Merge pull request #134 from Mictronics/master

Support for ADALM-Pluto
This commit is contained in:
OSQZSS 2018-03-07 08:10:37 +09:00 committed by GitHub
commit b993da884c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 755 additions and 431 deletions

3
.gitignore vendored
View File

@ -38,3 +38,6 @@ gps-sdr-sim-lut
# Temporary files
*.swp
# Netbeans project folder
nbproject/*

View File

@ -2,7 +2,7 @@
GPS-SDR-SIM generates GPS baseband signal data streams, which can be converted
to RF using software-defined radio (SDR) platforms, such as
[bladeRF](http://nuand.com/), [HackRF](https://github.com/mossmann/hackrf/wiki), and [USRP](http://www.ettus.com/).
[ADALM-Pluto](https://wiki.analog.com/university/tools/pluto), [bladeRF](http://nuand.com/), [HackRF](https://github.com/mossmann/hackrf/wiki), and [USRP](http://www.ettus.com/).
### Windows build instructions
@ -35,11 +35,11 @@ These files are then used to generate the simulated pseudorange and
Doppler for the GPS satellites in view. This simulated range data is
then used to generate the digitized I/Q samples for the GPS signal.
The bladeRF command line interface requires I/Q pairs stored as signed
The bladeRF and ADALM-Pluto command line interface requires I/Q pairs stored as signed
16-bit integers, while the hackrf_transfer and gps-sdr-sim-uhd.py
support signed bytes.
HackRF and bladeRF require 2.6 MHz sample rate, while the USRP2 requires
HackRF, bladeRF and ADALM-Pluto require 2.6 MHz sample rate, while the USRP2 requires
2.5 MHz (an even integral decimator of 100 MHz).
The simulation start time can be specified if the corresponding set of ephemerides
@ -91,6 +91,8 @@ The user motion can be specified in either dynamic or static mode:
The TX port of a particular SDR platform is connected to the GPS receiver
under test through a DC block and a fixed 50-60dB attenuator.
#### BladeRF
The simulated GPS signal file, named "gpssim.bin", can be loaded
into the bladeRF for playback as shown below:
@ -106,29 +108,49 @@ tx start
```
You can also execute these commands via the `bladeRF-cli` script option as below:
```
> bladeRF-cli -s bladerf.script
```
For the HackRF:
#### HackRF:
```
> hackrf_transfer -t gpssim.bin -f 1575420000 -s 2600000 -a 1 -x 0
```
For UHD supported devices (tested with USRP2 only):
#### UHD supported devices (tested with USRP2 only):
```
> gps-sdr-sim-uhd.py -t gpssim.bin -s 2500000 -x 0
```
For LimeSDR (in case of 1 Msps 1-bit file, to get full BaseBand dynamic and low RF power):
#### LimeSDR (in case of 1 Msps 1-bit file, to get full BaseBand dynamic and low RF power):
```
> limeplayer -s 1000000 -b 1 -d 2047 -g 0.1 < ../circle.1b.1M.bin
```
#### ADALM-Pluto (PlutoSDR):
The ADALM-Pluto device is expected to have its network interface up and running and is accessible
via "pluto.local" by default.
Default settings:
```
> plutoplayer -t gpssim.bin
```
Set TX attenuation:
```
> plutoplayer -t gpssim.bin -a -30.0
```
Default -20.0dB. Applicable range 0.0dB to -80.0dB in 0.25dB steps.
Set RF bandwidth:
```
> plutoplayer -t gpssim.bin -b 3.0
```
Default 3.0MHz. Applicable range 1.0MHz to 5.0MHz.
### License
Copyright &copy; 2015 Takuji Ebinuma

View File

@ -1,5 +1,28 @@
CC=gcc -O2 -Wall
DIALECT = -std=c11
CFLAGS += $(DIALECT) -O3 -g -W -Wall
LIBS = -lm
limeplayer: limeplayer.c
$(CC) -o limeplayer limeplayer.c -lLimeSuite
CFLAGS += $(shell pkg-config --cflags libbladeRF)
CFLAGS += $(shell pkg-config --cflags libhackrf)
CFLAGS += $(shell pkg-config --cflags libiio libad9361)
.PHONY: all bladeplayer hackplayer limeplayer plutoplayer clean
all: bladeplayer hackplayer limeplayer plutoplayer
%.o: %.c *.h
$(CC) $(CPPFLAGS) $(CFLAGS) -c $< -o $@
bladeplayer: bladeplayer.o $(SDR_OBJ) $(COMPAT)
$(CC) -g -o $@ $^ $(LDFLAGS) $(LIBS) $(shell pkg-config --libs libbladeRF)
hackplayer: hackplayer.o $(COMPAT)
$(CC) -g -o $@ $^ $(LDFLAGS) $(LIBS) $(shell pkg-config --libs libhackrf)
limeplayer: limeplayer.o $(COMPAT)
$(CC) -g -o $@ $^ $(LDFLAGS) $(LIBS) -lLimeSuite
plutoplayer: plutoplayer.o $(COMPAT)
$(CC) -g -o $@ $^ $(LDFLAGS) $(LIBS) $(shell pkg-config --libs libiio libad9361)
clean:
rm -f *.o bladeplayer hackplayer limeplayer plutoplayer

82
player/README.md Normal file
View File

@ -0,0 +1,82 @@
## Building
Modified to build on Linux.
```
$ make all
```
Will build all players if dependencies are met.
### Dependencies - bladeRF
#### libbladeRF
```
$ git clone https://github.com/Nuand/bladeRF.git
$ cd bladeRF
$ dpkg-buildpackage -b
```
Or Nuand has some build/install instructions including an Ubuntu PPA
at https://github.com/Nuand/bladeRF/wiki/Getting-Started:-Linux
#### Build
```
$ make bladeplayer
```
### Dependecies - hackRF
#### libhackrf
```
> git clone https://github.com/mossmann/hackrf.git
> mkdir hackrf/host/build
> cd hackrf/host/build
> cmake ..
> make
> sudo make install
> sudo ldconfig
```
Build instructions https://github.com/mossmann/hackrf/tree/master/host
#### Build
```
> make hackplayer
```
### Dependecies - lime
LimeSuite https://github.com/myriadrf/LimeSuite
Build instructions http://wiki.myriadrf.org/Lime_Suite
:exclamation: Build not tested.
### Dependecies - ADALM-Pluto
#### libiio
Use the latest version from Github.
```
$ git clone https://github.com/analogdevicesinc/libiio.git
$ cd libiio
$ cmake ./
$ make all
$ sudo make install
```
[How to build it in detail.](https://wiki.analog.com/resources/tools-software/linux-software/libiio)
#### libad9361
Use of the latest Github version mandatory.
```
$ git clone https://github.com/analogdevicesinc/libad9361-iio.git
$ cd libad9361-iio
$ cmake ./
$ make all
$ sudo make install
```
#### Build
```
$ make plutoplayer
```

View File

@ -4,11 +4,8 @@
#include <stdio.h>
#include <string.h>
#include <libbladeRF.h>
#ifdef _WIN32
#include "getopt.h"
#else
#include <unistd.h>
#endif
#include <errno.h>
#define TX_FREQUENCY 1575420000
#define TX_SAMPLERATE 2600000
@ -23,293 +20,279 @@
#define AMPLITUDE (1000) // Default amplitude for 12-bit I/Q
void usage(void)
{
fprintf(stderr, "Usage: bladeplayer [options]\n"
" -f <tx_file> I/Q sampling data file (required)\n"
" -b <iq_bits> I/Q data format [1/16] (default: 16)\n"
" -g <tx_vga1> TX VGA1 gain (default: %d)\n",
TX_VGA1);
void usage(void) {
fprintf(stderr, "Usage: bladeplayer [options]\n"
" -f <tx_file> I/Q sampling data file (required)\n"
" -b <iq_bits> I/Q data format [1/16] (default: 16)\n"
" -g <tx_vga1> TX VGA1 gain (default: %d)\n",
TX_VGA1);
return;
return;
}
int main(int argc, char *argv[])
{
int status;
char *devstr = NULL;
struct bladerf *dev = NULL;
FILE *fp;
int16_t *tx_buffer;
enum state {INIT, READ_FILE, PAD_TRAILING, DONE};
enum state state = INIT;
int main(int argc, char *argv[]) {
int status;
char *devstr = NULL;
struct bladerf *dev = NULL;
int compressed = 0;
uint8_t *read_buffer;
size_t samples_read;
int16_t lut[256][8];
int16_t amp = AMPLITUDE;
int i,k;
FILE *fp;
int16_t *tx_buffer;
int gain = TX_VGA1;
int result;
int data_format;
char txfile[128];
enum state {
INIT, READ_FILE, PAD_TRAILING, DONE
};
enum state state = INIT;
// Empty TX file name
txfile[0] = 0;
int compressed = 0;
uint8_t *read_buffer;
size_t samples_read;
int16_t lut[256][8];
int16_t amp = AMPLITUDE;
uint32_t i, k;
if (argc<3) {
usage();
exit(1);
}
int gain = TX_VGA1;
int result;
int data_format;
char txfile[128];
while ((result=getopt(argc,argv,"g:b:f:"))!=-1)
{
switch (result)
{
case 'g':
gain = atoi(optarg);
if (gain>-4 || gain<-35)
{
printf("ERROR: Invalid TX VGA1 gain.\n");
exit(1);
}
break;
case 'b':
data_format = atoi(optarg);
if (data_format!=1 && data_format!=16)
{
printf("ERROR: Invalid I/Q data format.\n");
exit(1);
}
else if (data_format==1)
compressed = 1;
break;
case 'f':
strcpy(txfile, optarg);
break;
case ':':
case '?':
usage();
exit(1);
default:
break;
}
}
// Empty TX file name
txfile[0] = 0;
// Open TX file.
if (txfile[0]==0)
{
printf("ERROR: I/Q sampling data file is not specified.\n");
exit(1);
}
if (argc < 3) {
usage();
exit(1);
}
fp = fopen(txfile, "rb");
while ((result = getopt(argc, argv, "g:b:f:")) != -1) {
switch (result) {
case 'g':
gain = atoi(optarg);
if (gain>-4 || gain<-35) {
printf("ERROR: Invalid TX VGA1 gain.\n");
exit(1);
}
break;
case 'b':
data_format = atoi(optarg);
if (data_format != 1 && data_format != 16) {
printf("ERROR: Invalid I/Q data format.\n");
exit(1);
} else if (data_format == 1)
compressed = 1;
break;
case 'f':
strcpy(txfile, optarg);
break;
case ':':
case '?':
usage();
exit(1);
default:
break;
}
}
if (fp==NULL) {
fprintf(stderr, "ERROR: Failed to open TX file: %s\n", argv[1]);
exit(1);
}
// Open TX file.
if (txfile[0] == 0) {
printf("ERROR: I/Q sampling data file is not specified.\n");
exit(1);
}
// Initializing device.
printf("Opening and initializing device...\n");
fp = fopen(txfile, "rb");
status = bladerf_open(&dev, devstr);
if (status != 0) {
fprintf(stderr, "Failed to open device: %s\n", bladerf_strerror(status));
goto out;
}
if (fp == NULL) {
fprintf(stderr, "ERROR: Failed to open TX file: %s\n", argv[1]);
exit(1);
}
status = bladerf_set_frequency(dev, BLADERF_MODULE_TX, TX_FREQUENCY);
if (status != 0) {
fprintf(stderr, "Faield to set TX frequency: %s\n", bladerf_strerror(status));
goto out;
}
else {
printf("TX frequency: %u Hz\n", TX_FREQUENCY);
}
// Initializing device.
printf("Opening and initializing device...\n");
status = bladerf_set_sample_rate(dev, BLADERF_MODULE_TX, TX_SAMPLERATE, NULL);
if (status != 0) {
fprintf(stderr, "Failed to set TX sample rate: %s\n", bladerf_strerror(status));
goto out;
}
else {
printf("TX sample rate: %u sps\n", TX_SAMPLERATE);
}
status = bladerf_open(&dev, devstr);
if (status != 0) {
fprintf(stderr, "Failed to open device: %s\n", bladerf_strerror(status));
goto out;
}
status = bladerf_set_bandwidth(dev, BLADERF_MODULE_TX, TX_BANDWIDTH, NULL);
if (status != 0) {
fprintf(stderr, "Failed to set TX bandwidth: %s\n", bladerf_strerror(status));
goto out;
}
else {
printf("TX bandwidth: %u Hz\n", TX_BANDWIDTH);
}
status = bladerf_set_frequency(dev, BLADERF_MODULE_TX, TX_FREQUENCY);
if (status != 0) {
fprintf(stderr, "Faield to set TX frequency: %s\n", bladerf_strerror(status));
goto out;
}
else {
printf("TX frequency: %u Hz\n", TX_FREQUENCY);
}
status = bladerf_set_txvga1(dev, gain);
if (status != 0) {
fprintf(stderr, "Failed to set TX VGA1 gain: %s\n", bladerf_strerror(status));
goto out;
}
else {
printf("TX VGA1 gain: %d dB\n", gain);
}
status = bladerf_set_sample_rate(dev, BLADERF_MODULE_TX, TX_SAMPLERATE, NULL);
if (status != 0) {
fprintf(stderr, "Failed to set TX sample rate: %s\n", bladerf_strerror(status));
goto out;
} else {
printf("TX sample rate: %u sps\n", TX_SAMPLERATE);
}
status = bladerf_set_txvga2(dev, TX_VGA2);
if (status != 0) {
fprintf(stderr, "Failed to set TX VGA2 gain: %s\n", bladerf_strerror(status));
goto out;
}
else {
printf("TX VGA2 gain: %d dB\n", TX_VGA2);
}
status = bladerf_set_bandwidth(dev, BLADERF_MODULE_TX, TX_BANDWIDTH, NULL);
if (status != 0) {
fprintf(stderr, "Failed to set TX bandwidth: %s\n", bladerf_strerror(status));
goto out;
} else {
printf("TX bandwidth: %u Hz\n", TX_BANDWIDTH);
}
// Application code goes here.
printf("Running...\n");
status = bladerf_set_txvga1(dev, gain);
if (status != 0) {
fprintf(stderr, "Failed to set TX VGA1 gain: %s\n", bladerf_strerror(status));
goto out;
} else {
printf("TX VGA1 gain: %d dB\n", gain);
}
// Allocate a buffer to hold each block of samples to transmit.
tx_buffer = (int16_t*)malloc(SAMPLES_PER_BUFFER * 2 * sizeof(int16_t));
if (tx_buffer == NULL) {
fprintf(stderr, "Failed to allocate TX buffer.\n");
goto out;
}
status = bladerf_set_txvga2(dev, TX_VGA2);
if (status != 0) {
fprintf(stderr, "Failed to set TX VGA2 gain: %s\n", bladerf_strerror(status));
goto out;
} else {
printf("TX VGA2 gain: %d dB\n", TX_VGA2);
}
// if compressed
read_buffer = (uint8_t*)malloc(SAMPLES_PER_BUFFER / 4);
// Application code goes here.
printf("Running...\n");
if (read_buffer == NULL) {
fprintf(stderr, "Failed to allocate read buffer.\n");
goto out;
}
// Allocate a buffer to hold each block of samples to transmit.
tx_buffer = (int16_t*) malloc(SAMPLES_PER_BUFFER * 2 * sizeof (int16_t));
for (i=0; i<256; i++)
{
for (k=0; k<8; k++)
lut[i][k] = ((i>>(7-k))&0x1)?amp:-amp;
}
if (tx_buffer == NULL) {
fprintf(stderr, "Failed to allocate TX buffer.\n");
goto out;
}
// Configure the TX module for use with the synchronous interface.
status = bladerf_sync_config(dev,
BLADERF_MODULE_TX,
BLADERF_FORMAT_SC16_Q11,
NUM_BUFFERS,
SAMPLES_PER_BUFFER,
NUM_TRANSFERS,
TIMEOUT_MS);
// if compressed
read_buffer = (uint8_t*) malloc(SAMPLES_PER_BUFFER / 4);
if (status != 0) {
fprintf(stderr, "Failed to configure TX sync interface: %s\n", bladerf_strerror(status));
goto out;
}
if (read_buffer == NULL) {
fprintf(stderr, "Failed to allocate read buffer.\n");
goto out;
}
// We must always enable the modules *after* calling bladerf_sync_config().
status = bladerf_enable_module(dev, BLADERF_MODULE_TX, true);
if (status != 0) {
fprintf(stderr, "Failed to enable TX module: %s\n", bladerf_strerror(status));
goto out;
}
for (i = 0; i < 256; i++) {
for (k = 0; k < 8; k++)
lut[i][k] = ((i >> (7 - k))&0x1) ? amp : -amp;
}
// Keep writing samples while there is more data to send and no failures have occurred.
while (state != DONE && status == 0) {
// Configure the TX module for use with the synchronous interface.
status = bladerf_sync_config(dev,
BLADERF_MODULE_TX,
BLADERF_FORMAT_SC16_Q11,
NUM_BUFFERS,
SAMPLES_PER_BUFFER,
NUM_TRANSFERS,
TIMEOUT_MS);
int16_t *tx_buffer_current = tx_buffer;
unsigned int buffer_samples_remaining = SAMPLES_PER_BUFFER;
if (status != 0) {
fprintf(stderr, "Failed to configure TX sync interface: %s\n", bladerf_strerror(status));
goto out;
}
// if compressed
unsigned int read_samples_remaining = SAMPLES_PER_BUFFER / 4;
// We must always enable the modules *after* calling bladerf_sync_config().
status = bladerf_enable_module(dev, BLADERF_MODULE_TX, true);
if (status != 0) {
fprintf(stderr, "Failed to enable TX module: %s\n", bladerf_strerror(status));
goto out;
}
// Keep adding to the buffer until it is full or a failure occurs
while (buffer_samples_remaining > 0 && status == 0 && state != DONE) {
size_t samples_populated = 0;
// Keep writing samples while there is more data to send and no failures have occurred.
while (state != DONE && status == 0) {
switch(state) {
case INIT:
case READ_FILE:
// Read from the input file
if (compressed)
{
int16_t *write_buffer_current = tx_buffer;
int16_t *tx_buffer_current = tx_buffer;
unsigned int buffer_samples_remaining = SAMPLES_PER_BUFFER;
samples_read = fread(read_buffer,
sizeof(uint8_t),
read_samples_remaining,
fp);
// if compressed
unsigned int read_samples_remaining = SAMPLES_PER_BUFFER / 4;
samples_populated = samples_read * 4;
buffer_samples_remaining = read_samples_remaining * 4;
// Keep adding to the buffer until it is full or a failure occurs
while (buffer_samples_remaining > 0 && status == 0 && state != DONE) {
size_t samples_populated = 0;
// Expand compressed data into TX buffer
for (i=0; i<samples_read; i++)
{
memcpy(write_buffer_current, lut[read_buffer[i]], 8);
// Advance the write buffer pointer
write_buffer_current += 8;
}
}
else
{
samples_populated = fread(tx_buffer_current,
2 * sizeof(int16_t),
buffer_samples_remaining,
fp);
}
switch (state) {
case INIT:
case READ_FILE:
// Read from the input file
if (compressed) {
int16_t *write_buffer_current = tx_buffer;
// If the end of the file was reached, pad the rest of the buffer and finish.
if (feof(fp)) {
state = PAD_TRAILING;
}
// Check for errors
else if (ferror(fp)) {
status = errno;
}
samples_read = fread(read_buffer,
sizeof (uint8_t),
read_samples_remaining,
fp);
break;
samples_populated = samples_read * 4;
buffer_samples_remaining = read_samples_remaining * 4;
case PAD_TRAILING:
// Populate the remainder of the buffer with zeros.
memset(tx_buffer_current, 0, buffer_samples_remaining * 2 * sizeof(uint16_t));
// Expand compressed data into TX buffer
for (i = 0; i < samples_read; i++) {
memcpy(write_buffer_current, lut[read_buffer[i]], 8);
state = DONE;
break;
// Advance the write buffer pointer
write_buffer_current += 8;
}
} else {
samples_populated = fread(tx_buffer_current,
2 * sizeof (int16_t),
buffer_samples_remaining,
fp);
}
case DONE:
default:
break;
}
// If the end of the file was reached, pad the rest of the buffer and finish.
if (feof(fp)) {
state = PAD_TRAILING;
} // Check for errors
else if (ferror(fp)) {
status = errno;
}
// Advance the buffer pointer.
buffer_samples_remaining -= (unsigned int)samples_populated;
tx_buffer_current += (2 * samples_populated);
}
break;
// If there were no errors, transmit the data buffer.
if (status == 0) {
bladerf_sync_tx(dev, tx_buffer, SAMPLES_PER_BUFFER, NULL, TIMEOUT_MS);
}
}
case PAD_TRAILING:
// Populate the remainder of the buffer with zeros.
memset(tx_buffer_current, 0, buffer_samples_remaining * 2 * sizeof (uint16_t));
// Disable TX module, shutting down our underlying TX stream.
status = bladerf_enable_module(dev, BLADERF_MODULE_TX, false);
if (status != 0) {
fprintf(stderr, "Failed to disable TX module: %s\n", bladerf_strerror(status));
}
state = DONE;
break;
// Free up our resources
free(tx_buffer);
case DONE:
default:
break;
}
// if compressed
free(read_buffer);
// Advance the buffer pointer.
buffer_samples_remaining -= (unsigned int) samples_populated;
tx_buffer_current += (2 * samples_populated);
}
// Close TX file
fclose(fp);
// If there were no errors, transmit the data buffer.
if (status == 0) {
bladerf_sync_tx(dev, tx_buffer, SAMPLES_PER_BUFFER, NULL, TIMEOUT_MS);
}
}
// Disable TX module, shutting down our underlying TX stream.
status = bladerf_enable_module(dev, BLADERF_MODULE_TX, false);
if (status != 0) {
fprintf(stderr, "Failed to disable TX module: %s\n", bladerf_strerror(status));
}
// Free up our resources
free(tx_buffer);
// if compressed
free(read_buffer);
// Close TX file
fclose(fp);
out:
printf("Closing device...\n");
bladerf_close(dev);
printf("Closing device...\n");
bladerf_close(dev);
return(0);
return (0);
}

View File

@ -1,22 +1,10 @@
#define _CRT_SECURE_NO_WARNINGS
#include <hackrf.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <sys/types.h>
#include <getopt.h>
#include <windows.h>
#ifdef _WIN64
typedef int64_t ssize_t;
#else
typedef int32_t ssize_t;
#endif
typedef int bool;
#define true 1
#define false 0
#include <signal.h>
#include <hackrf.h>
static hackrf_device* device = NULL;
@ -25,199 +13,188 @@ volatile uint32_t byte_count = 0;
volatile bool do_exit = false;
static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_TX;
#define FD_BUFFER_SIZE (8*1024)
#define FREQ_ONE_MHZ (1000000ull)
BOOL WINAPI sighandler(int signum)
{
if (CTRL_C_EVENT == signum) {
fprintf(stdout, "Caught signal %d\n", signum);
do_exit = true;
return TRUE;
}
return FALSE;
static void sighandler(int signum) {
fprintf(stdout, "Caught signal %d\n", signum);
do_exit = true;
}
int tx_callback(hackrf_transfer* transfer) {
size_t bytes_to_read;
size_t bytes_to_read;
if( fd != NULL )
{
ssize_t bytes_read;
byte_count += transfer->valid_length;
bytes_to_read = transfer->valid_length;
bytes_read = fread(transfer->buffer, 1, bytes_to_read, fd);
if (bytes_read != bytes_to_read) {
return -1; // EOF
} else {
return 0;
}
} else {
return -1;
}
if (fd != NULL) {
size_t bytes_read;
byte_count += transfer->valid_length;
bytes_to_read = transfer->valid_length;
bytes_read = fread(transfer->buffer, 1, bytes_to_read, fd);
if (bytes_read != bytes_to_read) {
return -1; // EOF
} else {
return 0;
}
} else {
return -1;
}
}
static void usage() {
fprintf(stderr, "Usage: hackplayer [options]\n"
" -t <filename> Transmit data from file (required)\n");
fprintf(stderr, "Usage: hackplayer [options]\n"
" -t <filename> Transmit data from file (required)\n");
return;
return;
}
int main(int argc, char** argv) {
int opt;
int result;
const char* path = NULL;
uint32_t sample_rate_hz = 2600000;
uint32_t baseband_filter_bw_hz = 0;
unsigned int txvga_gain=0;
uint64_t freq_hz = 1575420000;
uint32_t amp_enable = 1;
int opt;
int result;
const char* path = NULL;
uint32_t sample_rate_hz = 2600000;
uint32_t baseband_filter_bw_hz = 0;
unsigned int txvga_gain = 0;
uint64_t freq_hz = 1575420000;
uint32_t amp_enable = 1;
while( (opt = getopt(argc, argv, "t:")) != EOF )
{
result = HACKRF_SUCCESS;
switch( opt )
{
case 't':
path = optarg;
break;
default:
printf("unknown argument '-%c %s'\n", opt, optarg);
usage();
return EXIT_FAILURE;
}
while ((opt = getopt(argc, argv, "t:")) != EOF) {
result = HACKRF_SUCCESS;
switch (opt) {
case 't':
path = optarg;
break;
default:
printf("unknown argument '-%c %s'\n", opt, optarg);
usage();
return EXIT_FAILURE;
}
if( result != HACKRF_SUCCESS ) {
printf("argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if (result != HACKRF_SUCCESS) {
printf("argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if( path == NULL ) {
printf("specify a path to a file to transmit\n");
usage();
return EXIT_FAILURE;
}
if (path == NULL) {
printf("specify a path to a file to transmit\n");
usage();
return EXIT_FAILURE;
}
// Compute default value depending on sample rate
baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw_round_down_lt(sample_rate_hz);
// Compute default value depending on sample rate
baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw_round_down_lt(sample_rate_hz);
result = hackrf_init();
if( result != HACKRF_SUCCESS ) {
printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_init();
if (result != HACKRF_SUCCESS) {
printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(NULL, &device);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(NULL, &device);
if (result != HACKRF_SUCCESS) {
printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
fd = fopen(path, "rb");
if( fd == NULL ) {
printf("Failed to open file: %s\n", path);
return EXIT_FAILURE;
}
fd = fopen(path, "rb");
if (fd == NULL) {
printf("Failed to open file: %s\n", path);
return EXIT_FAILURE;
}
// Change fd buffer to have bigger one to store or read data on/to HDD
result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE);
if( result != 0 ) {
printf("setvbuf() failed: %d\n", result);
usage();
return EXIT_FAILURE;
}
// Change fd buffer to have bigger one to store or read data on/to HDD
result = setvbuf(fd, NULL, _IOFBF, FD_BUFFER_SIZE);
if (result != 0) {
printf("setvbuf() failed: %d\n", result);
usage();
return EXIT_FAILURE;
}
SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
signal(SIGINT, sighandler);
printf("call hackrf_sample_rate_set(%.03f MHz)\n", ((float)sample_rate_hz/(float)FREQ_ONE_MHZ));
result = hackrf_set_sample_rate_manual(device, sample_rate_hz, 1);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
printf("call hackrf_sample_rate_set(%.03f MHz)\n", ((float) sample_rate_hz / (float) FREQ_ONE_MHZ));
result = hackrf_set_sample_rate_manual(device, sample_rate_hz, 1);
if (result != HACKRF_SUCCESS) {
printf("hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
printf("call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n",
((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ));
result = hackrf_set_baseband_filter_bandwidth(device, baseband_filter_bw_hz);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
printf("call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n",
((float) baseband_filter_bw_hz / (float) FREQ_ONE_MHZ));
result = hackrf_set_baseband_filter_bandwidth(device, baseband_filter_bw_hz);
if (result != HACKRF_SUCCESS) {
printf("hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_set_txvga_gain(device, txvga_gain);
result |= hackrf_start_tx(device, tx_callback, NULL);
result = hackrf_set_txvga_gain(device, txvga_gain);
result |= hackrf_start_tx(device, tx_callback, NULL);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
if (result != HACKRF_SUCCESS) {
printf("hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
printf("call hackrf_set_freq(%.03f MHz)\n", ((double)freq_hz/(double)FREQ_ONE_MHZ));
result = hackrf_set_freq(device, freq_hz);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
printf("call hackrf_set_freq(%.03f MHz)\n", ((double) freq_hz / (double) FREQ_ONE_MHZ));
result = hackrf_set_freq(device, freq_hz);
if (result != HACKRF_SUCCESS) {
printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
printf("call hackrf_set_amp_enable(%u)\n", amp_enable);
result = hackrf_set_amp_enable(device, (uint8_t)amp_enable);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
printf("call hackrf_set_amp_enable(%u)\n", amp_enable);
result = hackrf_set_amp_enable(device, (uint8_t) amp_enable);
if (result != HACKRF_SUCCESS) {
printf("hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
printf("Stop with Ctrl-C\n");
while( (hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false) ) {
// Show something?
}
printf("Stop with Ctrl-C\n");
while ((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) {
// Show something?
}
result = hackrf_is_streaming(device);
if (do_exit) {
printf("\nUser cancel, exiting...\n");
} else {
printf("\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result);
}
result = hackrf_is_streaming(device);
if (do_exit) {
printf("\nUser cancel, exiting...\n");
} else {
printf("\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result);
}
if(device != NULL) {
result = hackrf_stop_tx(device);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result);
} else {
printf("hackrf_stop_tx() done\n");
}
if (device != NULL) {
result = hackrf_stop_tx(device);
if (result != HACKRF_SUCCESS) {
printf("hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result);
} else {
printf("hackrf_stop_tx() done\n");
}
result = hackrf_close(device);
if( result != HACKRF_SUCCESS )
{
printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
} else {
printf("hackrf_close() done\n");
}
hackrf_exit();
printf("hackrf_exit() done\n");
}
result = hackrf_close(device);
if (result != HACKRF_SUCCESS) {
printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
} else {
printf("hackrf_close() done\n");
}
if(fd != NULL) {
fclose(fd);
fd = NULL;
printf("fclose(fd) done\n");
}
hackrf_exit();
printf("hackrf_exit() done\n");
}
printf("exit\n");
return EXIT_SUCCESS;
if (fd != NULL) {
fclose(fd);
fd = NULL;
printf("fclose(fd) done\n");
}
printf("exit\n");
return EXIT_SUCCESS;
}

234
player/plutoplayer.c Normal file
View File

@ -0,0 +1,234 @@
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <iio.h>
#include <ad9361.h>
#define NOTUSED(V) ((void) V)
#define MHZ(x) ((long long)(x*1000000.0 + .5))
#define GHZ(x) ((long long)(x*1000000000.0 + .5))
#define NUM_SAMPLES 2600000
#define BUFFER_SIZE (NUM_SAMPLES * 2 * sizeof(int16_t))
struct stream_cfg {
long long bw_hz; // Analog banwidth in Hz
long long fs_hz; // Baseband sample rate in Hz
long long lo_hz; // Local oscillator frequency in Hz
const char* rfport; // Port name
double gain_db; // Hardware gain
};
static void usage() {
fprintf(stderr, "Usage: plutoplayer [options]\n"
" -t <filename> Transmit data from file (required)\n"
" -a <attenuation> Set TX attenuation [dB] (default -20.0)"
" -b <bw> Set RF bandwidth [MHz] (default 5.0)");
return;
}
static bool stop = false;
static void handle_sig(int sig)
{
NOTUSED(sig);
stop = true;
}
static char* readable_fs(double size, char *buf, size_t buf_size) {
int i = 0;
const char* units[] = {"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"};
while (size > 1024) {
size /= 1024;
i++;
}
snprintf(buf, buf_size, "%.*f %s", i, size, units[i]);
return buf;
}
/*
*
*/
int main(int argc, char** argv) {
char buf[1024];
int opt;
const char* path = NULL;
struct stream_cfg txcfg;
FILE *fp = NULL;
enum state {INIT, READ_FILE, PAD_TRAILING, DONE};
// TX stream default config
txcfg.bw_hz = MHZ(3.0); // 3.0 MHz RF bandwidth
txcfg.fs_hz = MHZ(2.6); // 2.6 MS/s TX sample rate
txcfg.lo_hz = GHZ(1.575420); // 1.57542 GHz RF frequency
txcfg.rfport = "A";
txcfg.gain_db = -20.0;
struct iio_context *ctx = NULL;
struct iio_device *tx = NULL;
struct iio_device *phydev = NULL;
struct iio_channel *tx0_i = NULL;
struct iio_channel *tx0_q = NULL;
struct iio_buffer *tx_buffer = NULL;
while ((opt = getopt(argc, argv, "t:a:b:")) != EOF) {
switch (opt) {
case 't':
path = optarg;
break;
case 'a':
txcfg.gain_db = atof(optarg);
if(txcfg.gain_db > 0.0) txcfg.gain_db = 0.0;
if(txcfg.gain_db < -80.0) txcfg.gain_db = -80.0;
break;
case 'b':
txcfg.bw_hz = MHZ(atof(optarg));
if(txcfg.bw_hz > MHZ(5.0)) txcfg.bw_hz = MHZ(5.0);
if(txcfg.bw_hz < MHZ(1.0)) txcfg.bw_hz = MHZ(1.0);
break;
default:
printf("Unknown argument '-%c %s'\n", opt, optarg);
usage();
return EXIT_FAILURE;
}
}
signal(SIGINT, handle_sig);
if( path == NULL ) {
printf("Specify a path to a file to transmit\n");
usage();
return EXIT_FAILURE;
}
fp = fopen(path, "rb");
if (fp==NULL) {
fprintf(stderr, "ERROR: Failed to open TX file: %s\n", path);
return EXIT_FAILURE;
}
fseek(fp, 0L, SEEK_END);
size_t sz = ftell(fp);
fseek(fp, 0L, SEEK_SET);
readable_fs((double)sz, buf, sizeof(buf));
printf("* Transmit file size: %s\n", buf);
printf("* Acquiring IIO context\n");
ctx = iio_create_default_context();
if (ctx == NULL) {
ctx = iio_create_network_context("pluto.local");
}
if (ctx == NULL) {
iio_strerror(errno, buf, sizeof(buf));
fprintf(stderr, "Failed creating IIO context: %s\n", buf);
return false;
}
struct iio_scan_context *scan_ctx;
struct iio_context_info **info;
scan_ctx = iio_create_scan_context(NULL, 0);
if (scan_ctx) {
int info_count = iio_scan_context_get_info_list(scan_ctx, &info);
if(info_count > 0) {
printf("* Found %s\n", iio_context_info_get_description(info[0]));
iio_context_info_list_free(info);
}
iio_scan_context_destroy(scan_ctx);
}
printf("* Acquiring devices\n");
int device_count = iio_context_get_devices_count(ctx);
if (!device_count) {
fprintf(stderr, "No supported PLUTOSDR devices found.\n");
goto error_exit;
}
fprintf(stderr, "* Context has %d device(s).\n", device_count);
printf("* Acquiring TX device\n");
tx = iio_context_find_device(ctx, "cf-ad9361-dds-core-lpc");
if (tx == NULL) {
iio_strerror(errno, buf, sizeof(buf));
fprintf(stderr, "Error opening PLUTOSDR TX device: %s\n", buf);
goto error_exit;
}
iio_device_set_kernel_buffers_count(tx, 8);
phydev = iio_context_find_device(ctx, "ad9361-phy");
struct iio_channel* phy_chn = iio_device_find_channel(phydev, "voltage0", true);
iio_channel_attr_write(phy_chn, "rf_port_select", txcfg.rfport);
iio_channel_attr_write_longlong(phy_chn, "rf_bandwidth", txcfg.bw_hz);
iio_channel_attr_write_longlong(phy_chn, "sampling_frequency", txcfg.fs_hz);
iio_channel_attr_write_double(phy_chn, "hardwaregain", txcfg.gain_db);
iio_channel_attr_write_bool(
iio_device_find_channel(phydev, "altvoltage0", true)
, "powerdown", true); // Turn OFF RX LO
iio_channel_attr_write_longlong(
iio_device_find_channel(phydev, "altvoltage1", true)
, "frequency", txcfg.lo_hz); // Set TX LO frequency
iio_channel_attr_write_longlong(
iio_device_find_channel(phydev, "altvoltage1", true)
, "frequency", txcfg.lo_hz); // Set TX LO frequency
printf("* Initializing streaming channels\n");
tx0_i = iio_device_find_channel(tx, "voltage0", true);
if (!tx0_i)
tx0_i = iio_device_find_channel(tx, "altvoltage0", true);
tx0_q = iio_device_find_channel(tx, "voltage1", true);
if (!tx0_q)
tx0_q = iio_device_find_channel(tx, "altvoltage1", true);
printf("* Enabling IIO streaming channels\n");
iio_channel_enable(tx0_i);
iio_channel_enable(tx0_q);
ad9361_set_bb_rate(iio_context_find_device(ctx, "ad9361-phy"), txcfg.fs_hz);
printf("* Creating TX buffer\n");
tx_buffer = iio_device_create_buffer(tx, NUM_SAMPLES, false);
if (!tx_buffer) {
fprintf(stderr, "Could not create TX buffer.\n");
goto error_exit;
}
iio_channel_attr_write_bool(
iio_device_find_channel(iio_context_find_device(ctx, "ad9361-phy"), "altvoltage1", true)
, "powerdown", false); // Turn ON TX LO
int32_t ntx = 0;
char *ptx_buffer = (char *)iio_buffer_start(tx_buffer);
printf("* Transmit starts...\n");
// Keep writing samples while there is more data to send and no failures have occurred.
while (!feof(fp) && !stop) {
fread(ptx_buffer, 1, BUFFER_SIZE,fp);
// Schedule TX buffer
ntx = iio_buffer_push(tx_buffer);
if (ntx < 0) {
printf("Error pushing buf %d\n", (int) ntx);
goto error_exit;
}
}
printf("Done.\n");
error_exit:
fclose(fp);
iio_channel_attr_write_bool(
iio_device_find_channel(iio_context_find_device(ctx, "ad9361-phy"), "altvoltage1", true)
, "powerdown", true); // Turn OFF TX LO
if (tx_buffer) { iio_buffer_destroy(tx_buffer); }
if (tx0_i) { iio_channel_disable(tx0_i); }
if (tx0_q) { iio_channel_disable(tx0_q); }
if (ctx) { iio_context_destroy(ctx); }
return EXIT_SUCCESS;
}