669 lines
21 KiB
Markdown
669 lines
21 KiB
Markdown
|
本文大部分MCU功能是由MCU CORE + 外设IP组成。</br>
|
|||
|
MCU CORE可能是arm cortex系列,51等等再通过内部总线连接在一起。</br>
|
|||
|
内部总线常见的有ARM AMBA(AHB APB等),还有xilinx的AXI。</br>
|
|||
|
AXI-LITE总之就是将ipcore内部的寄存器映射为mcu core能够访问到的寄存器地址</br>
|
|||
|
|
|||
|
下面是一个pwm ipcore 的例子</br>
|
|||
|
实现一个简易的pwm非常容易,即通过两个寄存器,这里没有使用单独时钟,直接使用总线时钟来分频</br>
|
|||
|
|
|||
|
- 频率计数器
|
|||
|
- 占空比寄存器
|
|||
|
|
|||
|
下面提供代码例子</br>
|
|||
|
|
|||
|
```
|
|||
|
`timescale 1 ns / 1 ps
|
|||
|
|
|||
|
module axi_pwm_v1_0_S00_AXI #
|
|||
|
(
|
|||
|
// Users to add parameters here
|
|||
|
|
|||
|
// User parameters ends
|
|||
|
// Do not modify the parameters beyond this line
|
|||
|
|
|||
|
// Width of S_AXI data bus
|
|||
|
parameter integer C_S_AXI_DATA_WIDTH = 32,
|
|||
|
// Width of S_AXI address bus
|
|||
|
parameter integer C_S_AXI_ADDR_WIDTH = 4
|
|||
|
)
|
|||
|
(
|
|||
|
// Users to add ports here
|
|||
|
output wire pwm_out,
|
|||
|
output wire [31 : 0] pwn_reg,
|
|||
|
// User ports ends
|
|||
|
// Do not modify the ports beyond this line
|
|||
|
|
|||
|
// Global Clock Signal
|
|||
|
input wire S_AXI_ACLK,
|
|||
|
// Global Reset Signal. This Signal is Active LOW
|
|||
|
input wire S_AXI_ARESETN,
|
|||
|
// Write address (issued by master, acceped by Slave)
|
|||
|
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
|
|||
|
// Write channel Protection type. This signal indicates the
|
|||
|
// privilege and security level of the transaction, and whether
|
|||
|
// the transaction is a data access or an instruction access.
|
|||
|
input wire [2 : 0] S_AXI_AWPROT,
|
|||
|
// Write address valid. This signal indicates that the master signaling
|
|||
|
// valid write address and control information.
|
|||
|
input wire S_AXI_AWVALID,
|
|||
|
// Write address ready. This signal indicates that the slave is ready
|
|||
|
// to accept an address and associated control signals.
|
|||
|
output wire S_AXI_AWREADY,
|
|||
|
// Write data (issued by master, acceped by Slave)
|
|||
|
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
|
|||
|
// Write strobes. This signal indicates which byte lanes hold
|
|||
|
// valid data. There is one write strobe bit for each eight
|
|||
|
// bits of the write data bus.
|
|||
|
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
|
|||
|
// Write valid. This signal indicates that valid write
|
|||
|
// data and strobes are available.
|
|||
|
input wire S_AXI_WVALID,
|
|||
|
// Write ready. This signal indicates that the slave
|
|||
|
// can accept the write data.
|
|||
|
output wire S_AXI_WREADY,
|
|||
|
// Write response. This signal indicates the status
|
|||
|
// of the write transaction.
|
|||
|
output wire [1 : 0] S_AXI_BRESP,
|
|||
|
// Write response valid. This signal indicates that the channel
|
|||
|
// is signaling a valid write response.
|
|||
|
output wire S_AXI_BVALID,
|
|||
|
// Response ready. This signal indicates that the master
|
|||
|
// can accept a write response.
|
|||
|
input wire S_AXI_BREADY,
|
|||
|
// Read address (issued by master, acceped by Slave)
|
|||
|
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
|
|||
|
// Protection type. This signal indicates the privilege
|
|||
|
// and security level of the transaction, and whether the
|
|||
|
// transaction is a data access or an instruction access.
|
|||
|
input wire [2 : 0] S_AXI_ARPROT,
|
|||
|
// Read address valid. This signal indicates that the channel
|
|||
|
// is signaling valid read address and control information.
|
|||
|
input wire S_AXI_ARVALID,
|
|||
|
// Read address ready. This signal indicates that the slave is
|
|||
|
// ready to accept an address and associated control signals.
|
|||
|
output wire S_AXI_ARREADY,
|
|||
|
// Read data (issued by slave)
|
|||
|
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
|
|||
|
// Read response. This signal indicates the status of the
|
|||
|
// read transfer.
|
|||
|
output wire [1 : 0] S_AXI_RRESP,
|
|||
|
// Read valid. This signal indicates that the channel is
|
|||
|
// signaling the required read data.
|
|||
|
output wire S_AXI_RVALID,
|
|||
|
// Read ready. This signal indicates that the master can
|
|||
|
// accept the read data and response information.
|
|||
|
input wire S_AXI_RREADY
|
|||
|
);
|
|||
|
|
|||
|
// AXI4LITE signals
|
|||
|
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
|
|||
|
reg axi_awready;
|
|||
|
reg axi_wready;
|
|||
|
reg [1 : 0] axi_bresp;
|
|||
|
reg axi_bvalid;
|
|||
|
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
|
|||
|
reg axi_arready;
|
|||
|
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
|
|||
|
reg [1 : 0] axi_rresp;
|
|||
|
reg axi_rvalid;
|
|||
|
|
|||
|
// Example-specific design signals
|
|||
|
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
|
|||
|
// ADDR_LSB is used for addressing 32/64 bit registers/memories
|
|||
|
// ADDR_LSB = 2 for 32 bits (n downto 2)
|
|||
|
// ADDR_LSB = 3 for 64 bits (n downto 3)
|
|||
|
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
|
|||
|
localparam integer OPT_MEM_ADDR_BITS = 1;
|
|||
|
//----------------------------------------------
|
|||
|
//-- Signals for user logic register space example
|
|||
|
wire ovprd;
|
|||
|
reg[C_S_AXI_DATA_WIDTH-1:0] pwm_counter;
|
|||
|
wire pre_pwm_out;
|
|||
|
//------------------------------------------------
|
|||
|
//-- Number of Slave Registers 4
|
|||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
|
|||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
|
|||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
|
|||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
|
|||
|
wire slv_reg_rden;
|
|||
|
wire slv_reg_wren;
|
|||
|
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
|
|||
|
integer byte_index;
|
|||
|
|
|||
|
// I/O Connections assignments
|
|||
|
|
|||
|
assign S_AXI_AWREADY = axi_awready;
|
|||
|
assign S_AXI_WREADY = axi_wready;
|
|||
|
assign S_AXI_BRESP = axi_bresp;
|
|||
|
assign S_AXI_BVALID = axi_bvalid;
|
|||
|
assign S_AXI_ARREADY = axi_arready;
|
|||
|
assign S_AXI_RDATA = axi_rdata;
|
|||
|
assign S_AXI_RRESP = axi_rresp;
|
|||
|
assign S_AXI_RVALID = axi_rvalid;
|
|||
|
// Implement axi_awready generation
|
|||
|
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
|
|||
|
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
|
|||
|
// de-asserted when reset is low.
|
|||
|
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
axi_awready <= 1'b0;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID)
|
|||
|
begin
|
|||
|
// slave is ready to accept write address when
|
|||
|
// there is a valid write address and write data
|
|||
|
// on the write address and data bus. This design
|
|||
|
// expects no outstanding transactions.
|
|||
|
axi_awready <= 1'b1;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
axi_awready <= 1'b0;
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
// Implement axi_awaddr latching
|
|||
|
// This process is used to latch the address when both
|
|||
|
// S_AXI_AWVALID and S_AXI_WVALID are valid.
|
|||
|
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
axi_awaddr <= 0;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID)
|
|||
|
begin
|
|||
|
// Write Address latching
|
|||
|
axi_awaddr <= S_AXI_AWADDR;
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
// Implement axi_wready generation
|
|||
|
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
|
|||
|
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
|
|||
|
// de-asserted when reset is low.
|
|||
|
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
axi_wready <= 1'b0;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID)
|
|||
|
begin
|
|||
|
// slave is ready to accept write data when
|
|||
|
// there is a valid write address and write data
|
|||
|
// on the write address and data bus. This design
|
|||
|
// expects no outstanding transactions.
|
|||
|
axi_wready <= 1'b1;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
axi_wready <= 1'b0;
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
// Implement memory mapped register select and write logic generation
|
|||
|
// The write data is accepted and written to memory mapped registers when
|
|||
|
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
|
|||
|
// select byte enables of slave registers while writing.
|
|||
|
// These registers are cleared when reset (active low) is applied.
|
|||
|
// Slave register write enable is asserted when valid address and data are available
|
|||
|
// and the slave is ready to accept the write address and write data.
|
|||
|
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
|
|||
|
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
slv_reg0 <= 500;
|
|||
|
slv_reg1 <= 100;
|
|||
|
slv_reg2 <= 0;
|
|||
|
slv_reg3 <= 0;
|
|||
|
end
|
|||
|
else begin
|
|||
|
if (slv_reg_wren)
|
|||
|
begin
|
|||
|
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
|||
|
2'h0:
|
|||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|||
|
// Respective byte enables are asserted as per write strobes
|
|||
|
// Slave register 0
|
|||
|
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|||
|
end
|
|||
|
2'h1:
|
|||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|||
|
// Respective byte enables are asserted as per write strobes
|
|||
|
// Slave register 1
|
|||
|
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|||
|
end
|
|||
|
2'h2:
|
|||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|||
|
// Respective byte enables are asserted as per write strobes
|
|||
|
// Slave register 2
|
|||
|
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|||
|
end
|
|||
|
2'h3:
|
|||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|||
|
// Respective byte enables are asserted as per write strobes
|
|||
|
// Slave register 3
|
|||
|
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|||
|
end
|
|||
|
default : begin
|
|||
|
slv_reg0 <= slv_reg0;
|
|||
|
slv_reg1 <= slv_reg1;
|
|||
|
slv_reg2 <= slv_reg2;
|
|||
|
slv_reg3 <= slv_reg3;
|
|||
|
end
|
|||
|
endcase
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
// Implement write response logic generation
|
|||
|
// The write response and response valid signals are asserted by the slave
|
|||
|
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
|
|||
|
// This marks the acceptance of address and indicates the status of
|
|||
|
// write transaction.
|
|||
|
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
axi_bvalid <= 0;
|
|||
|
axi_bresp <= 2'b0;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
|
|||
|
begin
|
|||
|
// indicates a valid write response is available
|
|||
|
axi_bvalid <= 1'b1;
|
|||
|
axi_bresp <= 2'b0; // 'OKAY' response
|
|||
|
end // work error responses in future
|
|||
|
else
|
|||
|
begin
|
|||
|
if (S_AXI_BREADY && axi_bvalid)
|
|||
|
//check if bready is asserted while bvalid is high)
|
|||
|
//(there is a possibility that bready is always asserted high)
|
|||
|
begin
|
|||
|
axi_bvalid <= 1'b0;
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
// Implement axi_arready generation
|
|||
|
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
|
|||
|
// S_AXI_ARVALID is asserted. axi_awready is
|
|||
|
// de-asserted when reset (active low) is asserted.
|
|||
|
// The read address is also latched when S_AXI_ARVALID is
|
|||
|
// asserted. axi_araddr is reset to zero on reset assertion.
|
|||
|
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
axi_arready <= 1'b0;
|
|||
|
axi_araddr <= 32'b0;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
if (~axi_arready && S_AXI_ARVALID)
|
|||
|
begin
|
|||
|
// indicates that the slave has acceped the valid read address
|
|||
|
axi_arready <= 1'b1;
|
|||
|
// Read address latching
|
|||
|
axi_araddr <= S_AXI_ARADDR;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
axi_arready <= 1'b0;
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
// Implement axi_arvalid generation
|
|||
|
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
|
|||
|
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
|
|||
|
// data are available on the axi_rdata bus at this instance. The
|
|||
|
// assertion of axi_rvalid marks the validity of read data on the
|
|||
|
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
|
|||
|
// is deasserted on reset (active low). axi_rresp and axi_rdata are
|
|||
|
// cleared to zero on reset (active low).
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
axi_rvalid <= 0;
|
|||
|
axi_rresp <= 0;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
|
|||
|
begin
|
|||
|
// Valid read data is available at the read data bus
|
|||
|
axi_rvalid <= 1'b1;
|
|||
|
axi_rresp <= 2'b0; // 'OKAY' response
|
|||
|
end
|
|||
|
else if (axi_rvalid && S_AXI_RREADY)
|
|||
|
begin
|
|||
|
// Read data is accepted by the master
|
|||
|
axi_rvalid <= 1'b0;
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
// Implement memory mapped register select and read logic generation
|
|||
|
// Slave register read enable is asserted when valid address is available
|
|||
|
// and the slave is ready to accept the read address.
|
|||
|
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
|
|||
|
always @(*)
|
|||
|
begin
|
|||
|
// Address decoding for reading registers
|
|||
|
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
|||
|
2'h0 : reg_data_out <= slv_reg0;
|
|||
|
2'h1 : reg_data_out <= slv_reg1;
|
|||
|
2'h2 : reg_data_out <= slv_reg2;
|
|||
|
2'h3 : reg_data_out <= slv_reg3;
|
|||
|
default : reg_data_out <= 0;
|
|||
|
endcase
|
|||
|
end
|
|||
|
|
|||
|
// Output register or memory read data
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
axi_rdata <= 0;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
// When there is a valid read address (S_AXI_ARVALID) with
|
|||
|
// acceptance of read address by the slave (axi_arready),
|
|||
|
// output the read dada
|
|||
|
if (slv_reg_rden)
|
|||
|
begin
|
|||
|
axi_rdata <= reg_data_out; // register read data
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
// Add user logic here
|
|||
|
always @(posedge S_AXI_ACLK)
|
|||
|
begin
|
|||
|
if(S_AXI_ARESETN == 1'b0 || ovprd)
|
|||
|
pwm_counter = 0;
|
|||
|
else
|
|||
|
pwm_counter = pwm_counter +1;
|
|||
|
end
|
|||
|
assign ovprd = (pwm_counter[31:0] < slv_reg0[31:0])? 1'b0 : 1'b1;
|
|||
|
assign pre_pwm_out = (slv_reg1[31:0] < pwm_counter)? 1'b0:1'b1;
|
|||
|
assign pwm_out = pre_pwm_out;
|
|||
|
assign pwn_reg = pwm_counter;
|
|||
|
// User logic ends
|
|||
|
|
|||
|
endmodule
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
上面例子在官方axi-lite模板修改,主要改动
|
|||
|
1. 添加ip核寄存器
|
|||
|
|
|||
|
|
|||
|
```
|
|||
|
//-- Number of Slave Registers 4
|
|||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
|
|||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
|
|||
|
```
|
|||
|
|
|||
|
2. 写入逻辑实现
|
|||
|
|
|||
|
|
|||
|
```
|
|||
|
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
|
|||
|
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
slv_reg0 <= 500;
|
|||
|
slv_reg1 <= 100;
|
|||
|
slv_reg2 <= 0;
|
|||
|
slv_reg3 <= 0;
|
|||
|
end
|
|||
|
else begin
|
|||
|
if (slv_reg_wren)
|
|||
|
begin
|
|||
|
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
|||
|
2'h0:
|
|||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|||
|
// Respective byte enables are asserted as per write strobes
|
|||
|
// Slave register 0
|
|||
|
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|||
|
end
|
|||
|
2'h1:
|
|||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|||
|
// Respective byte enables are asserted as per write strobes
|
|||
|
// Slave register 1
|
|||
|
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|||
|
end
|
|||
|
2'h2:
|
|||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|||
|
// Respective byte enables are asserted as per write strobes
|
|||
|
// Slave register 2
|
|||
|
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|||
|
end
|
|||
|
2'h3:
|
|||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|||
|
// Respective byte enables are asserted as per write strobes
|
|||
|
// Slave register 3
|
|||
|
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|||
|
end
|
|||
|
default : begin
|
|||
|
slv_reg0 <= slv_reg0;
|
|||
|
slv_reg1 <= slv_reg1;
|
|||
|
slv_reg2 <= slv_reg2;
|
|||
|
slv_reg3 <= slv_reg3;
|
|||
|
end
|
|||
|
endcase
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
```
|
|||
|
|
|||
|
2. 内存地址i映射
|
|||
|
|
|||
|
|
|||
|
```
|
|||
|
// Implement memory mapped register select and read logic generation
|
|||
|
// Slave register read enable is asserted when valid address is available
|
|||
|
// and the slave is ready to accept the read address.
|
|||
|
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
|
|||
|
always @(*)
|
|||
|
begin
|
|||
|
// Address decoding for reading registers
|
|||
|
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
|||
|
2'h0 : reg_data_out <= slv_reg0;
|
|||
|
2'h1 : reg_data_out <= slv_reg1;
|
|||
|
2'h2 : reg_data_out <= slv_reg2;
|
|||
|
2'h3 : reg_data_out <= slv_reg3;
|
|||
|
default : reg_data_out <= 0;
|
|||
|
endcase
|
|||
|
end
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
3. 读取逻辑实现
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
// Output register or memory read data
|
|||
|
always @( posedge S_AXI_ACLK )
|
|||
|
begin
|
|||
|
if ( S_AXI_ARESETN == 1'b0 )
|
|||
|
begin
|
|||
|
axi_rdata <= 0;
|
|||
|
end
|
|||
|
else
|
|||
|
begin
|
|||
|
// When there is a valid read address (S_AXI_ARVALID) with
|
|||
|
// acceptance of read address by the slave (axi_arready),
|
|||
|
// output the read dada
|
|||
|
if (slv_reg_rden)
|
|||
|
begin
|
|||
|
axi_rdata <= reg_data_out; // register read data
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
6. 用户逻辑的实现
|
|||
|
7.
|
|||
|
```
|
|||
|
// Add user logic here
|
|||
|
always @(posedge S_AXI_ACLK)
|
|||
|
begin
|
|||
|
if(S_AXI_ARESETN == 1'b0 || ovprd)
|
|||
|
pwm_counter = 0;
|
|||
|
else
|
|||
|
pwm_counter = pwm_counter +1;
|
|||
|
end
|
|||
|
assign ovprd = (pwm_counter[31:0] < slv_reg0[31:0])? 1'b0 : 1'b1;
|
|||
|
assign pre_pwm_out = (slv_reg1[31:0] < pwm_counter)? 1'b0:1'b1;
|
|||
|
assign pwm_out = pre_pwm_out;
|
|||
|
assign pwn_reg = pwm_counter;
|
|||
|
```
|
|||
|
|
|||
|
pwm的实现逻辑非常简单,输出频率由pwm_counter控制,pwm_counter > slv_reg0[31:0]时复位pwm_counter。</br>
|
|||
|
占空比由于(slv_reg1[31:0] < pwm_counter)控制</br>
|
|||
|
通过控制占空比来是
|
|||
|
|
|||
|
#### 在fpga板子上实际测试
|
|||
|
|
|||
|

|
|||
|
|
|||
|
</br>
|
|||
|
|
|||
|
板级设计
|
|||
|
</br>
|
|||
|
|
|||
|

|
|||
|
|
|||
|
</br>
|
|||
|
|
|||
|
- axi_pwm_v1_0_S00_AXI_0 是本文描述的自定义的ipcore
|
|||
|
- ps7_0_axi_periph 是axi-full到axi lite的退化core
|
|||
|
- systemila用于调试axi-lite总线
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 真机调试axi-lite
|
|||
|
|
|||
|
通过systemila来调试</br>
|
|||
|
出发条件选择为RLast both edge 即观测接收数据</br>
|
|||
|
|
|||
|

|
|||
|
|
|||
|
</br>
|
|||
|
|
|||
|
编写调试代码
|
|||
|
|
|||
|
```
|
|||
|
#include <stdio.h>
|
|||
|
#include "platform.h"
|
|||
|
#include "xil_printf.h"
|
|||
|
#include "xil_io.h"
|
|||
|
#include "xil_types.h"
|
|||
|
|
|||
|
int main()
|
|||
|
{
|
|||
|
init_platform();
|
|||
|
|
|||
|
u32 t0 = Xil_In32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x00);
|
|||
|
u32 t1 = Xil_In32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x04);
|
|||
|
u32 t2 = Xil_In32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x08);
|
|||
|
|
|||
|
|
|||
|
print("Hello World\n\r");
|
|||
|
print("Successfully ran Hello World application");
|
|||
|
|
|||
|
Xil_Out32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x00,500);
|
|||
|
Xil_Out32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x04,300);
|
|||
|
|
|||
|
Xil_Out32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x00,200);
|
|||
|
Xil_Out32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x04,50);
|
|||
|
|
|||
|
cleanup_platform();
|
|||
|
return 0;
|
|||
|
}
|
|||
|
```
|
|||
|
运行到
|
|||
|
` u32 t2 = Xil_In32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x08);`
|
|||
|
|
|||
|
时出现波形</br>
|
|||
|
|
|||
|

|
|||
|
|
|||
|
</br>
|
|||
|
|
|||
|
|
|||
|
#### 调试pwm
|
|||
|
通过改变寄存器1和寄存器2的值来改变占空比
|
|||
|
|
|||
|
```
|
|||
|
Xil_Out32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x00,500);
|
|||
|
Xil_Out32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x04,300);
|
|||
|
```
|
|||
|
|
|||
|
寄存器1 500 2: 100</br>
|
|||
|
|
|||
|

|
|||
|
|
|||
|
</br>
|
|||
|
|
|||
|
寄存器1 500 2: 300</br>
|
|||
|
|
|||
|

|
|||
|
|
|||
|
</br>
|
|||
|
|
|||
|
</br>
|
|||
|
|
|||
|
寄存器1 200 2: 50</br>
|
|||
|
|
|||
|

|
|||
|
|
|||
|
</br>
|
|||
|
|
|||
|
#### 问题
|
|||
|
|
|||
|
访问非4字节对齐地址会抛出异常,如</br>
|
|||
|
```
|
|||
|
Xil_In32(XPAR_AXI_PWM_V1_0_S00_AXI_0_BASEADDR + 0x01);
|
|||
|
```
|
|||
|
|
|||
|
|