc_clk_1e3);
dev_dbg(&phy->spi->dev, "tmp_1e3 %"PRIu32", sqrt_term_1e3 %"PRIu32", min_sqrt_term_1e3 %"PRIu32,
tmp_1e3, sqrt_term_1e3, min_sqrt_term_1e3);
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0x24;
data[4] = 0x24;
data[5] = 0;
data[6] = 0;
tmp = -50000000 + 8ULL * scale_snr_1e3 * sqrt_inv_rc_tconst_1e3 *
min_sqrt_term_1e3;
do_div(&tmp, 100000000UL);
data[7] = min_t(uint64_t, 124U, tmp);
tmp = (invrc_tconst_1e6 >> 1) + 20 * inv_scaled_adc_clk_1e3 *
data[7] / 80 * 1000ULL;
do_div(&tmp, invrc_tconst_1e6);
data[8] = min_t(uint64_t, 255U, tmp);
tmp = (-500000 + 77ULL * sqrt_inv_rc_tconst_1e3 * min_sqrt_term_1e3);
do_div(&tmp, 1000000UL);
data[10] = min_t(uint64_t, 127U, tmp);
data[9] = min_t(uint32_t, 127U, ((800 * data[10]) / 1000));
tmp = ((invrc_tconst_1e6 >> 1) + (20 * inv_scaled_adc_clk_1e3 *
data[10] * 1000ULL));
do_div(&tmp, invrc_tconst_1e6 * 77);
data[11] = min_t(uint64_t, 255U, tmp);
data[12] = min_t(uint32_t, 127U, (-500000 + 80 * sqrt_inv_rc_tconst_1e3 *
min_sqrt_term_1e3) / 1000000UL);
tmp = -3 * (long)(invrc_tconst_1e6 >> 1) + inv_scaled_adc_clk_1e3 *
data[12] * (1000ULL * 20 / 80);
do_div(&tmp, invrc_tconst_1e6);
data[13] = min_t(uint64_t, 255, tmp);
data[14] = 21 * (inv_scaled_adc_clk_1e3 / 10000);
data[15] = min_t(uint32_t, 127U, (500 + 1025 * data[7]) / 1000);
data[16] = min_t(uint32_t, 127U, (data[15] * tmp_1e3) / 1000);
data[17] = data[15];
data[18] = min_t(uint32_t, 127U, (500 + 975 * data[10]) / 1000);
data[19] = min_t(uint32_t, 127U, (data[18] * tmp_1e3) / 1000);
data[20] = data[18];
data[21] = min_t(uint32_t, 127U, (500 + 975 * data[12]) / 1000);
data[22] = min_t(uint32_t, 127, (data[21] * tmp_1e3) / 1000);
data[23] = data[21];
data[24] = 0x2E;
data[25] = (128 + min_t(uint32_t, 63000U, DIV_ROUND_CLOSEST(63 *
scaled_adc_clk_1e6, 1000)) / 1000);
data[26] = min_t(uint32_t, 63U, 63 * scaled_adc_clk_1e6 / 1000000 *
(920 + 80 * inv_scaled_adc_clk_1e3 / 1000) / 1000);
data[27] = min_t(uint32_t, 63, (32 * sqrt_term_1e3) / 1000);
data[28] = data[25];
data[29] = data[26];
data[30] = data[27];
data[31] = data[25];
data[32] = data[26];
data[33] = min_t(uint32_t, 63U, 63 * sqrt_term_1e3 / 1000);
data[34] = min_t(uint32_t, 127U, 64 * sqrt_term_1e3 / 1000);
data[35] = 0x40;
data[36] = 0x40;
data[37] = 0x2C;
data[38] = 0x00;
data[39] = 0x00;
for (i = 0; i < 40; i++) {
ret = ad9361_spi_write(phy->spi, 0x200 + i, data[i]);
if (ret < 0)
return ret;
}
return 0;
}
/**
* Perform a RX TIA calibration.
* @param phy The AD9361 state structure.
* @param bb_bw_Hz The baseband bandwidth [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_rx_tia_calib(struct ad9361_rf_phy *phy, uint32_t bb_bw_Hz)
{
uint32_t Cbbf, R2346;
uint64_t CTIA_fF;
uint8_t reg1EB = ad9361_spi_read(phy->spi, REG_RX_BBF_C3_MSB);
uint8_t reg1EC = ad9361_spi_read(phy->spi, REG_RX_BBF_C3_LSB);
uint8_t reg1E6 = ad9361_spi_read(phy->spi, REG_RX_BBF_R2346);
uint8_t reg1DB, reg1DF, reg1DD, reg1DC, reg1DE, temp;
dev_dbg(&phy->spi->dev, "%s : bb_bw_Hz %"PRIu32,
__func__, bb_bw_Hz);
bb_bw_Hz = clamp(bb_bw_Hz, 200000UL, 20000000UL);
Cbbf = (reg1EB * 160) + (reg1EC * 10) + 140; /* fF */
R2346 = 18300 * RX_BBF_R2346(reg1E6);
CTIA_fF = Cbbf * R2346 * 560ULL;
do_div(&CTIA_fF, 3500000UL);
if (bb_bw_Hz <= 3000000UL)
reg1DB = 0xE0;
else if (bb_bw_Hz <= 10000000UL)
reg1DB = 0x60;
else
reg1DB = 0x20;
if (CTIA_fF > 2920ULL) {
reg1DC = 0x40;
reg1DE = 0x40;
temp = min(127U, DIV_ROUND_CLOSEST((uint32_t)CTIA_fF - 400, 320U));
reg1DD = temp;
reg1DF = temp;
}
else {
temp = DIV_ROUND_CLOSEST((uint32_t)CTIA_fF - 400, 40U) + 0x40;
reg1DC = temp;
reg1DE = temp;
reg1DD = 0;
reg1DF = 0;
}
ad9361_spi_write(phy->spi, REG_RX_TIA_CONFIG, reg1DB);
ad9361_spi_write(phy->spi, REG_TIA1_C_LSB, reg1DC);
ad9361_spi_write(phy->spi, REG_TIA1_C_MSB, reg1DD);
ad9361_spi_write(phy->spi, REG_TIA2_C_LSB, reg1DE);
ad9361_spi_write(phy->spi, REG_TIA2_C_MSB, reg1DF);
return 0;
}
/**
* Perform a baseband RX analog filter calibration.
* @param phy The AD9361 state structure.
* @param rx_bb_bw The baseband bandwidth [Hz].
* @param bbpll_freq The BBPLL frequency [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_rx_bb_analog_filter_calib(struct ad9361_rf_phy *phy,
uint32_t rx_bb_bw,
uint32_t bbpll_freq)
{
uint32_t target;
uint8_t tmp;
int32_t ret;
dev_dbg(&phy->spi->dev, "%s : rx_bb_bw %"PRIu32" bbpll_freq %"PRIu32,
__func__, rx_bb_bw, bbpll_freq);
rx_bb_bw = clamp(rx_bb_bw, 200000UL, 28000000UL);
/* 1.4 * BBBW * 2PI / ln(2) */
target = 126906UL * (rx_bb_bw / 10000UL);
phy->rxbbf_div = min_t(uint32_t, 511UL, DIV_ROUND_UP(bbpll_freq, target));
/* Set RX baseband filter divide value */
ad9361_spi_write(phy->spi, REG_RX_BBF_TUNE_DIVIDE, phy->rxbbf_div);
ad9361_spi_writef(phy->spi, REG_RX_BBF_TUNE_CONFIG, BIT(0), phy->rxbbf_div >> 8);
/* Write the BBBW into registers 0x1FB and 0x1FC */
ad9361_spi_write(phy->spi, REG_RX_BBBW_MHZ, rx_bb_bw / 1000000UL);
tmp = DIV_ROUND_CLOSEST((rx_bb_bw % 1000000UL) * 128, 1000000UL);
ad9361_spi_write(phy->spi, REG_RX_BBBW_KHZ, min_t(uint8_t, 127, tmp));
ad9361_spi_write(phy->spi, REG_RX_MIX_LO_CM, RX_MIX_LO_CM(0x3F)); /* Set Rx Mix LO CM */
ad9361_spi_write(phy->spi, REG_RX_MIX_GM_CONFIG, RX_MIX_GM_PLOAD(3)); /* Set GM common mode */
/* Enable the RX BBF tune circuit by writing 0x1E2=0x02 and 0x1E3=0x02 */
ad9361_spi_write(phy->spi, REG_RX1_TUNE_CTRL, RX1_TUNE_RESAMPLE);
ad9361_spi_write(phy->spi, REG_RX2_TUNE_CTRL, RX2_TUNE_RESAMPLE);
/* Start the RX Baseband Filter calibration in register 0x016[7] */
/* Calibration is complete when register 0x016[7] self clears */
ret = ad9361_run_calibration(phy, RX_BB_TUNE_CAL);
/* Disable the RX baseband filter tune circuit, write 0x1E2=3, 0x1E3=3 */
ad9361_spi_write(phy->spi, REG_RX1_TUNE_CTRL,
RX1_TUNE_RESAMPLE | RX1_PD_TUNE);
ad9361_spi_write(phy->spi, REG_RX2_TUNE_CTRL,
RX2_TUNE_RESAMPLE | RX2_PD_TUNE);
return ret;
}
/**
* Perform a baseband TX analog filter calibration.
* @param phy The AD9361 state structure.
* @param tx_bb_bw The baseband bandwidth [Hz].
* @param bbpll_freq The BBPLL frequency [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_tx_bb_analog_filter_calib(struct ad9361_rf_phy *phy,
uint32_t tx_bb_bw,
uint32_t bbpll_freq)
{
uint32_t target, txbbf_div;
int32_t ret;
dev_dbg(&phy->spi->dev, "%s : tx_bb_bw %"PRIu32" bbpll_freq %"PRIu32,
__func__, tx_bb_bw, bbpll_freq);
tx_bb_bw = clamp(tx_bb_bw, 625000UL, 20000000UL);
/* 1.6 * BBBW * 2PI / ln(2) */
target = 145036 * (tx_bb_bw / 10000UL);
txbbf_div = min_t(uint32_t, 511UL, DIV_ROUND_UP(bbpll_freq, target));
/* Set TX baseband filter divide value */
ad9361_spi_write(phy->spi, REG_TX_BBF_TUNE_DIVIDER, txbbf_div);
ad9361_spi_writef(phy->spi, REG_TX_BBF_TUNE_MODE,
TX_BBF_TUNE_DIVIDER, txbbf_div >> 8);
/* Enable the TX baseband filter tune circuit by setting 0x0CA=0x22. */
ad9361_spi_write(phy->spi, REG_TX_TUNE_CTRL, TUNER_RESAMPLE | TUNE_CTRL(1));
/* Start the TX Baseband Filter calibration in register 0x016[6] */
/* Calibration is complete when register 0x016[] self clears */
ret = ad9361_run_calibration(phy, TX_BB_TUNE_CAL);
/* Disable the TX baseband filter tune circuit by writing 0x0CA=0x26. */
ad9361_spi_write(phy->spi, REG_TX_TUNE_CTRL,
TUNER_RESAMPLE | TUNE_CTRL(1) | PD_TUNE);
return ret;
}
/**
* Perform a baseband TX secondary filter calibration.
* @param phy The AD9361 state structure.
* @param tx_rf_bw The RF bandwidth [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_tx_bb_second_filter_calib(struct ad9361_rf_phy *phy,
uint32_t tx_bb_bw)
{
uint64_t cap;
uint32_t corner, res, div;
uint32_t reg_conf, reg_res;
int32_t ret, i;
dev_dbg(&phy->spi->dev, "%s : tx_bb_bw %"PRIu32,
__func__, tx_bb_bw);
tx_bb_bw = clamp(tx_bb_bw, 530000UL, 20000000UL);
/* BBBW * 5PI */
corner = 15708 * (tx_bb_bw / 10000UL);
for (i = 0, res = 1; i < 4; i++) {
div = corner * res;
cap = (500000000ULL) + (div >> 1);
do_div(&cap, div);
cap -= 12ULL;
if (cap < 64ULL)
break;
res <<= 1;
}
if (cap > 63ULL)
cap = 63ULL;
if (tx_bb_bw <= 4500000UL)
reg_conf = 0x59;
else if (tx_bb_bw <= 12000000UL)
reg_conf = 0x56;
else
reg_conf = 0x57;
switch (res) {
case 1:
reg_res = 0x0C;
break;
case 2:
reg_res = 0x04;
break;
case 4:
reg_res = 0x03;
break;
case 8:
reg_res = 0x01;
break;
default:
reg_res = 0x01;
}
ret = ad9361_spi_write(phy->spi, REG_CONFIG0, reg_conf);
ret |= ad9361_spi_write(phy->spi, REG_RESISTOR, reg_res);
ret |= ad9361_spi_write(phy->spi, REG_CAPACITOR, (uint8_t)cap);
return ret;
}
/**
* Perform a RF synthesizer charge pump calibration.
* @param phy The AD9361 state structure.
* @param ref_clk_hz The reference clock rate [Hz].
* @param tx The Synthesizer TX = 1, RX = 0.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_txrx_synth_cp_calib(struct ad9361_rf_phy *phy,
uint32_t ref_clk_hz, bool tx)
{
uint32_t offs = tx ? 0x40 : 0;
uint32_t vco_cal_cnt;
dev_dbg(&phy->spi->dev, "%s : ref_clk_hz %"PRIu32" : is_tx %d",
__func__, ref_clk_hz, tx);
/* REVIST: */
ad9361_spi_write(phy->spi, REG_RX_CP_LEVEL_DETECT + offs, 0x17);
ad9361_spi_write(phy->spi, REG_RX_DSM_SETUP_1 + offs, 0x0);
ad9361_spi_write(phy->spi, REG_RX_LO_GEN_POWER_MODE + offs, 0x00);
ad9361_spi_write(phy->spi, REG_RX_VCO_LDO + offs, 0x0B);
ad9361_spi_write(phy->spi, REG_RX_VCO_PD_OVERRIDES + offs, 0x02);
ad9361_spi_write(phy->spi, REG_RX_CP_CURRENT + offs, 0x80);
ad9361_spi_write(phy->spi, REG_RX_CP_CONFIG + offs, 0x00);
/* see Table 70 Example Calibration Times for RF VCO Cal */
if (phy->pdata->fdd || phy->pdata->tdd_use_fdd_tables) {
vco_cal_cnt = VCO_CAL_EN | VCO_CAL_COUNT(3) | FB_CLOCK_ADV(2);
}
else {
if (ref_clk_hz > 40000000UL)
vco_cal_cnt = VCO_CAL_EN | VCO_CAL_COUNT(1) |
FB_CLOCK_ADV(2);
else
vco_cal_cnt = VCO_CAL_EN | VCO_CAL_COUNT(0) |
FB_CLOCK_ADV(2);
}
ad9361_spi_write(phy->spi, REG_RX_VCO_CAL + offs, vco_cal_cnt);
/* Enable FDD mode during calibrations */
if (!phy->pdata->fdd) {
ad9361_spi_writef(phy->spi, REG_PARALLEL_PORT_CONF_3,
HALF_DUPLEX_MODE, 0);
}
ad9361_spi_write(phy->spi, REG_ENSM_CONFIG_2, DUAL_SYNTH_MODE);
ad9361_spi_write(phy->spi, REG_ENSM_CONFIG_1,
FORCE_ALERT_STATE |
TO_ALERT);
ad9361_spi_write(phy->spi, REG_ENSM_MODE, FDD_MODE);
ad9361_spi_write(phy->spi, REG_RX_CP_CONFIG + offs, CP_CAL_ENABLE);
return ad9361_check_cal_done(phy, REG_RX_CAL_STATUS + offs,
CP_CAL_VALID, 1);
}
/**
* Perform a baseband DC offset calibration.
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_bb_dc_offset_calib(struct ad9361_rf_phy *phy)
{
dev_dbg(&phy->spi->dev, "%s", __func__);
ad9361_spi_write(phy->spi, REG_BB_DC_OFFSET_COUNT, 0x3F);
ad9361_spi_write(phy->spi, REG_BB_DC_OFFSET_SHIFT, BB_DC_M_SHIFT(0xF));
ad9361_spi_write(phy->spi, REG_BB_DC_OFFSET_ATTEN, BB_DC_OFFSET_ATTEN(1));
return ad9361_run_calibration(phy, BBDC_CAL);
}
/**
* Perform a RF DC offset calibration.
* @param phy The AD9361 state structure.
* @param ref_clk_hz The RX LO frequency [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_rf_dc_offset_calib(struct ad9361_rf_phy *phy,
uint64_t rx_freq)
{
struct spi_device *spi = phy->spi;
dev_dbg(&phy->spi->dev, "%s : rx_freq %"PRIu64,
__func__, rx_freq);
ad9361_spi_write(spi, REG_WAIT_COUNT, 0x20);
if (rx_freq <= 4000000000ULL) {
ad9361_spi_write(spi, REG_RF_DC_OFFSET_COUNT,
phy->pdata->rf_dc_offset_count_low);
ad9361_spi_write(spi, REG_RF_DC_OFFSET_CONFIG_1,
RF_DC_CALIBRATION_COUNT(4) | DAC_FS(2));
ad9361_spi_write(spi, REG_RF_DC_OFFSET_ATTEN,
RF_DC_OFFSET_ATTEN(
phy->pdata->dc_offset_attenuation_low));
}
else {
ad9361_spi_write(spi, REG_RF_DC_OFFSET_COUNT,
phy->pdata->rf_dc_offset_count_high);
ad9361_spi_write(spi, REG_RF_DC_OFFSET_CONFIG_1,
RF_DC_CALIBRATION_COUNT(4) | DAC_FS(3));
ad9361_spi_write(spi, REG_RF_DC_OFFSET_ATTEN,
RF_DC_OFFSET_ATTEN(
phy->pdata->dc_offset_attenuation_high));
}
ad9361_spi_write(spi, REG_DC_OFFSET_CONFIG2,
USE_WAIT_COUNTER_FOR_RF_DC_INIT_CAL |
DC_OFFSET_UPDATE(3));
if (phy->pdata->rx1rx2_phase_inversion_en ||
(phy->pdata->port_ctrl.pp_conf[1] & INVERT_RX2)) {
ad9361_spi_write(spi, REG_INVERT_BITS,
INVERT_RX1_RF_DC_CGOUT_WORD);
} else {
ad9361_spi_write(spi, REG_INVERT_BITS,
INVERT_RX1_RF_DC_CGOUT_WORD |
INVERT_RX2_RF_DC_CGOUT_WORD);
}
return ad9361_run_calibration(phy, RFDC_CAL);
}
/**
* Update RF bandwidth.
* @param phy The AD9361 state structure.
* @param rf_rx_bw RF RX bandwidth [Hz].
* @param rf_tx_bw RF TX bandwidth [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t __ad9361_update_rf_bandwidth(struct ad9361_rf_phy *phy,
uint32_t rf_rx_bw, uint32_t rf_tx_bw)
{
uint32_t real_rx_bandwidth = rf_rx_bw / 2;
uint32_t real_tx_bandwidth = rf_tx_bw / 2;
uint32_t bbpll_freq;
int32_t ret;
dev_dbg(&phy->spi->dev, "%s: %"PRIu32" %"PRIu32,
__func__, rf_rx_bw, rf_tx_bw);
bbpll_freq = clk_get_rate(phy, phy->ref_clk_scale[BBPLL_CLK]);
ret = ad9361_rx_bb_analog_filter_calib(phy,
real_rx_bandwidth,
bbpll_freq);
if (ret < 0)
return ret;
ret = ad9361_tx_bb_analog_filter_calib(phy,
real_tx_bandwidth,
bbpll_freq);
if (ret < 0)
return ret;
ret = ad9361_rx_tia_calib(phy, real_rx_bandwidth);
if (ret < 0)
return ret;
ret = ad9361_tx_bb_second_filter_calib(phy, real_tx_bandwidth);
if (ret < 0)
return ret;
ret = ad9361_rx_adc_setup(phy,
bbpll_freq,
clk_get_rate(phy, phy->ref_clk_scale[ADC_CLK]));
if (ret < 0)
return ret;
return 0;
}
/**
* TX Quad Calib.
* @param phy The AD9361 state structure.
* @param phase phase
* @param rxnco_word Rx NCO word.
* @param decim decim
* @param res res
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t __ad9361_tx_quad_calib(struct ad9361_rf_phy *phy, uint32_t phase,
uint32_t rxnco_word, uint32_t decim, uint8_t *res)
{
int32_t ret;
ad9361_spi_write(phy->spi, REG_QUAD_CAL_NCO_FREQ_PHASE_OFFSET,
RX_NCO_FREQ(rxnco_word) | RX_NCO_PHASE_OFFSET(phase));
ad9361_spi_write(phy->spi, REG_QUAD_CAL_CTRL,
SETTLE_MAIN_ENABLE | DC_OFFSET_ENABLE | QUAD_CAL_SOFT_RESET |
GAIN_ENABLE | PHASE_ENABLE | M_DECIM(decim));
ad9361_spi_write(phy->spi, REG_QUAD_CAL_CTRL,
SETTLE_MAIN_ENABLE | DC_OFFSET_ENABLE |
GAIN_ENABLE | PHASE_ENABLE | M_DECIM(decim));
ret = ad9361_run_calibration(phy, TX_QUAD_CAL);
if (ret < 0)
return ret;
if (res)
*res = ad9361_spi_read(phy->spi, REG_QUAD_CAL_STATUS_TX1) &
(TX1_LO_CONV | TX1_SSB_CONV);
return 0;
}
/**
* Loop through all possible phase offsets in case the QUAD CAL doesn't converge.
* @param phy The AD9361 state structure.
* @param rxnco_word Rx NCO word.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_tx_quad_phase_search(struct ad9361_rf_phy *phy, uint32_t rxnco_word, uint8_t decim)
{
int32_t i, ret;
uint8_t field[64], val;
uint32_t start;
dev_dbg(&phy->spi->dev, "%s", __func__);
for (i = 0; i < (int64_t)(ARRAY_SIZE(field) / 2); i++) {
ret = __ad9361_tx_quad_calib(phy, i, rxnco_word, decim, &val);
if (ret < 0)
return ret;
/* Handle 360/0 wrap around */
field[i] = field[i + 32] = !((val & TX1_LO_CONV) && (val & TX1_SSB_CONV));
}
ret = ad9361_find_opt(field, ARRAY_SIZE(field), &start);
phy->last_tx_quad_cal_phase = (start + ret / 2) & 0x1F;
#ifdef _DEBUG
for (i = 0; i < 64; i++) {
printk("%c", (field[i] ? '#' : 'o'));
}
#ifdef WIN32
printk(" RX_NCO_PHASE_OFFSET(%d, 0x%X) \n", phy->last_tx_quad_cal_phase,
phy->last_tx_quad_cal_phase);
#else
printk(" RX_NCO_PHASE_OFFSET(%"PRIu32", 0x%"PRIX32") \n", phy->last_tx_quad_cal_phase,
phy->last_tx_quad_cal_phase);
#endif
#endif
ret = __ad9361_tx_quad_calib(phy, phy->last_tx_quad_cal_phase, rxnco_word, decim, NULL);
if (ret < 0)
return ret;
return 0;
}
/**
* Perform a TX quadrature calibration.
* @param phy The AD9361 state structure.
* @param bw The bandwidth [Hz].
* @param rx_phase The optional RX phase value overwrite (set to zero).
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_tx_quad_calib(struct ad9361_rf_phy *phy,
uint32_t bw_rx, uint32_t bw_tx,
int32_t rx_phase)
{
struct spi_device *spi = phy->spi;
uint32_t clktf, clkrf;
int32_t txnco_word, rxnco_word, txnco_freq, ret;
uint8_t __rx_phase = 0, reg_inv_bits = 0, val, decim;
const uint8_t(*tab)[3];
uint32_t index_max, i, lpf_tia_mask;
/*
* Find NCO frequency that matches this equation:
* BW / 4 = Rx NCO freq = Tx NCO freq:
* Rx NCO = ClkRF * (rxNCO <1:0> + 1) / 32
* Tx NCO = ClkTF * (txNCO <1:0> + 1) / 32
*/
clkrf = clk_get_rate(phy, phy->ref_clk_scale[CLKRF_CLK]);
clktf = clk_get_rate(phy, phy->ref_clk_scale[CLKTF_CLK]);
dev_dbg(&phy->spi->dev, "%s : bw_tx %"PRIu32" clkrf %"PRIu32" clktf %"PRIu32,
__func__, bw_tx, clkrf, clktf);
txnco_word = DIV_ROUND_CLOSEST(bw_tx * 8, clktf) - 1;
txnco_word = clamp_t(int, txnco_word, 0, 3);
rxnco_word = txnco_word;
dev_dbg(dev, "Tx NCO frequency: %"PRIu32" (BW/4: %"PRIu32") txnco_word %"PRId32,
clktf * (txnco_word + 1) / 32, bw_tx / 4, txnco_word);
if (clktf <= 4000000UL)
decim = 2;
else
decim = 3;
if (clkrf == (2 * clktf)) {
__rx_phase = 0x0E;
switch (txnco_word) {
case 0:
txnco_word++;
break;
case 1:
rxnco_word--;
break;
case 2:
rxnco_word -= 2;
txnco_word--;
break;
case 3:
rxnco_word -= 2; /* REVISIT */
__rx_phase = 0x08;
break;
}
}
else if (clkrf == clktf) {
switch (txnco_word) {
case 0:
case 3:
__rx_phase = 0x15;
break;
case 2:
__rx_phase = 0x1F;
break;
case 1:
if (ad9361_spi_readf(spi,
REG_TX_ENABLE_FILTER_CTRL, 0x3F) == 0x22)
__rx_phase = 0x15; /* REVISIT */
else
__rx_phase = 0x1A;
break;
}
}
else
dev_err(dev, "Unhandled case in %s line %d clkrf %"PRIu32" clktf %"PRIu32,
__func__, __LINE__, clkrf, clktf);
if (rx_phase >= 0)
__rx_phase = rx_phase;
txnco_freq = clktf * (txnco_word + 1) / 32;
if (txnco_freq > (int64_t)(bw_rx / 4) || txnco_freq > (int64_t)(bw_tx / 4)) {
/* Make sure the BW during calibration is wide enough */
ret = __ad9361_update_rf_bandwidth(phy, txnco_freq * 8, txnco_freq * 8);
if (ret < 0)
return ret;
}
if (phy->pdata->rx1rx2_phase_inversion_en ||
(phy->pdata->port_ctrl.pp_conf[1] & INVERT_RX2)) {
ad9361_spi_writef(spi, REG_PARALLEL_PORT_CONF_2, INVERT_RX2, 0);
reg_inv_bits = ad9361_spi_read(spi, REG_INVERT_BITS);
ad9361_spi_write(spi, REG_INVERT_BITS,
INVERT_RX1_RF_DC_CGOUT_WORD |
INVERT_RX2_RF_DC_CGOUT_WORD);
}
ad9361_spi_writef(spi, REG_KEXP_2, TX_NCO_FREQ(~0), txnco_word);
ad9361_spi_write(spi, REG_QUAD_CAL_COUNT, 0xFF);
ad9361_spi_write(spi, REG_KEXP_1, KEXP_TX(1) | KEXP_TX_COMP(3) |
KEXP_DC_I(3) | KEXP_DC_Q(3));
ad9361_spi_write(spi, REG_MAG_FTEST_THRESH, 0x01);
ad9361_spi_write(spi, REG_MAG_FTEST_THRESH_2, 0x01);
if (has_split_gt && phy->pdata->split_gt) {
tab = &split_gain_table[phy->current_table][0];
index_max = SIZE_SPLIT_TABLE;
lpf_tia_mask = 0x20;
}
else {
tab = &full_gain_table[phy->current_table][0];
index_max = SIZE_FULL_TABLE;
lpf_tia_mask = 0x3F;
}
for (i = 0; i < index_max; i++)
if ((tab[i][1] & lpf_tia_mask) == 0x20) {
ad9361_spi_write(spi, REG_TX_QUAD_FULL_LMT_GAIN, i);
break;
}
if (i >= index_max)
dev_err(dev, "failed to find suitable LPF TIA value in gain table");
ad9361_spi_write(spi, REG_QUAD_SETTLE_COUNT, 0xF0);
ad9361_spi_write(spi, REG_TX_QUAD_LPF_GAIN, 0x00);
ret = __ad9361_tx_quad_calib(phy, __rx_phase, rxnco_word, decim, &val);
dev_dbg(dev, "LO leakage: %d Quadrature Calibration: %d : rx_phase %d",
!!(val & TX1_LO_CONV), !!(val & TX1_SSB_CONV), __rx_phase);
/* Calibration failed -> try last phase offset */
if (val != (TX1_LO_CONV | TX1_SSB_CONV)) {
if (phy->last_tx_quad_cal_phase < 31)
ret = __ad9361_tx_quad_calib(phy, phy->last_tx_quad_cal_phase,
rxnco_word, decim, &val);
} else {
phy->last_tx_quad_cal_phase = __rx_phase;
}
/* Calibration failed -> loop through all 32 phase offsets */
if (val != (TX1_LO_CONV | TX1_SSB_CONV))
ret = ad9361_tx_quad_phase_search(phy, rxnco_word, decim);
if (phy->pdata->rx1rx2_phase_inversion_en ||
(phy->pdata->port_ctrl.pp_conf[1] & INVERT_RX2)) {
ad9361_spi_writef(spi, REG_PARALLEL_PORT_CONF_2, INVERT_RX2, 1);
ad9361_spi_write(spi, REG_INVERT_BITS, reg_inv_bits);
}
if (phy->pdata->rx1rx2_phase_inversion_en ||
(phy->pdata->port_ctrl.pp_conf[1] & INVERT_RX2)) {
ad9361_spi_writef(spi, REG_PARALLEL_PORT_CONF_2, INVERT_RX2, 1);
ad9361_spi_write(spi, REG_INVERT_BITS, reg_inv_bits);
}
if (txnco_freq > (int64_t)(bw_rx / 4) || txnco_freq > (int64_t)(bw_tx / 4)) {
__ad9361_update_rf_bandwidth(phy,
phy->current_rx_bw_Hz,
phy->current_tx_bw_Hz);
}
return ret;
}
/**
* Setup RX tracking calibrations.
* @param phy The AD9361 state structure.
* @param bbdc_track Set true, will enable the BBDC tracking.
* @param rfdc_track Set true, will enable the RFDC tracking.
* @param rxquad_track Set true, will enable the RXQUAD tracking.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_tracking_control(struct ad9361_rf_phy *phy, bool bbdc_track,
bool rfdc_track, bool rxquad_track)
{
struct spi_device *spi = phy->spi;
uint32_t qtrack = 0;
dev_dbg(&spi->dev, "%s : bbdc_track=%d, rfdc_track=%d, rxquad_track=%d",
__func__, bbdc_track, rfdc_track, rxquad_track);
ad9361_spi_write(spi, REG_CALIBRATION_CONFIG_2,
CALIBRATION_CONFIG2_DFLT | K_EXP_PHASE(0x15));
ad9361_spi_write(spi, REG_CALIBRATION_CONFIG_3,
PREVENT_POS_LOOP_GAIN | K_EXP_AMPLITUDE(0x15));
ad9361_spi_write(spi, REG_DC_OFFSET_CONFIG2,
USE_WAIT_COUNTER_FOR_RF_DC_INIT_CAL |
DC_OFFSET_UPDATE(phy->pdata->dc_offset_update_events) |
(bbdc_track ? ENABLE_BB_DC_OFFSET_TRACKING : 0) |
(rfdc_track ? ENABLE_RF_OFFSET_TRACKING : 0));
ad9361_spi_writef(spi, REG_RX_QUAD_GAIN2,
CORRECTION_WORD_DECIMATION_M(~0),
phy->pdata->qec_tracking_slow_mode_en ? 4 : 0);
if (rxquad_track)
qtrack = ENABLE_TRACKING_MODE_CH1 |
(phy->pdata->rx2tx2 ? ENABLE_TRACKING_MODE_CH2 : 0);
ad9361_spi_write(spi, REG_CALIBRATION_CONFIG_1,
ENABLE_PHASE_CORR | ENABLE_GAIN_CORR |
FREE_RUN_MODE | ENABLE_CORR_WORD_DECIMATION |
qtrack);
return 0;
}
/**
* Enable/disable the VCO cal.
* @param phy The AD9361 state structure.
* @param rx Set true for rx.
* @param enable Set true to enable.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_trx_vco_cal_control(struct ad9361_rf_phy *phy,
bool tx, bool enable)
{
dev_dbg(&phy->spi->dev, "%s : state %d",
__func__, enable);
return ad9361_spi_writef(phy->spi,
tx ? REG_TX_PFD_CONFIG : REG_RX_PFD_CONFIG,
BYPASS_LD_SYNTH, !enable);
}
/**
* Enable/disable the ext. LO.
* @param phy The AD9361 state structure.
* @param rx Set true for rx.
* @param enable Set true to enable.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_trx_ext_lo_control(struct ad9361_rf_phy *phy,
bool tx, bool enable)
{
int32_t val = enable ? ~0 : 0;
int32_t ret;
/* REVIST:
* POWER_DOWN_TRX_SYNTH and MCS_RF_ENABLE somehow conflict
*/
bool mcs_rf_enable = ad9361_spi_readf(phy->spi,
REG_MULTICHIP_SYNC_AND_TX_MON_CTRL, MCS_RF_ENABLE);
dev_dbg(&phy->spi->dev, "%s : %s state %d",
__func__, tx ? "TX" : "RX", enable);
if (tx) {
ret = ad9361_spi_writef(phy->spi, REG_ENSM_CONFIG_2,
POWER_DOWN_TX_SYNTH, mcs_rf_enable ? 0 : enable);
ret |= ad9361_spi_writef(phy->spi, REG_RFPLL_DIVIDERS,
TX_VCO_DIVIDER(~0), enable ? 7 :
phy->cached_tx_rfpll_div);
ret |= ad9361_spi_write(phy->spi, REG_TX_SYNTH_POWER_DOWN_OVERRIDE,
enable ? TX_SYNTH_VCO_ALC_POWER_DOWN |
TX_SYNTH_PTAT_POWER_DOWN |
TX_SYNTH_VCO_POWER_DOWN : 0);
ret |= ad9361_spi_writef(phy->spi, REG_ANALOG_POWER_DOWN_OVERRIDE,
TX_EXT_VCO_BUFFER_POWER_DOWN, !enable);
ret |= ad9361_spi_write(phy->spi, REG_TX_LO_GEN_POWER_MODE,
TX_LO_GEN_POWER_MODE(val));
}
else {
ret = ad9361_spi_writef(phy->spi, REG_ENSM_CONFIG_2,
POWER_DOWN_RX_SYNTH, mcs_rf_enable ? 0 : enable);
ret |= ad9361_spi_writef(phy->spi, REG_RFPLL_DIVIDERS,
RX_VCO_DIVIDER(~0), enable ? 7 :
phy->cached_rx_rfpll_div);
ret |= ad9361_spi_write(phy->spi, REG_RX_SYNTH_POWER_DOWN_OVERRIDE,
enable ? RX_SYNTH_VCO_ALC_POWER_DOWN |
RX_SYNTH_PTAT_POWER_DOWN |
RX_SYNTH_VCO_POWER_DOWN : 0);
ret |= ad9361_spi_writef(phy->spi, REG_ANALOG_POWER_DOWN_OVERRIDE,
RX_EXT_VCO_BUFFER_POWER_DOWN, !enable);
ret |= ad9361_spi_write(phy->spi, REG_RX_LO_GEN_POWER_MODE,
RX_LO_GEN_POWER_MODE(val));
}
return ret;
}
/**
* Setup the reference clock delay unit counter register.
* @param phy The AD9361 state structure.
* @param ref_clk_hz The reference clock frequency [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_set_ref_clk_cycles(struct ad9361_rf_phy *phy,
uint32_t ref_clk_hz)
{
dev_dbg(&phy->spi->dev, "%s : ref_clk_hz %"PRIu32,
__func__, ref_clk_hz);
return ad9361_spi_write(phy->spi, REG_REFERENCE_CLOCK_CYCLES,
REFERENCE_CLOCK_CYCLES_PER_US((ref_clk_hz / 1000000UL) - 1));
}
/**
* Setup the DCXO tune.
* @param phy The AD9361 state structure.
* @param coarse The DCXO tune coarse.
* @param fine The DCXO tune fine.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_set_dcxo_tune(struct ad9361_rf_phy *phy,
uint32_t coarse, uint32_t fine)
{
dev_dbg(&phy->spi->dev, "%s : coarse %"PRIu32" fine %"PRIu32,
__func__, coarse, fine);
ad9361_spi_write(phy->spi, REG_DCXO_COARSE_TUNE,
DCXO_TUNE_COARSE(coarse));
ad9361_spi_write(phy->spi, REG_DCXO_FINE_TUNE_LOW,
DCXO_TUNE_FINE_LOW(fine));
return ad9361_spi_write(phy->spi, REG_DCXO_FINE_TUNE_HIGH,
DCXO_TUNE_FINE_HIGH(fine));
}
/**
* Setup TXMON.
* @param phy The AD9361 state structure.
* @param ctrl The TXMON settings.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_txmon_setup(struct ad9361_rf_phy *phy,
struct tx_monitor_control *ctrl)
{
struct spi_device *spi = phy->spi;
dev_dbg(&phy->spi->dev, "%s", __func__);
ad9361_spi_write(spi, REG_TPM_MODE_ENABLE,
(ctrl->one_shot_mode_en ? ONE_SHOT_MODE : 0) |
TX_MON_DURATION(ilog2(ctrl->tx_mon_duration / 16)));
ad9361_spi_write(spi, REG_TX_MON_DELAY, ctrl->tx_mon_delay);
ad9361_spi_write(spi, REG_TX_MON_1_CONFIG,
TX_MON_1_LO_CM(ctrl->tx1_mon_lo_cm) |
TX_MON_1_GAIN(ctrl->tx1_mon_front_end_gain));
ad9361_spi_write(spi, REG_TX_MON_2_CONFIG,
TX_MON_2_LO_CM(ctrl->tx2_mon_lo_cm) |
TX_MON_2_GAIN(ctrl->tx2_mon_front_end_gain));
ad9361_spi_write(spi, REG_TX_ATTEN_THRESH,
ctrl->low_high_gain_threshold_mdB / 250);
ad9361_spi_write(spi, REG_TX_MON_HIGH_GAIN,
TX_MON_HIGH_GAIN(ctrl->high_gain_dB));
ad9361_spi_write(spi, REG_TX_MON_LOW_GAIN,
(ctrl->tx_mon_track_en ? TX_MON_TRACK : 0) |
TX_MON_LOW_GAIN(ctrl->low_gain_dB));
return 0;
}
/**
* Enable TXMON.
* @param phy The AD9361 state structure.
* @param en_mask The enable mask.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_txmon_control(struct ad9361_rf_phy *phy,
int32_t en_mask)
{
dev_dbg(&phy->spi->dev, "%s: mask 0x%"PRIx32, __func__, en_mask);
#if 0
if (!phy->pdata->fdd && en_mask) {
ad9361_spi_writef(phy->spi, REG_ENSM_CONFIG_1,
ENABLE_RX_DATA_PORT_FOR_CAL, 1);
phy->txmon_tdd_en = true;
} else {
ad9361_spi_writef(phy->spi, REG_ENSM_CONFIG_1,
ENABLE_RX_DATA_PORT_FOR_CAL, 0);
phy->txmon_tdd_en = false;
}
#endif
ad9361_spi_writef(phy->spi, REG_ANALOG_POWER_DOWN_OVERRIDE,
TX_MONITOR_POWER_DOWN(~0), ~en_mask);
ad9361_spi_writef(phy->spi, REG_TPM_MODE_ENABLE,
TX1_MON_ENABLE, !!(en_mask & TX_1));
return ad9361_spi_writef(phy->spi, REG_TPM_MODE_ENABLE,
TX2_MON_ENABLE, !!(en_mask & TX_2));
}
/**
* Setup the RF port.
* Note:
* val
* 0 (RX1A_N & RX1A_P) and (RX2A_N & RX2A_P) enabled; balanced
* 1 (RX1B_N & RX1B_P) and (RX2B_N & RX2B_P) enabled; balanced
* 2 (RX1C_N & RX1C_P) and (RX2C_N & RX2C_P) enabled; balanced
*
* 3 RX1A_N and RX2A_N enabled; unbalanced
* 4 RX1A_P and RX2A_P enabled; unbalanced
* 5 RX1B_N and RX2B_N enabled; unbalanced
* 6 RX1B_P and RX2B_P enabled; unbalanced
* 7 RX1C_N and RX2C_N enabled; unbalanced
* 8 RX1C_P and RX2C_P enabled; unbalanced
* 9 TX_MON1
* 10 TX_MON2
* 11 TX_MON1 & TX_MON2
* @param phy The AD9361 state structure.
* @param rx_inputs RX input option identifier
* @param txb TX output option identifier
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_rf_port_setup(struct ad9361_rf_phy *phy, bool is_out,
uint32_t rx_inputs, uint32_t txb)
{
uint32_t val;
if (rx_inputs > 11)
return -EINVAL;
if (!is_out) {
if (rx_inputs > 8)
return ad9361_txmon_control(phy, rx_inputs & (TX_1 | TX_2));
else
ad9361_txmon_control(phy, 0);
}
if (rx_inputs < 3)
val = 3 << (rx_inputs * 2);
else
val = 1 << (rx_inputs - 3);
if (txb)
val |= TX_OUTPUT; /* Select TX1B, TX2B */
dev_dbg(&phy->spi->dev, "%s : INPUT_SELECT 0x%"PRIx32,
__func__, val);
return ad9361_spi_write(phy->spi, REG_INPUT_SELECT, val);
}
/**
* Setup the Parallel Port (Digital Data Interface).
* @param phy The AD9361 state structure.
* @param restore_c3 Set true, will restore the Parallel Port Configuration 3
* register.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_pp_port_setup(struct ad9361_rf_phy *phy, bool restore_c3)
{
struct spi_device *spi = phy->spi;
struct ad9361_phy_platform_data *pd = phy->pdata;
dev_dbg(&phy->spi->dev, "%s", __func__);
if (restore_c3) {
return ad9361_spi_write(spi, REG_PARALLEL_PORT_CONF_3,
pd->port_ctrl.pp_conf[2]);
}
/* Sanity check */
if (pd->port_ctrl.pp_conf[2] & LVDS_MODE)
pd->port_ctrl.pp_conf[2] &=
~(HALF_DUPLEX_MODE | SINGLE_DATA_RATE | SINGLE_PORT_MODE);
if (pd->port_ctrl.pp_conf[2] & FULL_PORT)
pd->port_ctrl.pp_conf[2] &= ~(HALF_DUPLEX_MODE | SINGLE_PORT_MODE);
ad9361_spi_write(spi, REG_PARALLEL_PORT_CONF_1, pd->port_ctrl.pp_conf[0]);
ad9361_spi_write(spi, REG_PARALLEL_PORT_CONF_2, pd->port_ctrl.pp_conf[1]);
ad9361_spi_write(spi, REG_PARALLEL_PORT_CONF_3, pd->port_ctrl.pp_conf[2]);
ad9361_spi_write(spi, REG_RX_CLOCK_DATA_DELAY, pd->port_ctrl.rx_clk_data_delay);
ad9361_spi_write(spi, REG_TX_CLOCK_DATA_DELAY, pd->port_ctrl.tx_clk_data_delay);
ad9361_spi_write(spi, REG_LVDS_BIAS_CTRL, pd->port_ctrl.lvds_bias_ctrl);
// ad9361_spi_write(spi, REG_DIGITAL_IO_CTRL, pd->port_ctrl.digital_io_ctrl);
ad9361_spi_write(spi, REG_LVDS_INVERT_CTRL1, pd->port_ctrl.lvds_invert[0]);
ad9361_spi_write(spi, REG_LVDS_INVERT_CTRL2, pd->port_ctrl.lvds_invert[1]);
if (pd->rx1rx2_phase_inversion_en ||
(pd->port_ctrl.pp_conf[1] & INVERT_RX2)) {
ad9361_spi_writef(spi, REG_PARALLEL_PORT_CONF_2, INVERT_RX2, 1);
ad9361_spi_writef(spi, REG_INVERT_BITS,
INVERT_RX2_RF_DC_CGOUT_WORD, 0);
}
return 0;
}
/**
* Setup the Gain Control Blocks (common function for MGC, AGC modes)
* @param phy The AD9361 state structure.
* @param ctrl The gain control settings.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_gc_setup(struct ad9361_rf_phy *phy, struct gain_control *ctrl)
{
struct spi_device *spi = phy->spi;
uint32_t reg, tmp1, tmp2;
dev_dbg(&phy->spi->dev, "%s", __func__);
reg = DEC_PWR_FOR_GAIN_LOCK_EXIT | DEC_PWR_FOR_LOCK_LEVEL |
DEC_PWR_FOR_LOW_PWR;
if (ctrl->rx1_mode == RF_GAIN_HYBRID_AGC ||
ctrl->rx2_mode == RF_GAIN_HYBRID_AGC)
reg |= SLOW_ATTACK_HYBRID_MODE;
reg |= RX1_GAIN_CTRL_SETUP(ctrl->rx1_mode) |
RX2_GAIN_CTRL_SETUP(ctrl->rx2_mode);
phy->agc_mode[0] = ctrl->rx1_mode;
phy->agc_mode[1] = ctrl->rx2_mode;
ad9361_spi_write(spi, REG_AGC_CONFIG_1, reg); // Gain Control Mode Select
/* AGC_USE_FULL_GAIN_TABLE handled in ad9361_load_gt() */
ad9361_spi_writef(spi, REG_AGC_CONFIG_2, MAN_GAIN_CTRL_RX1,
ctrl->mgc_rx1_ctrl_inp_en);
ad9361_spi_writef(spi, REG_AGC_CONFIG_2, MAN_GAIN_CTRL_RX2,
ctrl->mgc_rx2_ctrl_inp_en);
ad9361_spi_writef(spi, REG_AGC_CONFIG_2, DIG_GAIN_EN,
ctrl->dig_gain_en);
ctrl->adc_ovr_sample_size = clamp_t(uint8_t, ctrl->adc_ovr_sample_size, 1U, 8U);
reg = ADC_OVERRANGE_SAMPLE_SIZE(ctrl->adc_ovr_sample_size - 1);
if (has_split_gt && phy->pdata->split_gt &&
(ctrl->mgc_rx1_ctrl_inp_en || ctrl->mgc_rx2_ctrl_inp_en)) {
switch (ctrl->mgc_split_table_ctrl_inp_gain_mode) {
case 1:
reg &= ~INCDEC_LMT_GAIN;
break;
case 2:
reg |= INCDEC_LMT_GAIN;
break;
default:
case 0:
reg |= USE_AGC_FOR_LMTLPF_GAIN;
break;
}
}
ctrl->mgc_inc_gain_step = clamp_t(uint8_t, ctrl->mgc_inc_gain_step, 1U, 8U);
reg |= MANUAL_INCR_STEP_SIZE(ctrl->mgc_inc_gain_step - 1);
ad9361_spi_write(spi, REG_AGC_CONFIG_3, reg); // Incr Step Size, ADC Overrange Size
if (has_split_gt && phy->pdata->split_gt) {
reg = SIZE_SPLIT_TABLE - 1;
}
else {
reg = SIZE_FULL_TABLE - 1;
}
ad9361_spi_write(spi, REG_MAX_LMT_FULL_GAIN, reg); // Max Full/LMT Gain Table Index
ad9361_spi_write(spi, REG_RX1_MANUAL_LMT_FULL_GAIN, reg); // Rx1 Full/LMT Gain Index
ad9361_spi_write(spi, REG_RX2_MANUAL_LMT_FULL_GAIN, reg); // Rx2 Full/LMT Gain Index
ctrl->mgc_dec_gain_step = clamp_t(uint8_t, ctrl->mgc_dec_gain_step, 1U, 8U);
reg = MANUAL_CTRL_IN_DECR_GAIN_STP_SIZE(ctrl->mgc_dec_gain_step);
ad9361_spi_write(spi, REG_PEAK_WAIT_TIME, reg); // Decr Step Size, Peak Overload Time
if (ctrl->dig_gain_en)
ad9361_spi_write(spi, REG_DIGITAL_GAIN,
MAXIMUM_DIGITAL_GAIN(ctrl->max_dig_gain) |
DIG_GAIN_STP_SIZE(ctrl->dig_gain_step_size));
if (ctrl->adc_large_overload_thresh >= ctrl->adc_small_overload_thresh) {
ad9361_spi_write(spi, REG_ADC_SMALL_OVERLOAD_THRESH,
ctrl->adc_small_overload_thresh); // ADC Small Overload Threshold
ad9361_spi_write(spi, REG_ADC_LARGE_OVERLOAD_THRESH,
ctrl->adc_large_overload_thresh); // ADC Large Overload Threshold
}
else {
ad9361_spi_write(spi, REG_ADC_SMALL_OVERLOAD_THRESH,
ctrl->adc_large_overload_thresh); // ADC Small Overload Threshold
ad9361_spi_write(spi, REG_ADC_LARGE_OVERLOAD_THRESH,
ctrl->adc_small_overload_thresh); // ADC Large Overload Threshold
}
reg = (ctrl->lmt_overload_high_thresh / 16) - 1;
reg = clamp(reg, 0U, 63U);
ad9361_spi_write(spi, REG_LARGE_LMT_OVERLOAD_THRESH, reg);
reg = (ctrl->lmt_overload_low_thresh / 16) - 1;
reg = clamp(reg, 0U, 63U);
ad9361_spi_writef(spi, REG_SMALL_LMT_OVERLOAD_THRESH,
SMALL_LMT_OVERLOAD_THRESH(~0), reg);
if (has_split_gt && phy->pdata->split_gt) {
/* REVIST */
ad9361_spi_write(spi, REG_RX1_MANUAL_LPF_GAIN, 0x58); // Rx1 LPF Gain Index
ad9361_spi_write(spi, REG_RX2_MANUAL_LPF_GAIN, 0x18); // Rx2 LPF Gain Index
ad9361_spi_write(spi, REG_FAST_INITIAL_LMT_GAIN_LIMIT, 0x27); // Initial LMT Gain Limit
}
ad9361_spi_write(spi, REG_RX1_MANUAL_DIGITALFORCED_GAIN, 0x00); // Rx1 Digital Gain Index
ad9361_spi_write(spi, REG_RX2_MANUAL_DIGITALFORCED_GAIN, 0x00); // Rx2 Digital Gain Index
reg = clamp_t(uint8_t, ctrl->low_power_thresh, 0U, 64U) * 2;
ad9361_spi_write(spi, REG_FAST_LOW_POWER_THRESH, reg); // Low Power Threshold
ad9361_spi_write(spi, REG_TX_SYMBOL_ATTEN_CONFIG, 0x00); // Tx Symbol Gain Control
ad9361_spi_writef(spi, REG_DEC_POWER_MEASURE_DURATION_0,
USE_HB1_OUT_FOR_DEC_PWR_MEAS, 1); // Power Measurement Duration
ad9361_spi_writef(spi, REG_DEC_POWER_MEASURE_DURATION_0,
ENABLE_DEC_PWR_MEAS, 1); // Power Measurement Duration
if (ctrl->rx1_mode == RF_GAIN_FASTATTACK_AGC ||
ctrl->rx2_mode == RF_GAIN_FASTATTACK_AGC)
reg = ilog2(ctrl->f_agc_dec_pow_measuremnt_duration / 16);
else
reg = ilog2(ctrl->dec_pow_measuremnt_duration / 16);
ad9361_spi_writef(spi, REG_DEC_POWER_MEASURE_DURATION_0,
DEC_POWER_MEASUREMENT_DURATION(~0), reg); // Power Measurement Duration
/* AGC */
tmp1 = reg = clamp_t(uint8_t, ctrl->agc_inner_thresh_high, 0U, 127U);
ad9361_spi_writef(spi, REG_AGC_LOCK_LEVEL,
AGC_LOCK_LEVEL_FAST_AGC_INNER_HIGH_THRESH_SLOW(~0),
reg);
tmp2 = reg = clamp_t(uint8_t, ctrl->agc_inner_thresh_low, 0U, 127U);
reg |= (ctrl->adc_lmt_small_overload_prevent_gain_inc ?
PREVENT_GAIN_INC : 0);
ad9361_spi_write(spi, REG_AGC_INNER_LOW_THRESH, reg);
reg = AGC_OUTER_HIGH_THRESH(tmp1 - ctrl->agc_outer_thresh_high) |
AGC_OUTER_LOW_THRESH(ctrl->agc_outer_thresh_low - tmp2);
ad9361_spi_write(spi, REG_OUTER_POWER_THRESHS, reg);
reg = AGC_OUTER_HIGH_THRESH_EXED_STP_SIZE(ctrl->agc_outer_thresh_high_dec_steps) |
AGC_OUTER_LOW_THRESH_EXED_STP_SIZE(ctrl->agc_outer_thresh_low_inc_steps);
ad9361_spi_write(spi, REG_GAIN_STP_2, reg);
reg = ((ctrl->immed_gain_change_if_large_adc_overload) ?
IMMED_GAIN_CHANGE_IF_LG_ADC_OVERLOAD : 0) |
((ctrl->immed_gain_change_if_large_lmt_overload) ?
IMMED_GAIN_CHANGE_IF_LG_LMT_OVERLOAD : 0) |
AGC_INNER_HIGH_THRESH_EXED_STP_SIZE(ctrl->agc_inner_thresh_high_dec_steps) |
AGC_INNER_LOW_THRESH_EXED_STP_SIZE(ctrl->agc_inner_thresh_low_inc_steps);
ad9361_spi_write(spi, REG_GAIN_STP1, reg);
reg = LARGE_ADC_OVERLOAD_EXED_COUNTER(ctrl->adc_large_overload_exceed_counter) |
SMALL_ADC_OVERLOAD_EXED_COUNTER(ctrl->adc_small_overload_exceed_counter);
ad9361_spi_write(spi, REG_ADC_OVERLOAD_COUNTERS, reg);
ad9361_spi_writef(spi, REG_GAIN_STP_CONFIG_2, LARGE_LPF_GAIN_STEP(~0),
LARGE_LPF_GAIN_STEP(ctrl->adc_large_overload_inc_steps));
reg = LARGE_LMT_OVERLOAD_EXED_COUNTER(ctrl->lmt_overload_large_exceed_counter) |
SMALL_LMT_OVERLOAD_EXED_COUNTER(ctrl->lmt_overload_small_exceed_counter);
ad9361_spi_write(spi, REG_LMT_OVERLOAD_COUNTERS, reg);
ad9361_spi_writef(spi, REG_GAIN_STP_CONFIG1,
DEC_STP_SIZE_FOR_LARGE_LMT_OVERLOAD(~0),
ctrl->lmt_overload_large_inc_steps);
reg = DIG_SATURATION_EXED_COUNTER(ctrl->dig_saturation_exceed_counter) |
(ctrl->sync_for_gain_counter_en ?
ENABLE_SYNC_FOR_GAIN_COUNTER : 0);
ad9361_spi_write(spi, REG_DIGITAL_SAT_COUNTER, reg);
/*
* Fast AGC
*/
/* Fast AGC - Low Power */
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
ENABLE_INCR_GAIN,
ctrl->f_agc_allow_agc_gain_increase);
ad9361_spi_write(spi, REG_FAST_INCREMENT_TIME,
ctrl->f_agc_lp_thresh_increment_time);
reg = ctrl->f_agc_lp_thresh_increment_steps - 1;
reg = clamp_t(uint32_t, reg, 0U, 7U);
ad9361_spi_writef(spi, REG_FAST_ENERGY_DETECT_COUNT,
INCREMENT_GAIN_STP_LPFLMT(~0), reg);
/* Fast AGC - Lock Level */
/* Dual use see also agc_inner_thresh_high */
ad9361_spi_writef(spi, REG_FAST_CONFIG_2_SETTLING_DELAY,
ENABLE_LMT_GAIN_INC_FOR_LOCK_LEVEL,
ctrl->f_agc_lock_level_lmt_gain_increase_en);
reg = ctrl->f_agc_lock_level_gain_increase_upper_limit;
reg = clamp_t(uint32_t, reg, 0U, 63U);
ad9361_spi_writef(spi, REG_FAST_AGCLL_UPPER_LIMIT,
AGCLL_MAX_INCREASE(~0), reg);
/* Fast AGC - Peak Detectors and Final Settling */
reg = ctrl->f_agc_lpf_final_settling_steps;
reg = clamp_t(uint32_t, reg, 0U, 3U);
ad9361_spi_writef(spi, REG_FAST_ENERGY_LOST_THRESH,
POST_LOCK_LEVEL_STP_SIZE_FOR_LPF_TABLE_FULL_TABLE(~0),
reg);
reg = ctrl->f_agc_lmt_final_settling_steps;
reg = clamp_t(uint32_t, reg, 0U, 3U);
ad9361_spi_writef(spi, REG_FAST_STRONGER_SIGNAL_THRESH,
POST_LOCK_LEVEL_STP_FOR_LMT_TABLE(~0), reg);
reg = ctrl->f_agc_final_overrange_count;
reg = clamp_t(uint32_t, reg, 0U, 7U);
ad9361_spi_writef(spi, REG_FAST_FINAL_OVER_RANGE_AND_OPT_GAIN,
FINAL_OVER_RANGE_COUNT(~0), reg);
/* Fast AGC - Final Power Test */
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
ENABLE_GAIN_INC_AFTER_GAIN_LOCK,
ctrl->f_agc_gain_increase_after_gain_lock_en);
/* Fast AGC - Unlocking the Gain */
/* 0 = MAX Gain, 1 = Optimized Gain, 2 = Set Gain */
reg = ctrl->f_agc_gain_index_type_after_exit_rx_mode;
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_SET_GAIN_IF_EXIT_RX_STATE, reg == SET_GAIN);
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_OPTIMIZED_GAIN_IF_EXIT_RX_STATE,
reg == OPTIMIZED_GAIN);
ad9361_spi_writef(spi, REG_FAST_CONFIG_2_SETTLING_DELAY,
USE_LAST_LOCK_LEVEL_FOR_SET_GAIN,
ctrl->f_agc_use_last_lock_level_for_set_gain_en);
reg = ctrl->f_agc_optimized_gain_offset;
reg = clamp_t(uint32_t, reg, 0U, 15U);
ad9361_spi_writef(spi, REG_FAST_FINAL_OVER_RANGE_AND_OPT_GAIN,
OPTIMIZE_GAIN_OFFSET(~0), reg);
tmp1 = !ctrl->f_agc_rst_gla_stronger_sig_thresh_exceeded_en ||
!ctrl->f_agc_rst_gla_engergy_lost_sig_thresh_exceeded_en ||
!ctrl->f_agc_rst_gla_large_adc_overload_en ||
!ctrl->f_agc_rst_gla_large_lmt_overload_en ||
ctrl->f_agc_rst_gla_en_agc_pulled_high_en;
ad9361_spi_writef(spi, REG_AGC_CONFIG_2,
AGC_GAIN_UNLOCK_CTRL, tmp1);
reg = !ctrl->f_agc_rst_gla_stronger_sig_thresh_exceeded_en;
ad9361_spi_writef(spi, REG_FAST_STRONG_SIGNAL_FREEZE,
DONT_UNLOCK_GAIN_IF_STRONGER_SIGNAL, reg);
reg = ctrl->f_agc_rst_gla_stronger_sig_thresh_above_ll;
reg = clamp_t(uint32_t, reg, 0U, 63U);
ad9361_spi_writef(spi, REG_FAST_STRONGER_SIGNAL_THRESH,
STRONGER_SIGNAL_THRESH(~0), reg);
reg = ctrl->f_agc_rst_gla_engergy_lost_sig_thresh_below_ll;
reg = clamp_t(uint32_t, reg, 0U, 63U);
ad9361_spi_writef(spi, REG_FAST_ENERGY_LOST_THRESH,
ENERGY_LOST_THRESH(~0), reg);
reg = ctrl->f_agc_rst_gla_engergy_lost_goto_optim_gain_en;
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_OPT_GAIN_IF_ENERGY_LOST_OR_EN_AGC_HIGH, reg);
reg = !ctrl->f_agc_rst_gla_engergy_lost_sig_thresh_exceeded_en;
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
DONT_UNLOCK_GAIN_IF_ENERGY_LOST, reg);
reg = ctrl->f_agc_energy_lost_stronger_sig_gain_lock_exit_cnt;
reg = clamp_t(uint32_t, reg, 0U, 63U);
ad9361_spi_writef(spi, REG_FAST_GAIN_LOCK_EXIT_COUNT,
GAIN_LOCK_EXIT_COUNT(~0), reg);
reg = !ctrl->f_agc_rst_gla_large_adc_overload_en ||
!ctrl->f_agc_rst_gla_large_lmt_overload_en;
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
DONT_UNLOCK_GAIN_IF_LG_ADC_OR_LMT_OVRG, reg);
reg = !ctrl->f_agc_rst_gla_large_adc_overload_en;
ad9361_spi_writef(spi, REG_FAST_LOW_POWER_THRESH,
DONT_UNLOCK_GAIN_IF_ADC_OVRG, reg);
/* 0 = Max Gain, 1 = Set Gain, 2 = Optimized Gain, 3 = No Gain Change */
if (ctrl->f_agc_rst_gla_en_agc_pulled_high_en) {
switch (ctrl->f_agc_rst_gla_if_en_agc_pulled_high_mode) {
case MAX_GAIN:
ad9361_spi_writef(spi, REG_FAST_CONFIG_2_SETTLING_DELAY,
GOTO_MAX_GAIN_OR_OPT_GAIN_IF_EN_AGC_HIGH, 1);
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_SET_GAIN_IF_EN_AGC_HIGH, 0);
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_OPT_GAIN_IF_ENERGY_LOST_OR_EN_AGC_HIGH, 0);
break;
case SET_GAIN:
ad9361_spi_writef(spi, REG_FAST_CONFIG_2_SETTLING_DELAY,
GOTO_MAX_GAIN_OR_OPT_GAIN_IF_EN_AGC_HIGH, 0);
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_SET_GAIN_IF_EN_AGC_HIGH, 1);
break;
case OPTIMIZED_GAIN:
ad9361_spi_writef(spi, REG_FAST_CONFIG_2_SETTLING_DELAY,
GOTO_MAX_GAIN_OR_OPT_GAIN_IF_EN_AGC_HIGH, 1);
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_SET_GAIN_IF_EN_AGC_HIGH, 0);
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_OPT_GAIN_IF_ENERGY_LOST_OR_EN_AGC_HIGH, 1);
break;
case NO_GAIN_CHANGE:
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_SET_GAIN_IF_EN_AGC_HIGH, 0);
ad9361_spi_writef(spi, REG_FAST_CONFIG_2_SETTLING_DELAY,
GOTO_MAX_GAIN_OR_OPT_GAIN_IF_EN_AGC_HIGH, 0);
break;
}
}
else {
ad9361_spi_writef(spi, REG_FAST_CONFIG_1,
GOTO_SET_GAIN_IF_EN_AGC_HIGH, 0);
ad9361_spi_writef(spi, REG_FAST_CONFIG_2_SETTLING_DELAY,
GOTO_MAX_GAIN_OR_OPT_GAIN_IF_EN_AGC_HIGH, 0);
}
reg = ilog2(ctrl->f_agc_power_measurement_duration_in_state5 / 16);
reg = clamp_t(uint32_t, reg, 0U, 15U);
ad9361_spi_writef(spi, REG_RX1_MANUAL_LPF_GAIN,
POWER_MEAS_IN_STATE_5(~0), reg);
ad9361_spi_writef(spi, REG_RX1_MANUAL_LMT_FULL_GAIN,
POWER_MEAS_IN_STATE_5_MSB, reg >> 3);
return ad9361_gc_update(phy);
}
/**
* Set the Aux DAC.
* @param phy The AD9361 state structure.
* @param dac The DAC.
* @param val_mV The value.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_auxdac_set(struct ad9361_rf_phy *phy, int32_t dac,
int32_t val_mV)
{
struct spi_device *spi = phy->spi;
uint32_t val, tmp;
dev_dbg(&phy->spi->dev, "%s DAC%"PRId32" = %"PRId32" mV", __func__, dac, val_mV);
/* Disable DAC if val == 0, Ignored in ENSM Auto Mode */
ad9361_spi_writef(spi, REG_AUXDAC_ENABLE_CTRL,
AUXDAC_MANUAL_BAR(dac), val_mV ? 0 : 1);
if (val_mV < 306)
val_mV = 306;
if (val_mV < 1888) {
val = ((val_mV - 306) * 1000) / 1404; /* Vref = 1V, Step = 2 */
tmp = AUXDAC_1_VREF(0);
}
else {
val = ((val_mV - 1761) * 1000) / 1836; /* Vref = 2.5V, Step = 2 */
tmp = AUXDAC_1_VREF(3);
}
val = clamp_t(uint32_t, val, 0, 1023);
switch (dac) {
case 1:
ad9361_spi_write(spi, REG_AUXDAC_1_WORD, val >> 2);
ad9361_spi_write(spi, REG_AUXDAC_1_CONFIG, AUXDAC_1_WORD_LSB(val) | tmp);
phy->auxdac1_value = val_mV;
break;
case 2:
ad9361_spi_write(spi, REG_AUXDAC_2_WORD, val >> 2);
ad9361_spi_write(spi, REG_AUXDAC_2_CONFIG, AUXDAC_2_WORD_LSB(val) | tmp);
phy->auxdac2_value = val_mV;
break;
default:
return -EINVAL;
}
return 0;
}
/**
* Get the Aux DAC value.
* @param phy The AD9361 state structure.
* @param dac The DAC.
* @return The value in case of success, negative error code otherwise.
*/
int32_t ad9361_auxdac_get(struct ad9361_rf_phy *phy, int32_t dac)
{
switch (dac) {
case 1:
return phy->auxdac1_value;
case 2:
return phy->auxdac2_value;
default:
return -EINVAL;
}
return 0;
}
/**
* Setup the AuxDAC.
* @param phy The AD9361 state structure.
* @param ctrl Pointer to auxdac_control structure.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_auxdac_setup(struct ad9361_rf_phy *phy,
struct auxdac_control *ctrl)
{
struct spi_device *spi = phy->spi;
uint8_t tmp;
dev_dbg(&phy->spi->dev, "%s", __func__);
ad9361_auxdac_set(phy, 1, ctrl->dac1_default_value);
ad9361_auxdac_set(phy, 2, ctrl->dac2_default_value);
tmp = ~(AUXDAC_AUTO_TX_BAR(ctrl->dac2_in_tx_en << 1 | ctrl->dac1_in_tx_en) |
AUXDAC_AUTO_RX_BAR(ctrl->dac2_in_rx_en << 1 | ctrl->dac1_in_rx_en) |
AUXDAC_INIT_BAR(ctrl->dac2_in_alert_en << 1 | ctrl->dac1_in_alert_en));
ad9361_spi_writef(spi, REG_AUXDAC_ENABLE_CTRL,
AUXDAC_AUTO_TX_BAR(~0) |
AUXDAC_AUTO_RX_BAR(~0) |
AUXDAC_INIT_BAR(~0),
tmp); /* Auto Control */
ad9361_spi_writef(spi, REG_EXTERNAL_LNA_CTRL,
AUXDAC_MANUAL_SELECT, ctrl->auxdac_manual_mode_en);
ad9361_spi_write(spi, REG_AUXDAC1_RX_DELAY, ctrl->dac1_rx_delay_us);
ad9361_spi_write(spi, REG_AUXDAC1_TX_DELAY, ctrl->dac1_tx_delay_us);
ad9361_spi_write(spi, REG_AUXDAC2_RX_DELAY, ctrl->dac2_rx_delay_us);
ad9361_spi_write(spi, REG_AUXDAC2_TX_DELAY, ctrl->dac2_tx_delay_us);
return 0;
}
/**
* Setup the AuxADC.
* @param phy The AD9361 state structure.
* @param ctrl The AuxADC settings.
* @param bbpll_freq The BBPLL frequency [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_auxadc_setup(struct ad9361_rf_phy *phy,
struct auxadc_control *ctrl,
uint32_t bbpll_freq)
{
struct spi_device *spi = phy->spi;
uint32_t val;
dev_dbg(&phy->spi->dev, "%s", __func__);
val = DIV_ROUND_CLOSEST(ctrl->temp_time_inteval_ms *
(bbpll_freq / 1000UL), (1 << 29));
ad9361_spi_write(spi, REG_TEMP_OFFSET, ctrl->offset);
ad9361_spi_write(spi, REG_START_TEMP_READING, 0x00);
ad9361_spi_write(spi, REG_TEMP_SENSE2,
MEASUREMENT_TIME_INTERVAL(val) |
(ctrl->periodic_temp_measuremnt ?
TEMP_SENSE_PERIODIC_ENABLE : 0));
ad9361_spi_write(spi, REG_TEMP_SENSOR_CONFIG,
TEMP_SENSOR_DECIMATION(
ilog2(ctrl->temp_sensor_decimation) - 8));
ad9361_spi_write(spi, REG_AUXADC_CLOCK_DIVIDER,
bbpll_freq / ctrl->auxadc_clock_rate);
ad9361_spi_write(spi, REG_AUXADC_CONFIG,
AUX_ADC_DECIMATION(
ilog2(ctrl->auxadc_decimation) - 8));
return 0;
}
/**
* Get the measured temperature of the device.
* @param phy The AD9361 state structure.
* @return The measured temperature of the device.
*/
int32_t ad9361_get_temp(struct ad9361_rf_phy *phy)
{
uint32_t val;
ad9361_spi_writef(phy->spi, REG_AUXADC_CONFIG, AUXADC_POWER_DOWN, 1);
val = ad9361_spi_read(phy->spi, REG_TEMPERATURE);
ad9361_spi_writef(phy->spi, REG_AUXADC_CONFIG, AUXADC_POWER_DOWN, 0);
return DIV_ROUND_CLOSEST(val * 1000000, 1140);
}
/**
* Get the Aux ADC value.
* @param phy The AD9361 state structure.
* @return The value in case of success, negative error code otherwise.
*/
int32_t ad9361_get_auxadc(struct ad9361_rf_phy *phy)
{
uint8_t buf[2];
ad9361_spi_writef(phy->spi, REG_AUXADC_CONFIG, AUXADC_POWER_DOWN, 1);
ad9361_spi_readm(phy->spi, REG_AUXADC_LSB, buf, 2);
ad9361_spi_writef(phy->spi, REG_AUXADC_CONFIG, AUXADC_POWER_DOWN, 0);
return (buf[1] << 4) | AUXADC_WORD_LSB(buf[0]);
}
/**
* Setup the Control Output pins.
* @param phy The AD9361 state structure.
* @param ctrl The Control Output pins settings.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
struct ctrl_outs_control *ctrl)
{
struct spi_device *spi = phy->spi;
dev_dbg(&phy->spi->dev, "%s", __func__);
ad9361_spi_write(spi, REG_CTRL_OUTPUT_POINTER, ctrl->index); // Ctrl Out index
return ad9361_spi_write(spi, REG_CTRL_OUTPUT_ENABLE, ctrl->en_mask); // Ctrl Out [7:0] output enable
}
/**
* Setup the GPO pins.
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_gpo_setup(struct ad9361_rf_phy *phy, struct gpo_control *ctrl)
{
struct spi_device *spi = phy->spi;
dev_dbg(&phy->spi->dev, "%s", __func__);
ad9361_spi_write(spi, REG_AUTO_GPO,
GPO_ENABLE_AUTO_RX(ctrl->gpo0_slave_rx_en |
(ctrl->gpo1_slave_rx_en << 1) |
(ctrl->gpo2_slave_rx_en << 2) |
(ctrl->gpo3_slave_rx_en << 3)) |
GPO_ENABLE_AUTO_TX(ctrl->gpo0_slave_tx_en |
(ctrl->gpo1_slave_tx_en << 1) |
(ctrl->gpo2_slave_tx_en << 2) |
(ctrl->gpo3_slave_tx_en << 3)));
ad9361_spi_write(spi, REG_GPO_FORCE_AND_INIT,
GPO_INIT_STATE(ctrl->gpo0_inactive_state_high_en |
(ctrl->gpo1_inactive_state_high_en << 1) |
(ctrl->gpo2_inactive_state_high_en << 2) |
(ctrl->gpo3_inactive_state_high_en << 3)));
ad9361_spi_write(spi, REG_GPO0_RX_DELAY, ctrl->gpo0_rx_delay_us);
ad9361_spi_write(spi, REG_GPO0_TX_DELAY, ctrl->gpo0_tx_delay_us);
ad9361_spi_write(spi, REG_GPO1_RX_DELAY, ctrl->gpo1_rx_delay_us);
ad9361_spi_write(spi, REG_GPO1_TX_DELAY, ctrl->gpo1_tx_delay_us);
ad9361_spi_write(spi, REG_GPO2_RX_DELAY, ctrl->gpo2_rx_delay_us);
ad9361_spi_write(spi, REG_GPO2_TX_DELAY, ctrl->gpo2_tx_delay_us);
ad9361_spi_write(spi, REG_GPO3_RX_DELAY, ctrl->gpo3_rx_delay_us);
ad9361_spi_write(spi, REG_GPO3_TX_DELAY, ctrl->gpo3_tx_delay_us);
return 0;
}
/**
* Setup the RSSI.
* @param phy The AD9361 state structure.
* @param ctrl The RSSI settings.
* @param is_update True if update
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_rssi_setup(struct ad9361_rf_phy *phy,
struct rssi_control *ctrl,
bool is_update)
{
struct spi_device *spi = phy->spi;
uint32_t total_weight, weight[4], total_dur = 0, temp;
uint8_t dur_buf[4] = { 0 };
int32_t val, ret, i, j = 0;
uint32_t rssi_delay;
uint32_t rssi_wait;
uint32_t rssi_duration;
uint32_t rate;
dev_dbg(&phy->spi->dev, "%s", __func__);
if (ctrl->rssi_unit_is_rx_samples) {
if (is_update)
return 0; /* no update required */
rssi_delay = ctrl->rssi_delay;
rssi_wait = ctrl->rssi_wait;
rssi_duration = ctrl->rssi_duration;
}
else {
/* update sample based on RX rate */
rate = DIV_ROUND_CLOSEST(
clk_get_rate(phy, phy->ref_clk_scale[RX_SAMPL_CLK]), 1000);
/* units are in us */
rssi_delay = DIV_ROUND_CLOSEST(ctrl->rssi_delay * rate, 1000);
rssi_wait = DIV_ROUND_CLOSEST(ctrl->rssi_wait * rate, 1000);
rssi_duration = DIV_ROUND_CLOSEST(
ctrl->rssi_duration * rate, 1000);
}
if (ctrl->restart_mode == EN_AGC_PIN_IS_PULLED_HIGH)
rssi_delay = 0;
rssi_delay = clamp(rssi_delay / 8, 0U, 255U);
rssi_wait = clamp(rssi_wait / 4, 0U, 255U);
do {
for (i = 14; rssi_duration > 0 && i >= 0; i--) {
val = 1 << i;
if ((int64_t)rssi_duration >= val) {
dur_buf[j++] = i;
total_dur += val;
rssi_duration -= val;
break;
}
}
} while (j < 4 && rssi_duration > 0);
for (i = 0, total_weight = 0; i < 4; i++)
total_weight += weight[i] =
DIV_ROUND_CLOSEST(RSSI_MAX_WEIGHT *
(1 << dur_buf[i]), total_dur);
/* total of all weights must be 0xFF */
val = total_weight - 0xFF;
weight[j - 1] -= val;
ad9361_spi_write(spi, REG_MEASURE_DURATION_01,
(dur_buf[1] << 4) | dur_buf[0]); // RSSI Measurement Duration 0, 1
ad9361_spi_write(spi, REG_MEASURE_DURATION_23,
(dur_buf[3] << 4) | dur_buf[2]); // RSSI Measurement Duration 2, 3
ad9361_spi_write(spi, REG_RSSI_WEIGHT_0, weight[0]); // RSSI Weighted Multiplier 0
ad9361_spi_write(spi, REG_RSSI_WEIGHT_1, weight[1]); // RSSI Weighted Multiplier 1
ad9361_spi_write(spi, REG_RSSI_WEIGHT_2, weight[2]); // RSSI Weighted Multiplier 2
ad9361_spi_write(spi, REG_RSSI_WEIGHT_3, weight[3]); // RSSI Weighted Multiplier 3
ad9361_spi_write(spi, REG_RSSI_DELAY, rssi_delay); // RSSI Delay
ad9361_spi_write(spi, REG_RSSI_WAIT_TIME, rssi_wait); // RSSI Wait
temp = RSSI_MODE_SELECT(ctrl->restart_mode);
if (ctrl->restart_mode == SPI_WRITE_TO_REGISTER)
temp |= START_RSSI_MEAS;
ret = ad9361_spi_write(spi, REG_RSSI_CONFIG, temp); // RSSI Mode Select
if (ret < 0)
dev_err(&phy->spi->dev, "Unable to write rssi config");
return 0;
}
/**
* This function needs to be called whenever BBPLL changes.
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_bb_clk_change_handler(struct ad9361_rf_phy *phy)
{
int32_t ret;
ret = ad9361_gc_update(phy);
ret |= ad9361_rssi_setup(phy, &phy->pdata->rssi_ctrl, true);
ret |= ad9361_auxadc_setup(phy, &phy->pdata->auxadc_ctrl,
clk_get_rate(phy, phy->ref_clk_scale[BBPLL_CLK]));
return ret;
}
/**
* Set the desired Enable State Machine (ENSM) state.
* @param phy The AD9361 state structure.
* @param ensm_state The ENSM state [ENSM_STATE_SLEEP_WAIT, ENSM_STATE_ALERT,
* ENSM_STATE_TX, ENSM_STATE_TX_FLUSH, ENSM_STATE_RX,
* ENSM_STATE_RX_FLUSH, ENSM_STATE_FDD, ENSM_STATE_FDD_FLUSH].
* @param pinctrl Set true, will enable the ENSM pin control.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_ensm_set_state(struct ad9361_rf_phy *phy, uint8_t ensm_state,
bool pinctrl)
{
struct spi_device *spi = phy->spi;
int32_t rc = 0;
uint32_t val;
uint32_t tmp;
// if (phy->curr_ensm_state == ensm_state) {
// dev_dbg(dev, "Nothing to do, device is already in %d state",
// ensm_state);
// goto out;
// }
dev_dbg(dev, "Device is in %x state, moving to %x", phy->curr_ensm_state,
ensm_state);
if (phy->curr_ensm_state == ENSM_STATE_SLEEP) {
ad9361_spi_write(spi, REG_CLOCK_ENABLE,
DIGITAL_POWER_UP | CLOCK_ENABLE_DFLT | BBPLL_ENABLE |
(phy->pdata->use_extclk ? XO_BYPASS : 0)); /* Enable Clocks */
udelay(20);
ad9361_spi_write(spi, REG_ENSM_CONFIG_1, TO_ALERT | FORCE_ALERT_STATE);
ad9361_trx_vco_cal_control(phy, false, true); /* Enable VCO Cal */
ad9361_trx_vco_cal_control(phy, true, true);
}
val = (phy->pdata->ensm_pin_pulse_mode ? 0 : LEVEL_MODE) |
(pinctrl ? ENABLE_ENSM_PIN_CTRL : 0) |
(phy->txmon_tdd_en ? ENABLE_RX_DATA_PORT_FOR_CAL : 0) |
TO_ALERT;
switch (ensm_state) {
case ENSM_STATE_TX:
val |= FORCE_TX_ON;
if (phy->pdata->fdd)
rc = -EINVAL;
else if (phy->curr_ensm_state != ENSM_STATE_ALERT)
rc = -EINVAL;
break;
case ENSM_STATE_RX:
val |= FORCE_RX_ON;
if (phy->pdata->fdd)
rc = -EINVAL;
else if (phy->curr_ensm_state != ENSM_STATE_ALERT)
rc = -EINVAL;
break;
case ENSM_STATE_FDD:
val |= FORCE_TX_ON;
if (!phy->pdata->fdd)
rc = -EINVAL;
break;
case ENSM_STATE_ALERT:
val &= ~(FORCE_TX_ON | FORCE_RX_ON);
val |= TO_ALERT | FORCE_ALERT_STATE;
break;
case ENSM_STATE_SLEEP_WAIT:
break;
case ENSM_STATE_SLEEP:
ad9361_trx_vco_cal_control(phy, false, false); /* Disable VCO Cal */
ad9361_trx_vco_cal_control(phy, true, false);
ad9361_spi_write(spi, REG_ENSM_CONFIG_1, 0); /* Clear To Alert */
ad9361_spi_write(spi, REG_ENSM_CONFIG_1,
phy->pdata->fdd ? FORCE_TX_ON : FORCE_RX_ON);
/* Delay Flush Time 384 ADC clock cycles */
udelay(384000000UL / clk_get_rate(phy, phy->ref_clk_scale[ADC_CLK]));
ad9361_spi_write(spi, REG_ENSM_CONFIG_1, 0); /* Move to Wait*/
udelay(1); /* Wait for ENSM settle */
ad9361_spi_write(spi, REG_CLOCK_ENABLE,
(phy->pdata->use_extclk ? XO_BYPASS : 0)); /* Turn off all clocks */
phy->curr_ensm_state = ensm_state;
return 0;
default:
dev_err(dev, "No handling for forcing %d ensm state",
ensm_state);
goto out;
}
if (rc) {
dev_err(dev, "Invalid ENSM state transition in %s mode",
phy->pdata->fdd ? "FDD" : "TDD");
goto out;
}
rc = ad9361_spi_write(spi, REG_ENSM_CONFIG_1, val);
if (rc)
dev_err(dev, "Failed to restore state");
if ((val & FORCE_RX_ON) &&
(phy->agc_mode[0] == RF_GAIN_MGC ||
phy->agc_mode[1] == RF_GAIN_MGC)) {
tmp = ad9361_spi_read(spi, REG_SMALL_LMT_OVERLOAD_THRESH);
ad9361_spi_write(spi, REG_SMALL_LMT_OVERLOAD_THRESH,
(tmp & SMALL_LMT_OVERLOAD_THRESH(~0)) |
(phy->agc_mode[0] == RF_GAIN_MGC ? FORCE_PD_RESET_RX1 : 0) |
(phy->agc_mode[1] == RF_GAIN_MGC ? FORCE_PD_RESET_RX2 : 0));
ad9361_spi_write(spi, REG_SMALL_LMT_OVERLOAD_THRESH,
tmp & SMALL_LMT_OVERLOAD_THRESH(~0));
}
phy->curr_ensm_state = ensm_state;
out:
return rc;
}
/**
* Check if at least one of the clock rates is equal to the DATA_CLK (lvds) rate.
* @param phy The AD9361 state structure.
* @param rx_path_clks RX path rates buffer.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_validate_trx_clock_chain(struct ad9361_rf_phy *phy,
uint32_t *rx_path_clks)
{
int32_t i;
uint32_t data_clk;
data_clk = (phy->pdata->rx2tx2 ? 4 : 2) * rx_path_clks[RX_SAMPL_FREQ];
for (i = ADC_FREQ; i < RX_SAMPL_CLK; i++) {
if (abs(rx_path_clks[i] - data_clk) < 4)
return 0;
}
dev_err(&phy->spi->dev, "%s: Failed - at least one of the clock rates"
"must be equal to the DATA_CLK (lvds) rate", __func__);
return -EINVAL;
}
/**
* Set the RX and TX path rates.
* @param phy The AD9361 state structure.
* @param rx_path_clks RX path rates buffer.
* @param tx_path_clks TX path rates buffer.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_set_trx_clock_chain(struct ad9361_rf_phy *phy,
uint32_t *rx_path_clks,
uint32_t *tx_path_clks)
{
int32_t ret, i, j, n;
dev_dbg(&phy->spi->dev, "%s", __func__);
if (!rx_path_clks || !tx_path_clks)
return -EINVAL;
dev_dbg(&phy->spi->dev, "%s: %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32,
__func__, rx_path_clks[BBPLL_FREQ], rx_path_clks[ADC_FREQ],
rx_path_clks[R2_FREQ], rx_path_clks[R1_FREQ],
rx_path_clks[CLKRF_FREQ], rx_path_clks[RX_SAMPL_FREQ]);
dev_dbg(&phy->spi->dev, "%s: %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32,
__func__, tx_path_clks[BBPLL_FREQ], tx_path_clks[ADC_FREQ],
tx_path_clks[R2_FREQ], tx_path_clks[R1_FREQ],
tx_path_clks[CLKRF_FREQ], tx_path_clks[RX_SAMPL_FREQ]);
ret = ad9361_validate_trx_clock_chain(phy, rx_path_clks);
if (ret < 0)
return ret;
ret = clk_set_rate(phy, phy->ref_clk_scale[BBPLL_CLK], rx_path_clks[BBPLL_FREQ]);
if (ret < 0)
return ret;
for (i = ADC_CLK, j = DAC_CLK, n = ADC_FREQ;
i <= RX_SAMPL_CLK; i++, j++, n++) {
ret = clk_set_rate(phy, phy->ref_clk_scale[i], rx_path_clks[n]);
if (ret < 0) {
dev_err(dev, "Failed to set BB ref clock rate (%"PRId32")",
ret);
return ret;
}
ret = clk_set_rate(phy, phy->ref_clk_scale[j], tx_path_clks[n]);
if (ret < 0) {
dev_err(dev, "Failed to set BB ref clock rate (%"PRId32")",
ret);
return ret;
}
}
/*
* Workaround for clock framework since clocks don't change we
* manually need to enable the filter
*/
if (phy->rx_fir_dec == 1 || phy->bypass_rx_fir) {
ad9361_spi_writef(phy->spi, REG_RX_ENABLE_FILTER_CTRL,
RX_FIR_ENABLE_DECIMATION(~0), !phy->bypass_rx_fir);
}
if (phy->tx_fir_int == 1 || phy->bypass_tx_fir) {
ad9361_spi_writef(phy->spi, REG_TX_ENABLE_FILTER_CTRL,
TX_FIR_ENABLE_INTERPOLATION(~0), !phy->bypass_tx_fir);
}
/* The FIR filter once enabled causes the interface timing to change.
* It's typically not a problem if the timing margin is big enough.
* However at 61.44 MSPS it causes problems on some systems.
* So we always run the digital tune in case the filter is enabled.
* If it is disabled we restore the values from the initial calibration.
*/
if (!phy->pdata->dig_interface_tune_fir_disable &&
!(phy->bypass_tx_fir && phy->bypass_rx_fir))
ret = ad9361_dig_tune(phy, 0, SKIP_STORE_RESULT);
return ad9361_bb_clk_change_handler(phy);
}
/**
* Get the RX and TX path rates.
* @param phy The AD9361 state structure.
* @param rx_path_clks RX path rates buffer.
* @param tx_path_clks TX path rates buffer.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_get_trx_clock_chain(struct ad9361_rf_phy *phy, uint32_t *rx_path_clks,
uint32_t *tx_path_clks)
{
int32_t i, j, n;
uint32_t bbpll_freq;
if (!rx_path_clks && !tx_path_clks)
return -EINVAL;
bbpll_freq = clk_get_rate(phy, phy->ref_clk_scale[BBPLL_CLK]);
if (rx_path_clks)
rx_path_clks[BBPLL_FREQ] = bbpll_freq;
if (tx_path_clks)
tx_path_clks[BBPLL_FREQ] = bbpll_freq;
for (i = ADC_CLK, j = DAC_CLK, n = ADC_FREQ;
i <= RX_SAMPL_CLK; i++, j++, n++) {
if (rx_path_clks)
rx_path_clks[n] = clk_get_rate(phy, phy->ref_clk_scale[i]);
if (tx_path_clks)
tx_path_clks[n] = clk_get_rate(phy, phy->ref_clk_scale[j]);
}
return 0;
}
/**
* Calculate the RX and TX path rates to obtain the desired sample rate.
* @param phy The AD9361 state structure.
* @param tx_sample_rate The desired sample rate.
* @param rate_gov The rate governor option.
* @param rx_path_clks RX path rates buffer.
* @param tx_path_clks TX path rates buffer.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_calculate_rf_clock_chain(struct ad9361_rf_phy *phy,
uint32_t tx_sample_rate,
uint32_t rate_gov,
uint32_t *rx_path_clks,
uint32_t *tx_path_clks)
{
uint32_t clktf, clkrf, adc_rate = 0, dac_rate = 0;
uint64_t bbpll_rate;
int32_t i, index_rx = -1, index_tx = -1, tmp;
uint32_t div, tx_intdec, rx_intdec, recursion = 1;
const int8_t clk_dividers[][4] = {
{ 12, 3, 2, 2 },
{ 8, 2, 2, 2 },
{ 6, 3, 1, 2 },
{ 4, 2, 2, 1 },
{ 3, 3, 1, 1 },
{ 2, 2, 1, 1 },
{ 1, 1, 1, 1 },
};
if (phy->bypass_rx_fir)
rx_intdec = 1;
else
rx_intdec = phy->rx_fir_dec;
if (phy->bypass_tx_fir)
tx_intdec = 1;
else
tx_intdec = phy->tx_fir_int;
if ((rate_gov == 1) && ((rx_intdec * tx_sample_rate * 8) < MIN_ADC_CLK)) {
recursion = 0;
rate_gov = 0;
}
dev_dbg(&phy->spi->dev, "%s: requested rate %"PRIu32" TXFIR int %"PRIu32" RXFIR dec %"PRIu32" mode %s",
__func__, tx_sample_rate, tx_intdec, rx_intdec,
rate_gov ? "Nominal" : "Highest OSR");
if (tx_sample_rate > (phy->pdata->rx2tx2 ? 61440000UL : 122880000UL))
return -EINVAL;
clktf = tx_sample_rate * tx_intdec;
clkrf = tx_sample_rate * rx_intdec * (phy->rx_eq_2tx ? 2 : 1);
for (i = rate_gov; i < 7; i++) {
adc_rate = clkrf * clk_dividers[i][0];
dac_rate = clktf * clk_dividers[i][0];
if ((adc_rate <= MAX_ADC_CLK) && (adc_rate >= MIN_ADC_CLK)) {
if (dac_rate > adc_rate)
tmp = (dac_rate / adc_rate) * -1;
else
tmp = adc_rate / dac_rate;
if (adc_rate <= MAX_DAC_CLK) {
index_rx = i;
index_tx = i - ((tmp == 1) ? 0 : tmp);
dac_rate = adc_rate; /* ADC_CLK */
break;
}
else {
dac_rate = adc_rate / 2; /* ADC_CLK/2 */
index_rx = i;
if (i == 4 && tmp >= 0)
index_tx = 7; /* STOP: 3/2 != 1 */
else
index_tx = i + ((i == 5 && tmp >= 0) ? 1 : 2) -
((tmp == 1) ? 0 : tmp);
break;
}
}
}
if ((index_tx < 0 || index_tx > 6 || index_rx < 0 || index_rx > 6) && rate_gov < 7 && recursion) {
return ad9361_calculate_rf_clock_chain(phy, tx_sample_rate,
++rate_gov, rx_path_clks, tx_path_clks);
}
else if ((index_tx < 0 || index_tx > 6 || index_rx < 0 || index_rx > 6)) {
dev_err(&phy->spi->dev, "%s: Failed to find suitable dividers: %s",
__func__, (adc_rate < MIN_ADC_CLK) ? "ADC clock below limit" : "BBPLL rate above limit");
return -EINVAL;
}
/* Calculate target BBPLL rate */
div = MAX_BBPLL_DIV;
do {
bbpll_rate = (uint64_t)adc_rate * div;
div >>= 1;
} while ((bbpll_rate > MAX_BBPLL_FREQ) && (div >= MIN_BBPLL_DIV));
rx_path_clks[BBPLL_FREQ] = bbpll_rate;
rx_path_clks[ADC_FREQ] = adc_rate;
rx_path_clks[R2_FREQ] = rx_path_clks[ADC_FREQ] / clk_dividers[index_rx][1];
rx_path_clks[R1_FREQ] = rx_path_clks[R2_FREQ] / clk_dividers[index_rx][2];
rx_path_clks[CLKRF_FREQ] = rx_path_clks[R1_FREQ] / clk_dividers[index_rx][3];
rx_path_clks[RX_SAMPL_FREQ] = rx_path_clks[CLKRF_FREQ] / rx_intdec;
tx_path_clks[BBPLL_FREQ] = bbpll_rate;
tx_path_clks[DAC_FREQ] = dac_rate;
tx_path_clks[T2_FREQ] = tx_path_clks[DAC_FREQ] / clk_dividers[index_tx][1];
tx_path_clks[T1_FREQ] = tx_path_clks[T2_FREQ] / clk_dividers[index_tx][2];
tx_path_clks[CLKTF_FREQ] = tx_path_clks[T1_FREQ] / clk_dividers[index_tx][3];
tx_path_clks[TX_SAMPL_FREQ] = tx_path_clks[CLKTF_FREQ] / tx_intdec;
return 0;
}
/**
* Set the desired sample rate.
* @param phy The AD9361 state structure.
* @param freq The desired sample rate.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_set_trx_clock_chain_freq(struct ad9361_rf_phy *phy,
uint32_t freq)
{
uint32_t rx[6], tx[6];
int32_t ret;
ret = ad9361_calculate_rf_clock_chain(phy, freq,
phy->rate_governor, rx, tx);
if (ret < 0)
return ret;
return ad9361_set_trx_clock_chain(phy, rx, tx);
}
/**
* Internal ENSM mode options helper function.
* @param phy The AD9361 state structure.
* @param fdd
* @param pinctrl
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_set_ensm_mode(struct ad9361_rf_phy *phy, bool fdd, bool pinctrl)
{
struct ad9361_phy_platform_data *pd = phy->pdata;
int32_t ret;
uint32_t val = 0;
ad9361_spi_write(phy->spi, REG_ENSM_MODE, fdd ? FDD_MODE : 0);
val = ad9361_spi_read(phy->spi, REG_ENSM_CONFIG_2);
val &= POWER_DOWN_RX_SYNTH | POWER_DOWN_TX_SYNTH;
if (fdd)
ret = ad9361_spi_write(phy->spi, REG_ENSM_CONFIG_2,
val | DUAL_SYNTH_MODE |
(pd->fdd_independent_mode ? FDD_EXTERNAL_CTRL_ENABLE : 0));
else
ret = ad9361_spi_write(phy->spi, REG_ENSM_CONFIG_2, val |
(pd->tdd_use_dual_synth ? DUAL_SYNTH_MODE : 0) |
(pd->tdd_use_dual_synth ? 0 :
(pinctrl ? SYNTH_ENABLE_PIN_CTRL_MODE : TXNRX_SPI_CTRL)));
return ret;
}
/**
* Fastlock read value.
* @param spi
* @param tx
* @param profile
* @param word
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_fastlock_readval(struct spi_device *spi, bool tx,
uint32_t profile, uint32_t word)
{
uint32_t offs = 0;
if (tx)
offs = REG_TX_FAST_LOCK_SETUP - REG_RX_FAST_LOCK_SETUP;
ad9361_spi_write(spi, REG_RX_FAST_LOCK_PROGRAM_ADDR + offs,
RX_FAST_LOCK_PROFILE_ADDR(profile) |
RX_FAST_LOCK_PROFILE_WORD(word));
return ad9361_spi_read(spi, REG_RX_FAST_LOCK_PROGRAM_READ + offs);
}
/**
* Fastlock write value.
* @param spi
* @param tx
* @param profile
* @param word
* @param val
* @param last
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_fastlock_writeval(struct spi_device *spi, bool tx,
uint32_t profile, uint32_t word, uint8_t val, bool last)
{
uint32_t offs = 0;
int32_t ret;
if (tx)
offs = REG_TX_FAST_LOCK_SETUP - REG_RX_FAST_LOCK_SETUP;
ret = ad9361_spi_write(spi, REG_RX_FAST_LOCK_PROGRAM_ADDR + offs,
RX_FAST_LOCK_PROFILE_ADDR(profile) |
RX_FAST_LOCK_PROFILE_WORD(word));
ret |= ad9361_spi_write(spi, REG_RX_FAST_LOCK_PROGRAM_DATA + offs, val);
ret |= ad9361_spi_write(spi, REG_RX_FAST_LOCK_PROGRAM_CTRL + offs,
RX_FAST_LOCK_PROGRAM_WRITE |
RX_FAST_LOCK_PROGRAM_CLOCK_ENABLE);
if (last) /* Stop Clocks */
ret |= ad9361_spi_write(spi,
REG_RX_FAST_LOCK_PROGRAM_CTRL + offs, 0);
return ret;
}
/**
* Fastlock load values.
* @param phy The AD9361 state structure.
* @param tx
* @param profile
* @param values
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_fastlock_load(struct ad9361_rf_phy *phy, bool tx,
uint32_t profile, uint8_t *values)
{
uint32_t offs = 0;
int32_t i, ret = 0;
uint8_t buf[4];
dev_dbg(&phy->spi->dev, "%s: %s Profile %"PRIu32":",
__func__, tx ? "TX" : "RX", profile);
if (tx)
offs = REG_TX_FAST_LOCK_SETUP - REG_RX_FAST_LOCK_SETUP;
buf[0] = values[0];
buf[1] = RX_FAST_LOCK_PROFILE_ADDR(profile) | RX_FAST_LOCK_PROFILE_WORD(0);
ad9361_spi_writem(phy->spi, REG_RX_FAST_LOCK_PROGRAM_DATA + offs, buf, 2);
for (i = 1; i < RX_FAST_LOCK_CONFIG_WORD_NUM; i++) {
buf[0] = RX_FAST_LOCK_PROGRAM_WRITE | RX_FAST_LOCK_PROGRAM_CLOCK_ENABLE;
buf[1] = 0;
buf[2] = values[i];
buf[3] = RX_FAST_LOCK_PROFILE_ADDR(profile) | RX_FAST_LOCK_PROFILE_WORD(i);
ad9361_spi_writem(phy->spi, REG_RX_FAST_LOCK_PROGRAM_CTRL + offs, buf, 4);
}
ad9361_spi_write(phy->spi, REG_RX_FAST_LOCK_PROGRAM_CTRL + offs,
RX_FAST_LOCK_PROGRAM_WRITE | RX_FAST_LOCK_PROGRAM_CLOCK_ENABLE);
ad9361_spi_write(phy->spi, REG_RX_FAST_LOCK_PROGRAM_CTRL + offs, 0);
phy->fastlock.entry[tx][profile].flags = FASTLOOK_INIT;
phy->fastlock.entry[tx][profile].alc_orig = values[15];
phy->fastlock.entry[tx][profile].alc_written = values[15];
return ret;
}
/**
* Fastlock store.
* @param phy The AD9361 state structure.
* @param tx
* @param profile
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_fastlock_store(struct ad9361_rf_phy *phy, bool tx, uint32_t profile)
{
struct spi_device *spi = phy->spi;
uint8_t val[16];
uint32_t offs = 0, x, y;
dev_dbg(&phy->spi->dev, "%s: %s Profile %"PRIu32":",
__func__, tx ? "TX" : "RX", profile);
if (tx)
offs = REG_TX_FAST_LOCK_SETUP - REG_RX_FAST_LOCK_SETUP;
val[0] = ad9361_spi_read(spi, REG_RX_INTEGER_BYTE_0 + offs);
val[1] = ad9361_spi_read(spi, REG_RX_INTEGER_BYTE_1 + offs);
val[2] = ad9361_spi_read(spi, REG_RX_FRACT_BYTE_0 + offs);
val[3] = ad9361_spi_read(spi, REG_RX_FRACT_BYTE_1 + offs);
val[4] = ad9361_spi_read(spi, REG_RX_FRACT_BYTE_2 + offs);
x = ad9361_spi_readf(spi, REG_RX_VCO_BIAS_1 + offs, VCO_BIAS_REF(~0));
y = ad9361_spi_readf(spi, REG_RX_ALC_VARACTOR + offs, VCO_VARACTOR(~0));
val[5] = (x << 4) | y;
x = ad9361_spi_readf(spi, REG_RX_VCO_BIAS_1 + offs, VCO_BIAS_TCF(~0));
y = ad9361_spi_readf(spi, REG_RX_CP_CURRENT + offs, CHARGE_PUMP_CURRENT(~0));
/* Wide BW option: N = 1
* Set init and steady state values to the same - let user space handle it
*/
val[6] = (x << 3) | y;
val[7] = y;
x = ad9361_spi_readf(spi, REG_RX_LOOP_FILTER_3 + offs, LOOP_FILTER_R3(~0));
val[8] = (x << 4) | x;
x = ad9361_spi_readf(spi, REG_RX_LOOP_FILTER_2 + offs, LOOP_FILTER_C3(~0));
val[9] = (x << 4) | x;
x = ad9361_spi_readf(spi, REG_RX_LOOP_FILTER_1 + offs, LOOP_FILTER_C1(~0));
y = ad9361_spi_readf(spi, REG_RX_LOOP_FILTER_1 + offs, LOOP_FILTER_C2(~0));
val[10] = (x << 4) | y;
x = ad9361_spi_readf(spi, REG_RX_LOOP_FILTER_2 + offs, LOOP_FILTER_R1(~0));
val[11] = (x << 4) | x;
x = ad9361_spi_readf(spi, REG_RX_VCO_VARACTOR_CTRL_0 + offs,
VCO_VARACTOR_REFERENCE_TCF(~0));
y = ad9361_spi_readf(spi, REG_RFPLL_DIVIDERS,
tx ? TX_VCO_DIVIDER(~0) : RX_VCO_DIVIDER(~0));
val[12] = (x << 4) | y;
x = ad9361_spi_readf(spi, REG_RX_FORCE_VCO_TUNE_1 + offs, VCO_CAL_OFFSET(~0));
y = ad9361_spi_readf(spi, REG_RX_VCO_VARACTOR_CTRL_1 + offs, VCO_VARACTOR_REFERENCE(~0));
val[13] = (x << 4) | y;
val[14] = ad9361_spi_read(spi, REG_RX_FORCE_VCO_TUNE_0 + offs);
x = ad9361_spi_readf(spi, REG_RX_FORCE_ALC + offs, FORCE_ALC_WORD(~0));
y = ad9361_spi_readf(spi, REG_RX_FORCE_VCO_TUNE_1 + offs, FORCE_VCO_TUNE);
val[15] = (x << 1) | y;
return ad9361_fastlock_load(phy, tx, profile, val);
}
/**
* Fastlock prepare.
* @param phy The AD9361 state structure.
* @param tx
* @param profile
* @param prepare
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_fastlock_prepare(struct ad9361_rf_phy *phy, bool tx,
uint32_t profile, bool prepare)
{
uint32_t offs, ready_mask;
bool is_prepared;
dev_dbg(&phy->spi->dev, "%s: %s Profile %"PRIu32": %s",
__func__, tx ? "TX" : "RX", profile,
prepare ? "Prepare" : "Un-Prepare");
if (tx) {
offs = REG_TX_FAST_LOCK_SETUP - REG_RX_FAST_LOCK_SETUP;
ready_mask = TX_SYNTH_READY_MASK;
}
else {
offs = 0;
ready_mask = RX_SYNTH_READY_MASK;
}
is_prepared = !!phy->fastlock.current_profile[tx];
if (prepare && !is_prepared) {
ad9361_spi_write(phy->spi,
REG_RX_FAST_LOCK_SETUP_INIT_DELAY + offs,
(tx ? phy->pdata->tx_fastlock_delay_ns :
phy->pdata->rx_fastlock_delay_ns) / 250);
ad9361_spi_write(phy->spi, REG_RX_FAST_LOCK_SETUP + offs,
RX_FAST_LOCK_PROFILE(profile) |
RX_FAST_LOCK_MODE_ENABLE);
ad9361_spi_write(phy->spi, REG_RX_FAST_LOCK_PROGRAM_CTRL + offs,
0);
ad9361_spi_writef(phy->spi, REG_ENSM_CONFIG_2, ready_mask, 1);
ad9361_trx_vco_cal_control(phy, tx, false);
}
else if (!prepare && is_prepared) {
ad9361_spi_write(phy->spi, REG_RX_FAST_LOCK_SETUP + offs, 0);
/* Workaround: Exiting Fastlock Mode */
ad9361_spi_writef(phy->spi, REG_RX_FORCE_ALC + offs, FORCE_ALC_ENABLE, 1);
ad9361_spi_writef(phy->spi, REG_RX_FORCE_VCO_TUNE_1 + offs, FORCE_VCO_TUNE, 1);
ad9361_spi_writef(phy->spi, REG_RX_FORCE_ALC + offs, FORCE_ALC_ENABLE, 0);
ad9361_spi_writef(phy->spi, REG_RX_FORCE_VCO_TUNE_1 + offs, FORCE_VCO_TUNE, 0);
ad9361_trx_vco_cal_control(phy, tx, true);
ad9361_spi_writef(phy->spi, REG_ENSM_CONFIG_2, ready_mask, 0);
phy->fastlock.current_profile[tx] = 0;
}
return 0;
}
/**
* Fastlock recall.
* @param phy The AD9361 state structure.
* @param tx
* @param profile
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_fastlock_recall(struct ad9361_rf_phy *phy, bool tx, uint32_t profile)
{
uint32_t offs = 0;
uint8_t curr, _new, orig, current_profile;
dev_dbg(&phy->spi->dev, "%s: %s Profile %"PRIu32":",
__func__, tx ? "TX" : "RX", profile);
if (tx)
offs = REG_TX_FAST_LOCK_SETUP - REG_RX_FAST_LOCK_SETUP;
if (phy->fastlock.entry[tx][profile].flags != FASTLOOK_INIT)
return -EINVAL;
/* Workaround: Lock problem with same ALC word */
current_profile = phy->fastlock.current_profile[tx];
_new = phy->fastlock.entry[tx][profile].alc_written;
if (current_profile == 0)
curr = ad9361_spi_readf(phy->spi, REG_RX_FORCE_ALC + offs,
FORCE_ALC_WORD(~0)) << 1;
else
curr = phy->fastlock.entry[tx][current_profile - 1].alc_written;
if ((curr >> 1) == (_new >> 1)) {
orig = phy->fastlock.entry[tx][profile].alc_orig;
if ((orig >> 1) == (_new >> 1))
phy->fastlock.entry[tx][profile].alc_written += 2;
else
phy->fastlock.entry[tx][profile].alc_written = orig;
ad9361_fastlock_writeval(phy->spi, tx, profile, 0xF,
phy->fastlock.entry[tx][profile].alc_written, true);
}
ad9361_fastlock_prepare(phy, tx, profile, true);
phy->fastlock.current_profile[tx] = profile + 1;
return ad9361_spi_write(phy->spi, REG_RX_FAST_LOCK_SETUP + offs,
RX_FAST_LOCK_PROFILE(profile) |
(phy->pdata->trx_fastlock_pinctrl_en[tx] ?
RX_FAST_LOCK_PROFILE_PIN_SELECT : 0) |
RX_FAST_LOCK_MODE_ENABLE);
}
/**
* Fastlock save.
* @param phy The AD9361 state structure.
* @param tx
* @param profile
* @param values
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_fastlock_save(struct ad9361_rf_phy *phy, bool tx,
uint32_t profile, uint8_t *values)
{
int32_t i;
dev_dbg(&phy->spi->dev, "%s: %s Profile %"PRIu32":",
__func__, tx ? "TX" : "RX", profile);
for (i = 0; i < RX_FAST_LOCK_CONFIG_WORD_NUM; i++)
values[i] = ad9361_fastlock_readval(phy->spi, tx, profile, i);
return 0;
}
/**
* Multi Chip Sync (MCS) config.
* @param phy The AD9361 state structure.
* @param step MCS step.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_mcs(struct ad9361_rf_phy *phy, int32_t step)
{
int32_t mcs_mask = MCS_RF_ENABLE | MCS_BBPLL_ENABLE |
MCS_DIGITAL_CLK_ENABLE | MCS_BB_ENABLE;
dev_dbg(&phy->spi->dev, "%s: MCS step %"PRId32, __func__, step);
switch (step) {
case 0:
/* REVIST:
* POWER_DOWN_TRX_SYNTH and MCS_RF_ENABLE somehow conflict
*/
ad9361_spi_writef(phy->spi, REG_ENSM_CONFIG_2,
POWER_DOWN_TX_SYNTH | POWER_DOWN_RX_SYNTH, 0);
case 1:
/* REVIST:
* POWER_DOWN_TRX_SYNTH and MCS_RF_ENABLE somehow conflict
*/
ad9361_spi_writef(phy->spi, REG_ENSM_CONFIG_2,
POWER_DOWN_TX_SYNTH | POWER_DOWN_RX_SYNTH, 0);
ad9361_spi_writef(phy->spi, REG_MULTICHIP_SYNC_AND_TX_MON_CTRL,
mcs_mask, MCS_BB_ENABLE | MCS_BBPLL_ENABLE | MCS_RF_ENABLE);
ad9361_spi_writef(phy->spi, REG_CP_BLEED_CURRENT,
MCS_REFCLK_SCALE_EN, 1);
break;
case 2:
if(!gpio_is_valid(phy->pdata->gpio_sync))
break;
/*
* NOTE: This is not a regular GPIO -
* HDL ensures Multi-chip Synchronization SYNC_IN Pulse Timing
* relative to rising and falling edge of REF_CLK
*/
gpio_set_value(phy->pdata->gpio_sync, 1);
gpio_set_value(phy->pdata->gpio_sync, 0);
break;
case 3:
ad9361_spi_writef(phy->spi, REG_MULTICHIP_SYNC_AND_TX_MON_CTRL,
mcs_mask, MCS_BB_ENABLE | MCS_DIGITAL_CLK_ENABLE | MCS_RF_ENABLE);
break;
case 4:
if(!gpio_is_valid(phy->pdata->gpio_sync))
break;
gpio_set_value(phy->pdata->gpio_sync, 1);
gpio_set_value(phy->pdata->gpio_sync, 0);
break;
case 5:
ad9361_spi_writef(phy->spi, REG_MULTICHIP_SYNC_AND_TX_MON_CTRL,
mcs_mask, MCS_RF_ENABLE);
break;
}
return 0;
}
/**
* Clear state.
* @param phy The AD9361 state structure.
* @return None.
*/
void ad9361_clear_state(struct ad9361_rf_phy *phy)
{
phy->current_table = RXGAIN_TBLS_END;
phy->bypass_tx_fir = true;
phy->bypass_rx_fir = true;
phy->rate_governor = 1;
phy->rfdc_track_en = true;
phy->bbdc_track_en = true;
phy->quad_track_en = true;
phy->prev_ensm_state = 0;
phy->curr_ensm_state = 0;
phy->auto_cal_en = false;
phy->last_tx_quad_cal_freq = 0;
phy->flags = 0;
phy->current_rx_bw_Hz = 0;
phy->current_tx_bw_Hz = 0;
phy->rxbbf_div = 0;
phy->tx_fir_int = 0;
phy->tx_fir_ntaps = 0;
phy->rx_fir_dec = 0;
phy->rx_fir_ntaps = 0;
phy->ensm_pin_ctl_en = false;
phy->txmon_tdd_en = 0;
memset(&phy->fastlock, 0, sizeof(phy->fastlock));
}
/**
* Determine the reference frequency value.
* @param refin_Hz Maximum allowed frequency.
* @param max Reference in frequency value.
* @return Reference frequency value.
*/
static uint32_t ad9361_ref_div_sel(uint32_t refin_Hz, uint32_t max)
{
if (refin_Hz <= (max / 2))
return 2 * refin_Hz;
else if (refin_Hz <= max)
return refin_Hz;
else if (refin_Hz <= (max * 2))
return refin_Hz / 2;
else if (refin_Hz <= (max * 4))
return refin_Hz / 4;
else
return 0;
}
/**
* Setup the AD9361 device.
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_setup(struct ad9361_rf_phy *phy)
{
uint32_t refin_Hz, ref_freq, bbpll_freq;
struct spi_device *spi = phy->spi;
struct ad9361_phy_platform_data *pd = phy->pdata;
int32_t ret;
uint32_t real_rx_bandwidth = pd->rf_rx_bandwidth_Hz / 2;
uint32_t real_tx_bandwidth = pd->rf_tx_bandwidth_Hz / 2;
dev_dbg(dev, "%s", __func__);
if (pd->fdd) {
pd->tdd_skip_vco_cal = false;
if (pd->ensm_pin_ctrl && pd->fdd_independent_mode) {
dev_warn(dev,
"%s: Either set ENSM PINCTRL or FDD Independent Mode",
__func__);
pd->ensm_pin_ctrl = false;
}
} else { /* TDD Mode */
if (pd->tdd_use_dual_synth || pd->tdd_skip_vco_cal)
pd->tdd_use_fdd_tables = true;
}
if (pd->port_ctrl.pp_conf[2] & FDD_RX_RATE_2TX_RATE)
phy->rx_eq_2tx = true;
ad9361_spi_write(spi, REG_CTRL, CTRL_ENABLE);
ad9361_spi_write(spi, REG_BANDGAP_CONFIG0, MASTER_BIAS_TRIM(0x0E)); /* Enable Master Bias */
ad9361_spi_write(spi, REG_BANDGAP_CONFIG1, BANDGAP_TEMP_TRIM(0x0E)); /* Set Bandgap Trim */
ad9361_set_dcxo_tune(phy, pd->dcxo_coarse, pd->dcxo_fine);
refin_Hz = phy->clk_refin->rate;
ref_freq = ad9361_ref_div_sel(refin_Hz, MAX_BBPLL_FREF);
if (!ref_freq)
return -EINVAL;
ad9361_spi_writef(spi, REG_REF_DIVIDE_CONFIG_1, RX_REF_RESET_BAR, 1);
ad9361_spi_writef(spi, REG_REF_DIVIDE_CONFIG_2, TX_REF_RESET_BAR, 1);
ad9361_spi_writef(spi, REG_REF_DIVIDE_CONFIG_2,
TX_REF_DOUBLER_FB_DELAY(~0), 3); /* FB DELAY */
ad9361_spi_writef(spi, REG_REF_DIVIDE_CONFIG_2,
RX_REF_DOUBLER_FB_DELAY(~0), 3); /* FB DELAY */
ad9361_spi_write(spi, REG_CLOCK_ENABLE,
DIGITAL_POWER_UP | CLOCK_ENABLE_DFLT | BBPLL_ENABLE |
(pd->use_extclk ? XO_BYPASS : 0)); /* Enable Clocks */
ret = clk_set_rate(phy, phy->ref_clk_scale[BB_REFCLK], ref_freq);
if (ret < 0) {
dev_err(dev, "Failed to set BB ref clock rate (%"PRId32")",
ret);
return ret;
}
ret = ad9361_set_trx_clock_chain(phy, pd->rx_path_clks,
pd->tx_path_clks);
if (ret < 0)
return ret;
ret = clk_prepare_enable(phy->clks[BB_REFCLK]);
if (ret < 0) {
dev_err(dev, "Failed to enable BB ref clock rate (%"PRId32")",
ret);
return ret;
}
ad9361_en_dis_tx(phy, 1, TX_ENABLE);
ad9361_en_dis_rx(phy, 1, RX_ENABLE);
ad9361_en_dis_tx(phy, 2, pd->rx2tx2);
ad9361_en_dis_rx(phy, 2, pd->rx2tx2);
ret = ad9361_rf_port_setup(phy, true, pd->rf_rx_input_sel,
pd->rf_tx_output_sel);
if (ret < 0)
return ret;
ret = ad9361_pp_port_setup(phy, false);
if (ret < 0)
return ret;
ret = ad9361_auxdac_setup(phy, &pd->auxdac_ctrl);
if (ret < 0)
return ret;
bbpll_freq = clk_get_rate(phy, phy->ref_clk_scale[BBPLL_CLK]);
ret = ad9361_auxadc_setup(phy, &pd->auxadc_ctrl, bbpll_freq);
if (ret < 0)
return ret;
ret = ad9361_ctrl_outs_setup(phy, &pd->ctrl_outs_ctrl);
if (ret < 0)
return ret;
ret = ad9361_gpo_setup(phy, &pd->gpo_ctrl);
if (ret < 0)
return ret;
ret = ad9361_set_ref_clk_cycles(phy, refin_Hz);
if (ret < 0)
return ret;
ret = ad9361_setup_ext_lna(phy, &pd->elna_ctrl);
if (ret < 0)
return ret;
/*
* This allows forcing a lower F_REF window
* (worse phase noise, better fractional spurs)
*/
pd->trx_synth_max_fref = clamp_t(uint32_t, pd->trx_synth_max_fref,
MIN_SYNTH_FREF, MAX_SYNTH_FREF);
ref_freq = ad9361_ref_div_sel(refin_Hz, pd->trx_synth_max_fref);
if (!ref_freq)
return -EINVAL;
ret = clk_set_rate(phy, phy->ref_clk_scale[RX_REFCLK], ref_freq);
if (ret < 0) {
dev_err(dev, "Failed to set RX Synth ref clock rate (%"PRId32")", ret);
return ret;
}
ret = clk_set_rate(phy, phy->ref_clk_scale[TX_REFCLK], ref_freq);
if (ret < 0) {
dev_err(dev, "Failed to set TX Synth ref clock rate (%"PRId32")", ret);
return ret;
}
ret = ad9361_txrx_synth_cp_calib(phy, ref_freq, false); /* RXCP */
if (ret < 0)
return ret;
ret = ad9361_txrx_synth_cp_calib(phy, ref_freq, true); /* TXCP */
if (ret < 0)
return ret;
ret = clk_set_rate(phy, phy->ref_clk_scale[RX_RFPLL], ad9361_to_clk(pd->rx_synth_freq));
if (ret < 0) {
dev_err(dev, "Failed to set RX Synth rate (%"PRId32")",
ret);
return ret;
}
ret = clk_prepare_enable(phy->clks[RX_REFCLK]);
if (ret < 0) {
dev_err(dev, "Failed to enable RX Synth ref clock (%"PRId32")", ret);
return ret;
}
ret = clk_prepare_enable(phy->clks[RX_RFPLL]);
if (ret < 0)
return ret;
/* Skip quad cal here we do it later again */
phy->last_tx_quad_cal_freq = pd->tx_synth_freq;
ret = clk_set_rate(phy, phy->ref_clk_scale[TX_RFPLL], ad9361_to_clk(pd->tx_synth_freq));
if (ret < 0) {
dev_err(dev, "Failed to set TX Synth rate (%"PRId32")",
ret);
return ret;
}
ret = clk_prepare_enable(phy->clks[TX_REFCLK]);
if (ret < 0) {
dev_err(dev, "Failed to enable TX Synth ref clock (%"PRId32")", ret);
return ret;
}
ret = clk_prepare_enable(phy->clks[TX_RFPLL]);
if (ret < 0)
return ret;
ad9361_clk_mux_set_parent(phy->ref_clk_scale[RX_RFPLL],
pd->use_ext_rx_lo);
ad9361_clk_mux_set_parent(phy->ref_clk_scale[TX_RFPLL],
pd->use_ext_tx_lo);
ret = ad9361_load_mixer_gm_subtable(phy);
if (ret < 0)
return ret;
ret = ad9361_gc_setup(phy, &pd->gain_ctrl);
if (ret < 0)
return ret;
ret = ad9361_rx_bb_analog_filter_calib(phy,
real_rx_bandwidth,
bbpll_freq);
if (ret < 0)
return ret;
ret = ad9361_tx_bb_analog_filter_calib(phy,
real_tx_bandwidth,
bbpll_freq);
if (ret < 0)
return ret;
ret = ad9361_rx_tia_calib(phy, real_rx_bandwidth);
if (ret < 0)
return ret;
ret = ad9361_tx_bb_second_filter_calib(phy, real_tx_bandwidth);
if (ret < 0)
return ret;
ret = ad9361_rx_adc_setup(phy,
bbpll_freq,
clk_get_rate(phy, phy->ref_clk_scale[ADC_CLK]));
if (ret < 0)
return ret;
ret = ad9361_bb_dc_offset_calib(phy);
if (ret < 0)
return ret;
ret = ad9361_rf_dc_offset_calib(phy,
ad9361_from_clk(clk_get_rate(phy, phy->ref_clk_scale[RX_RFPLL])));
if (ret < 0)
return ret;
phy->current_rx_bw_Hz = pd->rf_rx_bandwidth_Hz;
phy->current_tx_bw_Hz = pd->rf_tx_bandwidth_Hz;
phy->last_tx_quad_cal_phase = ~0;
ret = ad9361_tx_quad_calib(phy, real_rx_bandwidth, real_tx_bandwidth, -1);
if (ret < 0)
return ret;
ret = ad9361_tracking_control(phy, phy->bbdc_track_en,
phy->rfdc_track_en, phy->quad_track_en);
if (ret < 0)
return ret;
if (!pd->fdd)
ad9361_run_calibration(phy, TXMON_CAL);
ad9361_pp_port_setup(phy, true);
ret = ad9361_set_ensm_mode(phy, pd->fdd, pd->ensm_pin_ctrl);
if (ret < 0)
return ret;
ad9361_spi_writef(phy->spi, REG_TX_ATTEN_OFFSET,
MASK_CLR_ATTEN_UPDATE, 0);
ret = ad9361_set_tx_atten(phy, pd->tx_atten, true, true, true);
if (ret < 0)
return ret;
ret = ad9361_rssi_setup(phy, &pd->rssi_ctrl, false);
if (ret < 0)
return ret;
ret = ad9361_clkout_control(phy, pd->ad9361_clkout_mode);
if (ret < 0)
return ret;
ret = ad9361_txmon_setup(phy, &pd->txmon_ctrl);
if (ret < 0)
return ret;
phy->curr_ensm_state = ad9361_spi_readf(spi, REG_STATE, ENSM_STATE(~0));
ad9361_ensm_set_state(phy, pd->fdd ? ENSM_STATE_FDD : ENSM_STATE_RX,
pd->ensm_pin_ctrl);
phy->auto_cal_en = true;
phy->cal_threshold_freq = 100000000ULL; /* 100 MHz */
return 0;
}
/**
* Perform the selected calibration
* @param phy The AD9361 state structure.
* @param cal The selected calibration.
* @param arg The argument of the calibration.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_do_calib_run(struct ad9361_rf_phy *phy, uint32_t cal, int32_t arg)
{
int32_t ret;
dev_dbg(&phy->spi->dev, "%s: CAL %"PRIu32" ARG %"PRId32, __func__, cal, arg);
ret = ad9361_tracking_control(phy, false, false, false);
if (ret < 0)
return ret;
ad9361_ensm_force_state(phy, ENSM_STATE_ALERT);
switch (cal) {
case TX_QUAD_CAL:
ret = ad9361_tx_quad_calib(phy, phy->current_rx_bw_Hz / 2,
phy->current_tx_bw_Hz / 2, arg);
break;
case RFDC_CAL:
ret = ad9361_rf_dc_offset_calib(phy,
ad9361_from_clk(clk_get_rate(phy, phy->ref_clk_scale[RX_RFPLL])));
break;
default:
ret = -EINVAL;
break;
}
ret = ad9361_tracking_control(phy, phy->bbdc_track_en,
phy->rfdc_track_en, phy->quad_track_en);
ad9361_ensm_restore_prev_state(phy);
return ret;
}
/**
* Set the RF bandwidth.
* @param phy The AD9361 state structure.
* @param rf_rx_bw The desired RX bandwidth [Hz].
* @param rf_tx_bw The desired TX bandwidth [Hz].
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_update_rf_bandwidth(struct ad9361_rf_phy *phy,
uint32_t rf_rx_bw, uint32_t rf_tx_bw)
{
int32_t ret;
ret = ad9361_tracking_control(phy, false, false, false);
if (ret < 0)
return ret;
ad9361_ensm_force_state(phy, ENSM_STATE_ALERT);
ret = __ad9361_update_rf_bandwidth(phy, rf_rx_bw, rf_tx_bw);
if (ret < 0)
return ret;
phy->current_rx_bw_Hz = rf_rx_bw;
phy->current_tx_bw_Hz = rf_tx_bw;
ret = ad9361_tx_quad_calib(phy, rf_rx_bw / 2, rf_tx_bw / 2, -1);
if (ret < 0)
return ret;
ret = ad9361_tracking_control(phy, phy->bbdc_track_en,
phy->rfdc_track_en, phy->quad_track_en);
if (ret < 0)
return ret;
ad9361_ensm_restore_prev_state(phy);
return 0;
}
/**
* Verify the FIR filter coefficients.
* @param phy The AD9361 state structure.
* @param dest Destination identifier (RX1,2 / TX1,2).
* @param ntaps Number of filter Taps.
* @param coef Pointer to filter coefficients.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_verify_fir_filter_coef(struct ad9361_rf_phy *phy,
enum fir_dest dest,
uint32_t ntaps, short *coef)
{
struct spi_device *spi = phy->spi;
uint32_t val, offs = 0, gain = 0, conf, sel, cnt;
int32_t ret = 0;
#ifndef DEBUG
return 0;
#endif
dev_dbg(&phy->spi->dev, "%s: TAPS %"PRIu32", dest %d",
__func__, ntaps, dest);
if (dest & FIR_IS_RX) {
gain = ad9361_spi_read(spi, REG_RX_FILTER_GAIN);
offs = REG_RX_FILTER_COEF_ADDR - REG_TX_FILTER_COEF_ADDR;
ad9361_spi_write(spi, REG_RX_FILTER_GAIN, 0);
}
conf = ad9361_spi_read(spi, REG_TX_FILTER_CONF + offs);
if ((dest & 3) == 3) {
sel = 1;
cnt = 2;
} else {
sel = (dest & 3);
cnt = 1;
}
for (; cnt > 0; cnt--, sel++) {
ad9361_spi_write(spi, REG_TX_FILTER_CONF + offs,
FIR_NUM_TAPS(ntaps / 16 - 1) |
FIR_SELECT(sel) | FIR_START_CLK);
for (val = 0; val < ntaps; val++) {
short tmp;
ad9361_spi_write(spi, REG_TX_FILTER_COEF_ADDR + offs, val);
tmp = (ad9361_spi_read(spi, REG_TX_FILTER_COEF_READ_DATA_1 + offs) & 0xFF) |
(ad9361_spi_read(spi, REG_TX_FILTER_COEF_READ_DATA_2 + offs) << 8);
if (tmp != coef[val]) {
dev_err(&phy->spi->dev,"%s%"PRIu32" read verify failed TAP%"PRIu32" %d =! %d",
(dest & FIR_IS_RX) ? "RX" : "TX", sel,
val, tmp, coef[val]);
ret = -EIO;
}
}
}
if (dest & FIR_IS_RX) {
ad9361_spi_write(spi, REG_RX_FILTER_GAIN, gain);
}
ad9361_spi_write(spi, REG_TX_FILTER_CONF + offs, conf);
return ret;
}
/**
* Load the FIR filter coefficients.
* @param phy The AD9361 state structure.
* @param dest Destination identifier (RX1,2 / TX1,2).
* @param gain_dB Gain option.
* @param ntaps Number of filter Taps.
* @param coef Pointer to filter coefficients.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_load_fir_filter_coef(struct ad9361_rf_phy *phy,
enum fir_dest dest, int32_t gain_dB,
uint32_t ntaps, int16_t *coef)
{
struct spi_device *spi = phy->spi;
uint32_t val, offs = 0, fir_conf = 0, fir_enable = 0;
dev_dbg(&phy->spi->dev, "%s: TAPS %"PRIu32", gain %"PRId32", dest %d",
__func__, ntaps, gain_dB, dest);
if (coef == NULL || !ntaps || ntaps > 128 || ntaps % 16) {
dev_err(&phy->spi->dev,
"%s: Invalid parameters: TAPS %"PRIu32", gain %"PRId32", dest 0x%X",
__func__, ntaps, gain_dB, dest);
return -EINVAL;
}
ad9361_ensm_force_state(phy, ENSM_STATE_ALERT);
if (dest & FIR_IS_RX) {
val = 3 - (gain_dB + 12) / 6;
ad9361_spi_write(spi, REG_RX_FILTER_GAIN, val & 0x3);
offs = REG_RX_FILTER_COEF_ADDR - REG_TX_FILTER_COEF_ADDR;
phy->rx_fir_ntaps = ntaps;
fir_enable = ad9361_spi_readf(phy->spi,
REG_RX_ENABLE_FILTER_CTRL, RX_FIR_ENABLE_DECIMATION(~0));
ad9361_spi_writef(phy->spi, REG_RX_ENABLE_FILTER_CTRL,
RX_FIR_ENABLE_DECIMATION(~0),
(phy->rx_fir_dec == 4) ? 3 : phy->rx_fir_dec);
}
else {
if (gain_dB == -6)
fir_conf = TX_FIR_GAIN_6DB;
phy->tx_fir_ntaps = ntaps;
fir_enable = ad9361_spi_readf(phy->spi,
REG_TX_ENABLE_FILTER_CTRL, TX_FIR_ENABLE_INTERPOLATION(~0));
ad9361_spi_writef(phy->spi, REG_TX_ENABLE_FILTER_CTRL,
TX_FIR_ENABLE_INTERPOLATION(~0),
(phy->tx_fir_int == 4) ? 3 : phy->tx_fir_int);
}
val = ntaps / 16 - 1;
fir_conf |= FIR_NUM_TAPS(val) | FIR_SELECT(dest) | FIR_START_CLK;
ad9361_spi_write(spi, REG_TX_FILTER_CONF + offs, fir_conf);
for (val = 0; val < ntaps; val++) {
ad9361_spi_write(spi, REG_TX_FILTER_COEF_ADDR + offs, val);
ad9361_spi_write(spi, REG_TX_FILTER_COEF_WRITE_DATA_1 + offs,
coef[val] & 0xFF);
ad9361_spi_write(spi, REG_TX_FILTER_COEF_WRITE_DATA_2 + offs,
coef[val] >> 8);
ad9361_spi_write(spi, REG_TX_FILTER_CONF + offs,
fir_conf | FIR_WRITE);
ad9361_spi_write(spi, REG_TX_FILTER_COEF_READ_DATA_2 + offs, 0);
ad9361_spi_write(spi, REG_TX_FILTER_COEF_READ_DATA_2 + offs, 0);
}
ad9361_spi_write(spi, REG_TX_FILTER_CONF + offs, fir_conf);
fir_conf &= ~FIR_START_CLK;
ad9361_spi_write(spi, REG_TX_FILTER_CONF + offs, fir_conf);
if (dest & FIR_IS_RX)
ad9361_spi_writef(phy->spi, REG_RX_ENABLE_FILTER_CTRL,
RX_FIR_ENABLE_DECIMATION(~0), fir_enable);
else
ad9361_spi_writef(phy->spi, REG_TX_ENABLE_FILTER_CTRL,
TX_FIR_ENABLE_INTERPOLATION(~0), fir_enable);
ad9361_ensm_restore_prev_state(phy);
return ad9361_verify_fir_filter_coef(phy, dest, ntaps, coef);
}
/**
* Parse the FIR filter file/buffer.
* @param phy The AD9361 state structure.
* @param data Pointer to buffer.
* @param size Buffer size.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_parse_fir(struct ad9361_rf_phy *phy,
char *data, uint32_t size)
{
char *line;
int32_t i = 0, ret, txc, rxc;
int32_t tx = -1, tx_gain, tx_int;
int32_t rx = -1, rx_gain, rx_dec;
int32_t rtx = -1, rrx = -1;
int16_t coef_tx[128];
int16_t coef_rx[128];
char *ptr = data;
phy->filt_rx_bw_Hz = 0;
phy->filt_tx_bw_Hz = 0;
phy->filt_valid = false;
while ((line = strsep(&ptr, "\n"))) {
if (line >= data + size) {
break;
}
if (line[0] == '#')
continue;
if (tx < 0) {
#ifdef WIN32
ret = sscanf_s(line, "TX %d GAIN %d INT %d",
&tx, &tx_gain, &tx_int);
#else
ret = sscanf(line, "TX %"PRId32" GAIN %"PRId32" INT %"PRId32,
&tx, &tx_gain, &tx_int);
#endif
if (ret == 3)
continue;
else
tx = -1;
}
if (rx < 0) {
#ifdef WIN32
ret = sscanf_s(line, "RX %d GAIN %d DEC %d",
&rx, &rx_gain, &rx_dec);
#else
ret = sscanf(line, "RX %"PRId32" GAIN %"PRId32" DEC %"PRId32,
&rx, &rx_gain, &rx_dec);
#endif
if (ret == 3)
continue;
else
tx = -1;
}
if (rtx < 0) {
#ifdef WIN32
ret = sscanf(line, "RTX %lu %lu %lu %lu %lu %lu",
#else
ret = sscanf(line, "RTX %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32,
#endif
&phy->filt_tx_path_clks[0],
&phy->filt_tx_path_clks[1],
&phy->filt_tx_path_clks[2],
&phy->filt_tx_path_clks[3],
&phy->filt_tx_path_clks[4],
&phy->filt_tx_path_clks[5]);
if (ret == 6) {
rtx = 0;
continue;
} else {
rtx = -1;
}
}
if (rrx < 0) {
#ifdef WIN32
ret = sscanf(line, "RRX %lu %lu %lu %lu %lu %lu",
#else
ret = sscanf(line, "RRX %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32,
#endif
&phy->filt_rx_path_clks[0],
&phy->filt_rx_path_clks[1],
&phy->filt_rx_path_clks[2],
&phy->filt_rx_path_clks[3],
&phy->filt_rx_path_clks[4],
&phy->filt_rx_path_clks[5]);
if (ret == 6) {
rrx = 0;
continue;
} else {
rrx = -1;
}
}
if (!phy->filt_rx_bw_Hz) {
#ifdef WIN32
ret = sscanf(line, "BWRX %d", &phy->filt_rx_bw_Hz);
#else
ret = sscanf(line, "BWRX %"PRId32, &phy->filt_rx_bw_Hz);
#endif
if (ret == 1)
continue;
else
phy->filt_rx_bw_Hz = 0;
}
if (!phy->filt_tx_bw_Hz) {
#ifdef WIN32
ret = sscanf(line, "BWTX %d", &phy->filt_tx_bw_Hz);
#else
ret = sscanf(line, "BWTX %"PRId32, &phy->filt_tx_bw_Hz);
#endif
if (ret == 1)
continue;
else
phy->filt_tx_bw_Hz = 0;
}
#ifdef WIN32
ret = sscanf_s(line, "%d,%d", &txc, &rxc);
#else
ret = sscanf(line, "%"PRId32",%"PRId32, &txc, &rxc);
#endif
if (ret == 1) {
coef_tx[i] = coef_rx[i] = (int16_t)txc;
i++;
continue;
}
else if (ret == 2) {
coef_tx[i] = (int16_t)txc;
coef_rx[i] = (int16_t)rxc;
i++;
continue;
}
}
switch (tx) {
case FIR_TX1:
case FIR_TX2:
case FIR_TX1_TX2:
phy->tx_fir_int = tx_int;
ret = ad9361_load_fir_filter_coef(phy, (enum fir_dest)tx, tx_gain, i, coef_tx);
break;
default:
ret = -EINVAL;
}
switch (rx | FIR_IS_RX) {
case FIR_RX1:
case FIR_RX2:
case FIR_RX1_RX2:
phy->rx_fir_dec = rx_dec;
ret = ad9361_load_fir_filter_coef(phy, (enum fir_dest)(rx | FIR_IS_RX),
rx_gain, i, coef_rx);
break;
default:
ret = -EINVAL;
}
if (ret < 0)
return ret;
if (!(rrx | rtx))
phy->filt_valid = true;
return size;
}
/**
* Validate FIR filter configuration - on pass enable.
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_validate_enable_fir(struct ad9361_rf_phy *phy)
{
int32_t ret;
uint32_t rx[6], tx[6];
uint32_t max, min, valid;
dev_dbg(dev, "%s: TX FIR EN=%d/TAPS%d/INT%d, RX FIR EN=%d/TAPS%d/DEC%d",
__func__, !phy->bypass_tx_fir, phy->tx_fir_ntaps, phy->tx_fir_int,
!phy->bypass_rx_fir, phy->rx_fir_ntaps, phy->rx_fir_dec);
if (!phy->bypass_tx_fir) {
if (!(phy->tx_fir_int == 1 || phy->tx_fir_int == 2 ||
phy->tx_fir_int == 4)) {
dev_err(dev,
"%s: Invalid: Interpolation %d in filter config",
__func__, phy->tx_fir_int);
return -EINVAL;
}
if (phy->tx_fir_int == 1 && phy->tx_fir_ntaps > 64) {
dev_err(dev,
"%s: Invalid: TAPS > 64 and Interpolation = 1",
__func__);
return -EINVAL;
}
}
if (!phy->bypass_rx_fir) {
if (!(phy->rx_fir_dec == 1 || phy->rx_fir_dec == 2 ||
phy->rx_fir_dec == 4)) {
dev_err(dev,
"%s: Invalid: Decimation %d in filter config",
__func__, phy->rx_fir_dec);
return -EINVAL;
}
}
if (!phy->filt_valid || phy->bypass_rx_fir || phy->bypass_tx_fir) {
ret = ad9361_calculate_rf_clock_chain(phy,
clk_get_rate(phy, phy->ref_clk_scale[TX_SAMPL_CLK]),
phy->rate_governor, rx, tx);
if (ret < 0) {
min = phy->rate_governor ? 1500000U : 1000000U;
dev_err(dev,
"%s: Calculating filter rates failed %"PRId32
" using min frequency",__func__, ret);
ret = ad9361_calculate_rf_clock_chain(phy, min,
phy->rate_governor, rx, tx);
if (ret < 0) {
return ret;
}
}
valid = false;
} else {
memcpy(rx, phy->filt_rx_path_clks, sizeof(rx));
memcpy(tx, phy->filt_tx_path_clks, sizeof(tx));
valid = true;
}
#ifdef _DEBUG
dev_dbg(&phy->spi->dev, "%s:RX %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32,
__func__, rx[BBPLL_FREQ], rx[ADC_FREQ],
rx[R2_FREQ], rx[R1_FREQ],
rx[CLKRF_FREQ], rx[RX_SAMPL_FREQ]);
dev_dbg(&phy->spi->dev, "%s:TX %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32" %"PRIu32,
__func__, tx[BBPLL_FREQ], tx[ADC_FREQ],
tx[R2_FREQ], tx[R1_FREQ],
tx[CLKRF_FREQ], tx[RX_SAMPL_FREQ]);
#endif
if (!phy->bypass_tx_fir) {
max = (tx[DAC_FREQ] / tx[TX_SAMPL_FREQ]) * 16;
if (phy->tx_fir_ntaps > max) {
dev_err(dev,
"%s: Invalid: ratio ADC/2 / TX_SAMPL * 16 > TAPS"
"(max %"PRIu32", adc %"PRIu32", tx %"PRIu32")",
__func__, max, rx[ADC_FREQ], tx[TX_SAMPL_FREQ]);
return -EINVAL;
}
}
if (!phy->bypass_rx_fir) {
max = ((rx[ADC_FREQ] / ((rx[ADC_FREQ] == rx[R2_FREQ]) ? 1 : 2)) /
rx[RX_SAMPL_FREQ]) * 16;
if (phy->rx_fir_ntaps > max) {
dev_err(dev,
"%s: Invalid: ratio ADC/2 / RX_SAMPL * 16 > TAPS (max %"PRIu32")",
__func__, max);
return -EINVAL;
}
}
ret = ad9361_set_trx_clock_chain(phy, rx, tx);
if (ret < 0)
return ret;
/* See also: ad9361_set_trx_clock_chain() */
if (!phy->pdata->dig_interface_tune_fir_disable &&
phy->bypass_tx_fir && phy->bypass_rx_fir)
ad9361_dig_tune(phy, 0, RESTORE_DEFAULT);
return ad9361_update_rf_bandwidth(phy,
valid ? phy->filt_rx_bw_Hz : phy->current_rx_bw_Hz,
valid ? phy->filt_tx_bw_Hz : phy->current_tx_bw_Hz);
}
/*
* AD9361 Clocks
*/
/**
* Set the multiplier and the divider for the selected refclk_scale structure.
* @param priv The selected refclk_scale structure.
* @param mul The multiplier value.
* @param div The divider value.
* @return 0 in case of success, negative error code otherwise.
*/
static inline int32_t ad9361_set_muldiv(struct refclk_scale *priv, uint32_t mul, uint32_t div)
{
priv->mult = mul;
priv->div = div;
return 0;
}
/**
* Get the clk scaler for the selected refclk_scale structure.
* @param priv The selected refclk_scale structure.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_get_clk_scaler(struct refclk_scale *clk_priv)
{
struct spi_device *spi = clk_priv->spi;
uint32_t tmp, tmp1;
switch (clk_priv->source) {
case BB_REFCLK:
tmp = ad9361_spi_read(spi, REG_CLOCK_CTRL);
tmp &= 0x3;
break;
case RX_REFCLK:
tmp = ad9361_spi_readf(spi, REG_REF_DIVIDE_CONFIG_1,
RX_REF_DIVIDER_MSB);
tmp1 = ad9361_spi_readf(spi, REG_REF_DIVIDE_CONFIG_2,
RX_REF_DIVIDER_LSB);
tmp = (tmp << 1) | tmp1;
break;
case TX_REFCLK:
tmp = ad9361_spi_readf(spi, REG_REF_DIVIDE_CONFIG_2,
TX_REF_DIVIDER(~0));
break;
case ADC_CLK:
tmp = ad9361_spi_read(spi, REG_BBPLL);
return ad9361_set_muldiv(clk_priv, 1, 1 << (tmp & 0x7));
case R2_CLK:
tmp = ad9361_spi_readf(spi, REG_RX_ENABLE_FILTER_CTRL,
DEC3_ENABLE_DECIMATION(~0));
return ad9361_set_muldiv(clk_priv, 1, tmp + 1);
case R1_CLK:
tmp = ad9361_spi_readf(spi, REG_RX_ENABLE_FILTER_CTRL, RHB2_EN);
return ad9361_set_muldiv(clk_priv, 1, tmp + 1);
case CLKRF_CLK:
tmp = ad9361_spi_readf(spi, REG_RX_ENABLE_FILTER_CTRL, RHB1_EN);
return ad9361_set_muldiv(clk_priv, 1, tmp + 1);
case RX_SAMPL_CLK:
tmp = ad9361_spi_readf(spi, REG_RX_ENABLE_FILTER_CTRL,
RX_FIR_ENABLE_DECIMATION(~0));
if (!tmp)
tmp = 1; /* bypass filter */
else
tmp = (1 << (tmp - 1));
return ad9361_set_muldiv(clk_priv, 1, tmp);
case DAC_CLK:
tmp = ad9361_spi_readf(spi, REG_BBPLL, BIT(3));
return ad9361_set_muldiv(clk_priv, 1, tmp + 1);
case T2_CLK:
tmp = ad9361_spi_readf(spi, REG_TX_ENABLE_FILTER_CTRL,
THB3_ENABLE_INTERP(~0));
return ad9361_set_muldiv(clk_priv, 1, tmp + 1);
case T1_CLK:
tmp = ad9361_spi_readf(spi, REG_TX_ENABLE_FILTER_CTRL, THB2_EN);
return ad9361_set_muldiv(clk_priv, 1, tmp + 1);
case CLKTF_CLK:
tmp = ad9361_spi_readf(spi, REG_TX_ENABLE_FILTER_CTRL, THB1_EN);
return ad9361_set_muldiv(clk_priv, 1, tmp + 1);
case TX_SAMPL_CLK:
tmp = ad9361_spi_readf(spi, REG_TX_ENABLE_FILTER_CTRL,
TX_FIR_ENABLE_INTERPOLATION(~0));
if (!tmp)
tmp = 1; /* bypass filter */
else
tmp = (1 << (tmp - 1));
return ad9361_set_muldiv(clk_priv, 1, tmp);
default:
return -EINVAL;
}
/* REFCLK Scaler */
switch (tmp) {
case 0:
ad9361_set_muldiv(clk_priv, 1, 1);
break;
case 1:
ad9361_set_muldiv(clk_priv, 1, 2);
break;
case 2:
ad9361_set_muldiv(clk_priv, 1, 4);
break;
case 3:
ad9361_set_muldiv(clk_priv, 2, 1);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* Calculate the REFCLK Scaler for the selected refclk_scale structure.
* Note: REFCLK Scaler values - 00: x1; 01: x½; 10: x¼; 11: x2.
* @param clk_priv The selected refclk_scale structure.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_to_refclk_scaler(struct refclk_scale *clk_priv)
{
/* REFCLK Scaler */
switch (((clk_priv->mult & 0xF) << 4) | (clk_priv->div & 0xF)) {
case 0x11:
return 0;
case 0x12:
return 1;
case 0x14:
return 2;
case 0x21:
return 3;
default:
return -EINVAL;
}
};
/**
* Set clk scaler for the selected refclk_scale structure.
* @param clk_priv The selected refclk_scale structure.
* @param set Set true, the reference clock frequency will be scaled before
* it enters the BBPLL.
* @return 0 in case of success, negative error code otherwise.
*/
static int32_t ad9361_set_clk_scaler(struct refclk_scale *clk_priv, bool set)
{
struct spi_device *spi = clk_priv->spi;
uint32_t tmp;
int32_t ret;
switch (clk_priv->source) {
case BB_REFCLK:
ret = ad9361_to_refclk_scaler(clk_priv);
if (ret < 0)
return ret;
if (set)
return ad9361_spi_writef(spi, REG_CLOCK_CTRL,
REF_FREQ_SCALER(~0), ret);
break;
case RX_REFCLK:
ret = ad9361_to_refclk_scaler(clk_priv);
if (ret < 0)
return ret;
if (set) {
tmp = ret;
ret = ad9361_spi_writef(spi, REG_REF_DIVIDE_CONFIG_1,
RX_REF_DIVIDER_MSB, tmp >> 1);
ret |= ad9361_spi_writef(spi, REG_REF_DIVIDE_CONFIG_2,
RX_REF_DIVIDER_LSB, tmp & 1);
return ret;
}
break;
case TX_REFCLK:
ret = ad9361_to_refclk_scaler(clk_priv);
if (ret < 0)
return ret;
if (set)
return ad9361_spi_writef(spi, REG_REF_DIVIDE_CONFIG_2,
TX_REF_DIVIDER(~0), ret);
break;
case ADC_CLK:
tmp = ilog2((uint8_t)clk_priv->div);
if (clk_priv->mult != 1 || tmp > 6 || tmp < 1)
return -EINVAL;
if (set)
return ad9361_spi_writef(spi, REG_BBPLL, 0x7, tmp);
break;
case R2_CLK:
if (clk_priv->mult != 1 || clk_priv->div > 3 || clk_priv->div < 1)
return -EINVAL;
if (set)
return ad9361_spi_writef(spi, REG_RX_ENABLE_FILTER_CTRL,
DEC3_ENABLE_DECIMATION(~0),
clk_priv->div - 1);
break;
case R1_CLK:
if (clk_priv->mult != 1 || clk_priv->div > 2 || clk_priv->div < 1)
return -EINVAL;
if (set)
return ad9361_spi_writef(spi, REG_RX_ENABLE_FILTER_CTRL,
RHB2_EN, clk_priv->div - 1);
break;
case CLKRF_CLK:
if (clk_priv->mult != 1 || clk_priv->div > 2 || clk_priv->div < 1)
return -EINVAL;
if (set)
return ad9361_spi_writef(spi, REG_RX_ENABLE_FILTER_CTRL,
RHB1_EN, clk_priv->div - 1);
break;
case RX_SAMPL_CLK:
if (clk_priv->mult != 1 || clk_priv->div > 4 ||
clk_priv->div < 1 || clk_priv->div == 3)
return -EINVAL;
if (clk_priv->phy->bypass_rx_fir)
tmp = 0;
else
tmp = ilog2(clk_priv->div) + 1;
if (set)
return ad9361_spi_writef(spi, REG_RX_ENABLE_FILTER_CTRL,
RX_FIR_ENABLE_DECIMATION(~0), tmp);
break;
case DAC_CLK:
if (clk_priv->mult != 1 || clk_priv->div > 2 || clk_priv->div < 1)
return -EINVAL;
if (set)
return ad9361_spi_writef(spi, REG_BBPLL,
BIT(3), clk_priv->div - 1);
break;
case T2_CLK:
if (clk_priv->mult != 1 || clk_priv->div > 3 || clk_priv->div < 1)
return -EINVAL;
if (set)
return ad9361_spi_writef(spi, REG_TX_ENABLE_FILTER_CTRL,
THB3_ENABLE_INTERP(~0),
clk_priv->div - 1);
break;
case T1_CLK:
if (clk_priv->mult != 1 || clk_priv->div > 2 || clk_priv->div < 1)
return -EINVAL;
if (set)
return ad9361_spi_writef(spi, REG_TX_ENABLE_FILTER_CTRL,
THB2_EN, clk_priv->div - 1);
break;
case CLKTF_CLK:
if (clk_priv->mult != 1 || clk_priv->div > 2 || clk_priv->div < 1)
return -EINVAL;
if (set)
return ad9361_spi_writef(spi, REG_TX_ENABLE_FILTER_CTRL,
THB1_EN, clk_priv->div - 1);
break;
case TX_SAMPL_CLK:
if (clk_priv->mult != 1 || clk_priv->div > 4 ||
clk_priv->div < 1 || clk_priv->div == 3)
return -EINVAL;
if (clk_priv->phy->bypass_tx_fir)
tmp = 0;
else
tmp = ilog2(clk_priv->div) + 1;
if (set)
return ad9361_spi_writef(spi, REG_TX_ENABLE_FILTER_CTRL,
TX_FIR_ENABLE_INTERPOLATION(~0), tmp);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* Recalculate the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param parent_rate The parent clock rate.
* @return The clock rate.
*/
uint32_t ad9361_clk_factor_recalc_rate(struct refclk_scale *clk_priv,
uint32_t parent_rate)
{
uint64_t rate;
ad9361_get_clk_scaler(clk_priv);
rate = (parent_rate * clk_priv->mult) / clk_priv->div;
return (uint32_t)rate;
}
/**
* Calculate the closest possible clock rate that can be set.
* @param refclk_scale The refclk_scale structure.
* @param rate The clock rate.
* @param parent_rate The parent clock rate.
* @return The closest possible clock rate that can be set.
*/
int32_t ad9361_clk_factor_round_rate(struct refclk_scale *clk_priv, uint32_t rate,
uint32_t *prate)
{
int32_t ret;
if (rate >= *prate) {
clk_priv->mult = DIV_ROUND_CLOSEST(rate, *prate);
clk_priv->div = 1;
}
else {
clk_priv->div = DIV_ROUND_CLOSEST(*prate, rate);
clk_priv->mult = 1;
if (!clk_priv->div) {
dev_err(&clk_priv->spi->dev, "%s: divide by zero",
__func__);
clk_priv->div = 1;
}
}
ret = ad9361_set_clk_scaler(clk_priv, false);
if (ret < 0)
return ret;
return (*prate / clk_priv->div) * clk_priv->mult;
}
/**
* Set the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param rate The clock rate.
* @param parent_rate The parent clock rate.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_clk_factor_set_rate(struct refclk_scale *clk_priv, uint32_t rate,
uint32_t parent_rate)
{
dev_dbg(&clk_priv->spi->dev, "%s: Rate %"PRIu32" Hz Parent Rate %"PRIu32" Hz",
__func__, rate, parent_rate);
if (rate >= parent_rate) {
clk_priv->mult = DIV_ROUND_CLOSEST(rate, parent_rate);
clk_priv->div = 1;
}
else {
clk_priv->div = DIV_ROUND_CLOSEST(parent_rate, rate);
clk_priv->mult = 1;
if (!clk_priv->div) {
dev_err(&clk_priv->spi->dev, "%s: divide by zero",
__func__);
clk_priv->div = 1;
}
}
return ad9361_set_clk_scaler(clk_priv, true);
}
/*
* BBPLL
*/
/**
* Recalculate the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param parent_rate The parent clock rate.
* @return The clock rate.
*/
uint32_t ad9361_bbpll_recalc_rate(struct refclk_scale *clk_priv,
uint32_t parent_rate)
{
uint64_t rate;
uint32_t fract, integer;
uint8_t buf[4];
ad9361_spi_readm(clk_priv->spi, REG_INTEGER_BB_FREQ_WORD, &buf[0],
REG_INTEGER_BB_FREQ_WORD - REG_FRACT_BB_FREQ_WORD_1 + 1);
fract = (buf[3] << 16) | (buf[2] << 8) | buf[1];
integer = buf[0];
rate = ((uint64_t)parent_rate * fract);
do_div(&rate, BBPLL_MODULUS);
rate += (uint64_t)parent_rate * integer;
return (uint32_t)rate;
}
/**
* Calculate the closest possible clock rate that can be set.
* @param refclk_scale The refclk_scale structure.
* @param rate The clock rate.
* @param parent_rate The parent clock rate.
* @return The closest possible clock rate that can be set.
*/
int32_t ad9361_bbpll_round_rate(struct refclk_scale *clk_priv, uint32_t rate,
uint32_t *prate)
{
uint64_t tmp;
uint32_t fract, integer;
uint64_t temp;
if (clk_priv) {
// Unused variable - fix compiler warning
}
if (rate > MAX_BBPLL_FREQ)
return MAX_BBPLL_FREQ;
if (rate < MIN_BBPLL_FREQ)
return MIN_BBPLL_FREQ;
temp = rate;
tmp = do_div(&temp, *prate);
rate = temp;
tmp = tmp * BBPLL_MODULUS + (*prate >> 1);
do_div(&tmp, *prate);
integer = rate;
fract = tmp;
tmp = *prate * (uint64_t)fract;
do_div(&tmp, BBPLL_MODULUS);
tmp += *prate * integer;
return tmp;
}
/**
* Set the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param rate The clock rate.
* @param parent_rate The parent clock rate.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_bbpll_set_rate(struct refclk_scale *clk_priv, uint32_t rate,
uint32_t parent_rate)
{
struct spi_device *spi = clk_priv->spi;
uint64_t tmp;
uint32_t fract, integer;
int32_t icp_val;
uint8_t lf_defaults[3] = { 0x35, 0x5B, 0xE8 };
uint64_t temp;
dev_dbg(&spi->dev, "%s: Rate %"PRIu32" Hz Parent Rate %"PRIu32" Hz",
__func__, rate, parent_rate);
/*
* Setup Loop Filter and CP Current
* Scale is 150uA @ (1280MHz BBPLL, 40MHz REFCLK)
*/
tmp = (rate >> 7) * 150ULL;
do_div(&tmp, (parent_rate >> 7) * 32UL);
/* 25uA/LSB, Offset 25uA */
icp_val = DIV_ROUND_CLOSEST((uint32_t)tmp, 25U) - 1;
icp_val = clamp(icp_val, 1, 64);
ad9361_spi_write(spi, REG_CP_CURRENT, icp_val);
ad9361_spi_writem(spi, REG_LOOP_FILTER_3, lf_defaults,
ARRAY_SIZE(lf_defaults));
/* Allow calibration to occur and set cal count to 1024 for max accuracy */
ad9361_spi_write(spi, REG_VCO_CTRL,
FREQ_CAL_ENABLE | FREQ_CAL_COUNT_LENGTH(3));
/* Set calibration clock to REFCLK/4 for more accuracy */
ad9361_spi_write(spi, REG_SDM_CTRL, 0x10);
/* Calculate and set BBPLL frequency word */
temp = rate;
tmp = do_div(&temp, parent_rate);
rate = temp;
tmp = tmp *(uint64_t)BBPLL_MODULUS + (parent_rate >> 1);
do_div(&tmp, parent_rate);
integer = rate;
fract = tmp;
ad9361_spi_write(spi, REG_INTEGER_BB_FREQ_WORD, integer);
ad9361_spi_write(spi, REG_FRACT_BB_FREQ_WORD_3, fract);
ad9361_spi_write(spi, REG_FRACT_BB_FREQ_WORD_2, fract >> 8);
ad9361_spi_write(spi, REG_FRACT_BB_FREQ_WORD_1, fract >> 16);
ad9361_spi_write(spi, REG_SDM_CTRL_1, INIT_BB_FO_CAL | BBPLL_RESET_BAR); /* Start BBPLL Calibration */
ad9361_spi_write(spi, REG_SDM_CTRL_1, BBPLL_RESET_BAR); /* Clear BBPLL start calibration bit */
ad9361_spi_write(spi, REG_VCO_PROGRAM_1, 0x86); /* Increase BBPLL KV and phase margin */
ad9361_spi_write(spi, REG_VCO_PROGRAM_2, 0x01); /* Increase BBPLL KV and phase margin */
ad9361_spi_write(spi, REG_VCO_PROGRAM_2, 0x05); /* Increase BBPLL KV and phase margin */
return ad9361_check_cal_done(clk_priv->phy, REG_CH_1_OVERFLOW,
BBPLL_LOCK, 1);
}
/*
* RFPLL
*/
/**
* Calculate the RFPLL frequency.
* @param parent_rate The parent clock rate.
* @param integer The integer value.
* @param fract The fractional value.
* @param vco_div The VCO divider.
* @return The RFPLL frequency.
*/
static uint64_t ad9361_calc_rfpll_int_freq(uint64_t parent_rate,
uint64_t integer,
uint64_t fract, uint32_t vco_div)
{
uint64_t rate;
rate = parent_rate * fract;
do_div(&rate, RFPLL_MODULUS);
rate += parent_rate * integer;
return rate >> (vco_div + 1);
}
/**
* Calculate the RFPLL dividers.
* @param freq The RFPLL frequency.
* @param parent_rate The parent clock rate.
* @param integer The integer value.
* @param fract The fractional value.
* @param vco_div The VCO divider.
* @param vco_freq The VCO frequency.
* @return The RFPLL frequency.
*/
static int32_t ad9361_calc_rfpll_int_divder(uint64_t freq,
uint64_t parent_rate, uint32_t *integer,
uint32_t *fract, int32_t *vco_div, uint64_t *vco_freq)
{
uint64_t tmp;
int32_t div;
if (freq > MAX_CARRIER_FREQ_HZ || freq < MIN_CARRIER_FREQ_HZ)
return -EINVAL;
div = -1;
while (freq <= MIN_VCO_FREQ_HZ) {
freq <<= 1;
div++;
}
*vco_div = div;
*vco_freq = freq;
tmp = do_div(&freq, parent_rate);
tmp = tmp * RFPLL_MODULUS + (parent_rate >> 1);
do_div(&tmp, parent_rate);
*integer = freq;
*fract = tmp;
return 0;
}
/**
* Recalculate the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param parent_rate The parent clock rate.
* @return The clock rate.
*/
uint32_t ad9361_rfpll_int_recalc_rate(struct refclk_scale *clk_priv,
uint32_t parent_rate)
{
struct ad9361_rf_phy *phy = clk_priv->phy;
uint32_t fract, integer;
uint8_t buf[5];
uint32_t reg, div_mask, vco_div, profile;
dev_dbg(&clk_priv->spi->dev, "%s: Parent Rate %"PRIu32" Hz",
__func__, parent_rate);
switch (clk_priv->source) {
case RX_RFPLL_INT:
reg = REG_RX_FRACT_BYTE_2;
div_mask = RX_VCO_DIVIDER(~0);
profile = phy->fastlock.current_profile[0];
break;
case TX_RFPLL_INT:
reg = REG_TX_FRACT_BYTE_2;
div_mask = TX_VCO_DIVIDER(~0);
profile = phy->fastlock.current_profile[1];
break;
default:
return -EINVAL;
}
if (profile) {
bool tx = clk_priv->source == TX_RFPLL_INT;
profile = profile - 1;
buf[0] = ad9361_fastlock_readval(phy->spi, tx, profile, 4);
buf[1] = ad9361_fastlock_readval(phy->spi, tx, profile, 3);
buf[2] = ad9361_fastlock_readval(phy->spi, tx, profile, 2);
buf[3] = ad9361_fastlock_readval(phy->spi, tx, profile, 1);
buf[4] = ad9361_fastlock_readval(phy->spi, tx, profile, 0);
vco_div = ad9361_fastlock_readval(phy->spi, tx, profile, 12) & 0xF;
}
else {
ad9361_spi_readm(clk_priv->spi, reg, &buf[0], ARRAY_SIZE(buf));
vco_div = ad9361_spi_readf(clk_priv->spi, REG_RFPLL_DIVIDERS, div_mask);
}
fract = (SYNTH_FRACT_WORD(buf[0]) << 16) | (buf[1] << 8) | buf[2];
integer = (SYNTH_INTEGER_WORD(buf[3]) << 8) | buf[4];
return ad9361_to_clk(ad9361_calc_rfpll_int_freq(parent_rate, integer,
fract, vco_div));
}
/**
* Calculate the closest possible clock rate that can be set.
* @param refclk_scale The refclk_scale structure.
* @param rate The clock rate.
* @param parent_rate The parent clock rate.
* @return The closest possible clock rate that can be set.
*/
int32_t ad9361_rfpll_int_round_rate(struct refclk_scale *clk_priv, uint32_t rate,
uint32_t *prate)
{
dev_dbg(&clk_priv->spi->dev, "%s: Rate %u Hz", __func__, rate);
if (prate) {
// Unused variable - fix compiler warning
}
if (ad9361_from_clk(rate) > MAX_CARRIER_FREQ_HZ ||
ad9361_from_clk(rate) < MIN_CARRIER_FREQ_HZ)
return -EINVAL;
return rate;
}
/**
* Set the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param rate The clock rate.
* @param parent_rate The parent clock rate.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_rfpll_int_set_rate(struct refclk_scale *clk_priv, uint32_t rate,
uint32_t parent_rate)
{
struct ad9361_rf_phy *phy = clk_priv->phy;
uint64_t vco = 0;
uint8_t buf[5];
uint32_t reg, div_mask, lock_reg, fract = 0, integer = 0;
int32_t vco_div = 0, ret;
dev_dbg(&clk_priv->spi->dev, "%s: Rate %"PRIu32" Hz Parent Rate %"PRIu32" Hz",
__func__, rate, parent_rate);
ad9361_fastlock_prepare(phy, clk_priv->source == TX_RFPLL_INT, 0, false);
ret = ad9361_calc_rfpll_int_divder(ad9361_from_clk(rate), parent_rate,
&integer, &fract, &vco_div, &vco);
if (ret < 0)
return ret;
switch (clk_priv->source) {
case RX_RFPLL_INT:
reg = REG_RX_FRACT_BYTE_2;
lock_reg = REG_RX_CP_OVERRANGE_VCO_LOCK;
div_mask = RX_VCO_DIVIDER(~0);
phy->cached_rx_rfpll_div = vco_div;
break;
case TX_RFPLL_INT:
reg = REG_TX_FRACT_BYTE_2;
lock_reg = REG_TX_CP_OVERRANGE_VCO_LOCK;
div_mask = TX_VCO_DIVIDER(~0);
phy->cached_tx_rfpll_div = vco_div;
break;
default:
return -EINVAL;
}
/* Option to skip VCO cal in TDD mode when moving from TX/RX to Alert */
if (phy->pdata->tdd_skip_vco_cal)
ad9361_trx_vco_cal_control(phy, clk_priv->source == TX_RFPLL_INT,
true);
ad9361_rfpll_vco_init(phy, div_mask == TX_VCO_DIVIDER(~0),
vco, parent_rate);
buf[0] = SYNTH_FRACT_WORD(fract >> 16);
buf[1] = fract >> 8;
buf[2] = fract & 0xFF;
buf[3] = integer >> 8;
buf[3] = SYNTH_INTEGER_WORD(integer >> 8) |
(~SYNTH_INTEGER_WORD(~0) &
ad9361_spi_read(clk_priv->spi, reg - 3));
buf[4] = integer & 0xFF;
ad9361_spi_writem(clk_priv->spi, reg, buf, 5);
ad9361_spi_writef(clk_priv->spi, REG_RFPLL_DIVIDERS, div_mask, vco_div);
ret = ad9361_check_cal_done(phy, lock_reg, VCO_LOCK, 1);
if (phy->pdata->tdd_skip_vco_cal)
ad9361_trx_vco_cal_control(phy, clk_priv->source == TX_RFPLL_INT,
false);
return ret;
}
/**
* Recalculate the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param parent_rate The parent clock rate.
* @return The clock rate.
*/
uint32_t ad9361_rfpll_dummy_recalc_rate(struct refclk_scale *clk_priv)
{
struct ad9361_rf_phy *phy = clk_priv->phy;
return phy->clks[clk_priv->source]->rate;
}
/**
* Set the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param rate The clock rate.
* @param parent_rate The parent clock rate.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_rfpll_dummy_set_rate(struct refclk_scale *clk_priv, uint32_t rate)
{
struct ad9361_rf_phy *phy = clk_priv->phy;
phy->clks[clk_priv->source]->rate = rate;
return 0;
}
/**
* Recalculate the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param parent_rate The parent clock rate.
* @return The clock rate.
*/
uint32_t ad9361_rfpll_recalc_rate(struct refclk_scale *clk_priv)
{
struct ad9361_rf_phy *phy = clk_priv->phy;
uint32_t rate;
switch (clk_priv->source) {
case RX_RFPLL:
if (phy->pdata->use_ext_rx_lo) {
if (phy->ad9361_rfpll_ext_recalc_rate)
rate = phy->ad9361_rfpll_ext_recalc_rate(clk_priv);
else
rate = ad9361_rfpll_dummy_recalc_rate(phy->ref_clk_scale[RX_RFPLL_DUMMY]);
} else {
rate = ad9361_rfpll_int_recalc_rate(phy->ref_clk_scale[RX_RFPLL_INT],
phy->clks[RX_REFCLK]->rate);
}
break;
case TX_RFPLL:
if (phy->pdata->use_ext_tx_lo) {
if (phy->ad9361_rfpll_ext_recalc_rate)
rate = phy->ad9361_rfpll_ext_recalc_rate(clk_priv);
else
rate = ad9361_rfpll_dummy_recalc_rate(phy->ref_clk_scale[TX_RFPLL_DUMMY]);
} else {
rate = ad9361_rfpll_int_recalc_rate(phy->ref_clk_scale[TX_RFPLL_INT],
phy->clks[TX_REFCLK]->rate);
}
break;
default:
rate = 0;
break;
}
return rate;
}
/**
* Calculate the closest possible clock rate that can be set.
* @param refclk_scale The refclk_scale structure.
* @param rate The clock rate.
* @param parent_rate The parent clock rate.
* @return The closest possible clock rate that can be set.
*/
int32_t ad9361_rfpll_round_rate(struct refclk_scale *clk_priv, uint32_t rate)
{
struct ad9361_rf_phy *phy = clk_priv->phy;
int32_t round_rate;
switch (clk_priv->source) {
case RX_RFPLL:
if (phy->pdata->use_ext_rx_lo) {
if (phy->ad9361_rfpll_ext_round_rate)
round_rate = phy->ad9361_rfpll_ext_round_rate(clk_priv, rate);
else
round_rate = rate;
} else {
round_rate = ad9361_rfpll_int_round_rate(phy->ref_clk_scale[RX_RFPLL_INT], rate,
&phy->clks[phy->ref_clk_scale[RX_RFPLL_INT]->parent_source]->rate);
}
case TX_RFPLL:
if (phy->pdata->use_ext_tx_lo) {
if (phy->ad9361_rfpll_ext_round_rate)
round_rate = phy->ad9361_rfpll_ext_round_rate(clk_priv, rate);
else
round_rate = rate;
} else {
round_rate = ad9361_rfpll_int_round_rate(phy->ref_clk_scale[TX_RFPLL_INT], rate,
&phy->clks[phy->ref_clk_scale[TX_RFPLL_INT]->parent_source]->rate);
}
break;
default:
round_rate = 0;
break;
}
return round_rate;
}
/**
* Set the clock rate.
* @param refclk_scale The refclk_scale structure.
* @param rate The clock rate.
* @param parent_rate The parent clock rate.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_rfpll_set_rate(struct refclk_scale *clk_priv, uint32_t rate)
{
struct ad9361_rf_phy *phy = clk_priv->phy;
int32_t ret;
switch (clk_priv->source) {
case RX_RFPLL:
if (phy->pdata->use_ext_rx_lo) {
if (phy->ad9361_rfpll_ext_set_rate)
phy->ad9361_rfpll_ext_set_rate(clk_priv, rate);
else
ad9361_rfpll_dummy_set_rate(phy->ref_clk_scale[RX_RFPLL_DUMMY], rate);
} else {
ad9361_rfpll_int_set_rate(phy->ref_clk_scale[RX_RFPLL_INT], rate,
phy->clks[phy->ref_clk_scale[RX_RFPLL_INT]->parent_source]->rate);
}
/* Load Gain Table */
ret = ad9361_load_gt(phy, ad9361_from_clk(rate), GT_RX1 + GT_RX2);
if (ret < 0)
return ret;
break;
case TX_RFPLL:
if (phy->pdata->use_ext_tx_lo) {
if (phy->ad9361_rfpll_ext_set_rate)
phy->ad9361_rfpll_ext_set_rate(clk_priv, rate);
else
ad9361_rfpll_dummy_set_rate(phy->ref_clk_scale[TX_RFPLL_DUMMY], rate);
} else {
ad9361_rfpll_int_set_rate(phy->ref_clk_scale[TX_RFPLL_INT], rate,
phy->clks[phy->ref_clk_scale[TX_RFPLL_INT]->parent_source]->rate);
}
/* For RX LO we typically have the tracking option enabled
* so for now do nothing here.
*/
if (phy->auto_cal_en && (clk_priv->source == TX_RFPLL_INT))
if (abs((int64_t)(phy->last_tx_quad_cal_freq - ad9361_from_clk(rate))) >
(int64_t)phy->cal_threshold_freq) {
ret = ad9361_do_calib_run(phy, TX_QUAD_CAL, -1);
if (ret < 0)
dev_err(&phy->spi->dev,
"%s: TX QUAD cal failed", __func__);
phy->last_tx_quad_cal_freq = ad9361_from_clk(rate);
}
break;
default:
break;
}
return 0;
}
/**
* Set clock mux parent.
* @param refclk_scale The refclk_scale structure.
* @param index Index - Enable (1), disable (0) ext lo.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t ad9361_clk_mux_set_parent(struct refclk_scale *clk_priv, uint8_t index)
{
struct ad9361_rf_phy *phy = clk_priv->phy;
int32_t ret;
dev_dbg(&clk_priv->spi->dev, "%s: index %d", __func__, index);
ad9361_ensm_force_state(phy, ENSM_STATE_ALERT);
ret = ad9361_trx_ext_lo_control(phy, clk_priv->source == TX_RFPLL, index == 1);
if (ret >= 0)
clk_priv->mult = index;
ad9361_ensm_restore_prev_state(phy);
return ret;
}
/**
* Register and initialize a new clock.
* @param phy The AD9361 state structure.
* @param name The name of the new clock.
* @param parent_name The name of the parent clock.
* @param flags The flags.
* @param source The source of the new clock.
* @param parent_source The source of the parent clock.
* @return A struct clk for the new clock or a negative error code.
*/
static struct clk *ad9361_clk_register(struct ad9361_rf_phy *phy, const char *name,
const char *parent_name, uint32_t flags,
uint32_t source, uint32_t parent_source)
{
struct refclk_scale *clk_priv;
struct clk *clk;
if (name) {
// Unused variable - fix compiler warning
}
if (parent_name) {
// Unused variable - fix compiler warning
}
if (flags) {
// Unused variable - fix compiler warning
}
clk_priv = (struct refclk_scale *)malloc(sizeof(*clk_priv));
if (!clk_priv) {
dev_err(&phy->spi->dev, "ad9361_clk_register: could not allocate fixed factor clk");
return (struct clk *)ERR_PTR(-ENOMEM);
}
/* struct refclk_scale assignments */
clk_priv->source = (enum ad9361_clocks)source;
clk_priv->parent_source = (enum ad9361_clocks)parent_source;
clk_priv->spi = phy->spi;
clk_priv->phy = phy;
phy->ref_clk_scale[source] = clk_priv;
clk = (struct clk *)malloc(sizeof(*clk));
if (!clk) {
free(clk_priv);
return (struct clk *)ERR_PTR(-ENOMEM);
}
switch (source) {
case TX_REFCLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clk_refin->rate);
break;
case RX_REFCLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clk_refin->rate);
break;
case BB_REFCLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clk_refin->rate);
break;
case BBPLL_CLK:
clk->rate = ad9361_bbpll_recalc_rate(clk_priv, phy->clks[BB_REFCLK]->rate);
break;
case ADC_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[BBPLL_CLK]->rate);
break;
case R2_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[ADC_CLK]->rate);
break;
case R1_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[R2_CLK]->rate);
break;
case CLKRF_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[R1_CLK]->rate);
break;
case RX_SAMPL_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[CLKRF_CLK]->rate);
break;
case DAC_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[ADC_CLK]->rate);
break;
case T2_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[DAC_CLK]->rate);
break;
case T1_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[T2_CLK]->rate);
break;
case CLKTF_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[T1_CLK]->rate);
break;
case TX_SAMPL_CLK:
clk->rate = ad9361_clk_factor_recalc_rate(clk_priv, phy->clks[CLKTF_CLK]->rate);
break;
case RX_RFPLL_INT:
clk->rate = ad9361_rfpll_int_recalc_rate(clk_priv, phy->clks[RX_REFCLK]->rate);
break;
case TX_RFPLL_INT:
clk->rate = ad9361_rfpll_int_recalc_rate(clk_priv, phy->clks[TX_REFCLK]->rate);
break;
case RX_RFPLL_DUMMY:
clk->rate = phy->pdata->rx_synth_freq;
break;
case TX_RFPLL_DUMMY:
clk->rate = phy->pdata->tx_synth_freq;
break;
case RX_RFPLL:
clk->rate = ad9361_rfpll_recalc_rate(clk_priv);
break;
case TX_RFPLL:
clk->rate = ad9361_rfpll_recalc_rate(clk_priv);
}
return clk;
}
/**
* Register and initialize all the system clocks.
* @param phy The AD9361 state structure.
* @return 0 in case of success, negative error code otherwise.
*/
int32_t register_clocks(struct ad9361_rf_phy *phy)
{
uint32_t flags = CLK_GET_RATE_NOCACHE;
phy->clk_data.clks = (struct clk **)malloc(sizeof(*phy->clk_data.clks) *
NUM_AD9361_CLKS);
if (!phy->clk_data.clks) {
dev_err(&phy->spi->dev, "could not allocate memory");
return -ENOMEM;
}
phy->clk_data.clk_num = NUM_AD9361_CLKS;
/* Scaled Reference Clocks */
phy->clks[TX_REFCLK] = ad9361_clk_register(phy,
"tx_refclk", "ad9361_ext_refclk",
flags | CLK_IGNORE_UNUSED,
TX_REFCLK, EXT_REF_CLK);
phy->clks[RX_REFCLK] = ad9361_clk_register(phy,
"rx_refclk", "ad9361_ext_refclk",
flags | CLK_IGNORE_UNUSED,
RX_REFCLK, EXT_REF_CLK);
phy->clks[BB_REFCLK] = ad9361_clk_register(phy,
"bb_refclk", "ad9361_ext_refclk",
flags | CLK_IGNORE_UNUSED,
BB_REFCLK, EXT_REF_CLK);
/* Base Band PLL Clock */
phy->clks[BBPLL_CLK] = ad9361_clk_register(phy,
"bbpll_clk", "bb_refclk",
flags | CLK_IGNORE_UNUSED,
BBPLL_CLK, BB_REFCLK);
phy->clks[ADC_CLK] = ad9361_clk_register(phy,
"adc_clk", "bbpll_clk",
flags | CLK_IGNORE_UNUSED,
ADC_CLK, BBPLL_CLK);
phy->clks[R2_CLK] = ad9361_clk_register(phy,
"r2_clk", "adc_clk",
flags | CLK_IGNORE_UNUSED,
R2_CLK, ADC_CLK);
phy->clks[R1_CLK] = ad9361_clk_register(phy,
"r1_clk", "r2_clk",
flags | CLK_IGNORE_UNUSED,
R1_CLK, R2_CLK);
phy->clks[CLKRF_CLK] = ad9361_clk_register(phy,
"clkrf_clk", "r1_clk",
flags | CLK_IGNORE_UNUSED,
CLKRF_CLK, R1_CLK);
phy->clks[RX_SAMPL_CLK] = ad9361_clk_register(phy,
"rx_sampl_clk", "clkrf_clk",
flags | CLK_IGNORE_UNUSED,
RX_SAMPL_CLK, CLKRF_CLK);
phy->clks[DAC_CLK] = ad9361_clk_register(phy,
"dac_clk", "adc_clk",
flags | CLK_IGNORE_UNUSED,
DAC_CLK, ADC_CLK);
phy->clks[T2_CLK] = ad9361_clk_register(phy,
"t2_clk", "dac_clk",
flags | CLK_IGNORE_UNUSED,
T2_CLK, DAC_CLK);
phy->clks[T1_CLK] = ad9361_clk_register(phy,
"t1_clk", "t2_clk",
flags | CLK_IGNORE_UNUSED,
T1_CLK, T2_CLK);
phy->clks[CLKTF_CLK] = ad9361_clk_register(phy,
"clktf_clk", "t1_clk",
flags | CLK_IGNORE_UNUSED,
CLKTF_CLK, T1_CLK);
phy->clks[TX_SAMPL_CLK] = ad9361_clk_register(phy,
"tx_sampl_clk", "clktf_clk",
flags | CLK_IGNORE_UNUSED,
TX_SAMPL_CLK, CLKTF_CLK);
phy->clks[RX_RFPLL_INT] = ad9361_clk_register(phy,
"rx_rfpll", "rx_refclk",
flags | CLK_IGNORE_UNUSED,
RX_RFPLL_INT, RX_REFCLK);
phy->clks[TX_RFPLL_INT] = ad9361_clk_register(phy,
"tx_rfpll", "tx_refclk",
flags | CLK_IGNORE_UNUSED,
TX_RFPLL_INT, TX_REFCLK);
phy->clks[RX_RFPLL_DUMMY] = ad9361_clk_register(phy,
"rx_rfpll_dummy", NULL,
flags | CLK_IGNORE_UNUSED,
RX_RFPLL_DUMMY, 0);
phy->clks[TX_RFPLL_DUMMY] = ad9361_clk_register(phy,
"tx_rfpll_dummy", NULL,
flags | CLK_IGNORE_UNUSED,
TX_RFPLL_DUMMY, 0);
phy->clks[RX_RFPLL] = ad9361_clk_register(phy,
"rx_rfpll", NULL,
flags | CLK_IGNORE_UNUSED,
RX_RFPLL, 0);
phy->clks[TX_RFPLL] = ad9361_clk_register(phy,
"tx_rfpll", NULL,
flags | CLK_IGNORE_UNUSED,
TX_RFPLL, 0);
return 0;
}