#define _CRT_SECURE_NO_DEPRECATE #include #include #include #include #include #ifdef _WIN32 #include "getopt.h" #else #include #endif #include "gpssim.h" int sinTable512[] = { 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 91, 94, 97, 100, 103, 105, 108, 111, 114, 116, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145, 148, 150, 153, 155, 157, 160, 162, 164, 167, 169, 171, 173, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 205, 207, 209, 210, 212, 214, 215, 217, 218, 220, 221, 223, 224, 225, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 245, 246, 247, 247, 248, 248, 248, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 249, 249, 249, 249, 248, 248, 248, 247, 247, 246, 245, 245, 244, 244, 243, 242, 241, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 230, 229, 228, 227, 225, 224, 223, 221, 220, 218, 217, 215, 214, 212, 210, 209, 207, 205, 204, 202, 200, 198, 196, 194, 192, 190, 188, 186, 184, 182, 180, 178, 176, 173, 171, 169, 167, 164, 162, 160, 157, 155, 153, 150, 148, 145, 143, 140, 138, 135, 132, 130, 127, 125, 122, 119, 116, 114, 111, 108, 105, 103, 100, 97, 94, 91, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5, 2, -2, -5, -8, -11, -14, -17, -20, -23, -26, -29, -32, -35, -38, -41, -44, -47, -50, -53, -56, -59, -62, -65, -68, -71, -74, -77, -80, -83, -86, -89, -91, -94, -97,-100,-103,-105,-108,-111,-114,-116,-119,-122,-125,-127,-130,-132,-135,-138, -140,-143,-145,-148,-150,-153,-155,-157,-160,-162,-164,-167,-169,-171,-173,-176, -178,-180,-182,-184,-186,-188,-190,-192,-194,-196,-198,-200,-202,-204,-205,-207, -209,-210,-212,-214,-215,-217,-218,-220,-221,-223,-224,-225,-227,-228,-229,-230, -232,-233,-234,-235,-236,-237,-238,-239,-240,-241,-241,-242,-243,-244,-244,-245, -245,-246,-247,-247,-248,-248,-248,-249,-249,-249,-249,-250,-250,-250,-250,-250, -250,-250,-250,-250,-250,-249,-249,-249,-249,-248,-248,-248,-247,-247,-246,-245, -245,-244,-244,-243,-242,-241,-241,-240,-239,-238,-237,-236,-235,-234,-233,-232, -230,-229,-228,-227,-225,-224,-223,-221,-220,-218,-217,-215,-214,-212,-210,-209, -207,-205,-204,-202,-200,-198,-196,-194,-192,-190,-188,-186,-184,-182,-180,-178, -176,-173,-171,-169,-167,-164,-162,-160,-157,-155,-153,-150,-148,-145,-143,-140, -138,-135,-132,-130,-127,-125,-122,-119,-116,-114,-111,-108,-105,-103,-100, -97, -94, -91, -89, -86, -83, -80, -77, -74, -71, -68, -65, -62, -59, -56, -53, -50, -47, -44, -41, -38, -35, -32, -29, -26, -23, -20, -17, -14, -11, -8, -5, -2 }; int cosTable512[] = { 250, 250, 250, 250, 250, 249, 249, 249, 249, 248, 248, 248, 247, 247, 246, 245, 245, 244, 244, 243, 242, 241, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 230, 229, 228, 227, 225, 224, 223, 221, 220, 218, 217, 215, 214, 212, 210, 209, 207, 205, 204, 202, 200, 198, 196, 194, 192, 190, 188, 186, 184, 182, 180, 178, 176, 173, 171, 169, 167, 164, 162, 160, 157, 155, 153, 150, 148, 145, 143, 140, 138, 135, 132, 130, 127, 125, 122, 119, 116, 114, 111, 108, 105, 103, 100, 97, 94, 91, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5, 2, -2, -5, -8, -11, -14, -17, -20, -23, -26, -29, -32, -35, -38, -41, -44, -47, -50, -53, -56, -59, -62, -65, -68, -71, -74, -77, -80, -83, -86, -89, -91, -94, -97,-100,-103,-105,-108,-111,-114,-116,-119,-122,-125,-127,-130,-132,-135,-138, -140,-143,-145,-148,-150,-153,-155,-157,-160,-162,-164,-167,-169,-171,-173,-176, -178,-180,-182,-184,-186,-188,-190,-192,-194,-196,-198,-200,-202,-204,-205,-207, -209,-210,-212,-214,-215,-217,-218,-220,-221,-223,-224,-225,-227,-228,-229,-230, -232,-233,-234,-235,-236,-237,-238,-239,-240,-241,-241,-242,-243,-244,-244,-245, -245,-246,-247,-247,-248,-248,-248,-249,-249,-249,-249,-250,-250,-250,-250,-250, -250,-250,-250,-250,-250,-249,-249,-249,-249,-248,-248,-248,-247,-247,-246,-245, -245,-244,-244,-243,-242,-241,-241,-240,-239,-238,-237,-236,-235,-234,-233,-232, -230,-229,-228,-227,-225,-224,-223,-221,-220,-218,-217,-215,-214,-212,-210,-209, -207,-205,-204,-202,-200,-198,-196,-194,-192,-190,-188,-186,-184,-182,-180,-178, -176,-173,-171,-169,-167,-164,-162,-160,-157,-155,-153,-150,-148,-145,-143,-140, -138,-135,-132,-130,-127,-125,-122,-119,-116,-114,-111,-108,-105,-103,-100, -97, -94, -91, -89, -86, -83, -80, -77, -74, -71, -68, -65, -62, -59, -56, -53, -50, -47, -44, -41, -38, -35, -32, -29, -26, -23, -20, -17, -14, -11, -8, -5, -2, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 91, 94, 97, 100, 103, 105, 108, 111, 114, 116, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145, 148, 150, 153, 155, 157, 160, 162, 164, 167, 169, 171, 173, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 205, 207, 209, 210, 212, 214, 215, 217, 218, 220, 221, 223, 224, 225, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 245, 246, 247, 247, 248, 248, 248, 249, 249, 249, 249, 250, 250, 250, 250, 250 }; // Receiver antenna attenuation in dB for boresight angle = 0:5:180 [deg] double ant_pat_db[37] = { 0.00, 0.00, 0.22, 0.44, 0.67, 1.11, 1.56, 2.00, 2.44, 2.89, 3.56, 4.22, 4.89, 5.56, 6.22, 6.89, 7.56, 8.22, 8.89, 9.78, 10.67, 11.56, 12.44, 13.33, 14.44, 15.56, 16.67, 17.78, 18.89, 20.00, 21.33, 22.67, 24.00, 25.56, 27.33, 29.33, 31.56 }; int allocatedSat[MAX_SAT]; double xyz[USER_MOTION_SIZE][3]; /*! \brief Subtract two vectors of double * \param[out] y Result of subtraction * \param[in] x1 Minuend of subtraction * \param[in] x2 Subtrahend of subtraction */ void subVect(double *y, const double *x1, const double *x2) { y[0] = x1[0]-x2[0]; y[1] = x1[1]-x2[1]; y[2] = x1[2]-x2[2]; return; } /*! \brief Compute Norm of Vector * \param[in] x Input vector * \returns Length (Norm) of the input vector */ double normVect(const double *x) { return(sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2])); } /*! \brief Compute dot-product of two vectors * \param[in] x1 First multiplicand * \param[in] x2 Second multiplicand * \returns Dot-product of both multiplicands */ double dotProd(const double *x1, const double *x2) { return(x1[0]*x2[0]+x1[1]*x2[1]+x1[2]*x2[2]); } /* !\brief generate the C/A code sequence for a given Satellite Vehicle PRN * \param[in] prn PRN number of the Satellite Vehicle * \param[out] ca Caller-allocated integer array of 1023 bytes */ void codegen(int *ca, int prn) { int delay[] = { 5, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254, 255, 256, 257, 258, 469, 470, 471, 472, 473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862}; int g1[CA_SEQ_LEN], g2[CA_SEQ_LEN]; int r1[N_DWRD_SBF], r2[N_DWRD_SBF]; int c1, c2; int i,j; if (prn<1 || prn>32) return; for (i=0; i0; j--) { r1[j] = r1[j-1]; r2[j] = r2[j-1]; } r1[0] = c1; r2[0] = c2; } for (i=0,j=CA_SEQ_LEN-delay[prn-1]; iy - 1980; // Compute the number of leap days since Jan 5/Jan 6, 1980. lpdays = ye/4 + 1; if ((ye%4)==0 && t->m<=2) lpdays--; // Compute the number of days elapsed since Jan 5/Jan 6, 1980. de = ye*365 + doy[t->m-1] + t->d + lpdays - 6; // Convert time to GPS weeks and seconds. g->week = de / 7; g->sec = (double)(de%7)*SECONDS_IN_DAY + t->hh*SECONDS_IN_HOUR + t->mm*SECONDS_IN_MINUTE + t->sec; return; } void gps2date(const gpstime_t *g, datetime_t *t) { // Convert Julian day number to calendar date int c = (int)(7*g->week + floor(g->sec/86400.0)+2444245.0) + 1537; int d = (int)((c-122.1)/365.25); int e = 365*d + d/4; int f = (int)((c-e)/30.6001); t->d = c - e - (int)(30.6001*f); t->m = f - 1 - 12*(f/14); t->y = d - 4715 - ((7 + t->m)/10); t->hh = ((int)(g->sec/3600.0))%24; t->mm = ((int)(g->sec/60.0))%60; t->sec = g->sec - 60.0*floor(g->sec/60.0); return; } /*! \brief Convert Earth-centered Earth-fixed (ECEF) into Lat/Long/Height * \param[in] xyz Input Array of X, Y and Z ECEF coordinates * \param[out] llh Output Array of Latitude, Longitude and Height */ void xyz2llh(const double *xyz, double *llh) { double a,eps,e,e2; double x,y,z; double rho2,dz,zdz,nh,slat,n,dz_new; a = WGS84_RADIUS; e = WGS84_ECCENTRICITY; eps = 1.0e-3; e2 = e*e; if (normVect(xyz)SECONDS_IN_HALF_WEEK) tk -= SECONDS_IN_WEEK; else if(tk<-SECONDS_IN_HALF_WEEK) tk += SECONDS_IN_WEEK; mk = eph.m0 + eph.n*tk; ek = mk; ekold = ek + 1.0; OneMinusecosE = 0; // Suppress the uninitialized warning. while(fabs(ek-ekold)>1.0E-14) { ekold = ek; OneMinusecosE = 1.0-eph.ecc*cos(ekold); ek = ek + (mk-ekold+eph.ecc*sin(ekold))/OneMinusecosE; } sek = sin(ek); cek = cos(ek); ekdot = eph.n/OneMinusecosE; relativistic = -4.442807633E-10*eph.ecc*eph.sqrta*sek; pk = atan2(eph.sq1e2*sek,cek-eph.ecc) + eph.aop; pkdot = eph.sq1e2*ekdot/OneMinusecosE; s2pk = sin(2.0*pk); c2pk = cos(2.0*pk); uk = pk + eph.cus*s2pk + eph.cuc*c2pk; suk = sin(uk); cuk = cos(uk); ukdot = pkdot*(1.0 + 2.0*(eph.cus*c2pk - eph.cuc*s2pk)); rk = eph.A*OneMinusecosE + eph.crc*c2pk + eph.crs*s2pk; rkdot = eph.A*eph.ecc*sek*ekdot + 2.0*pkdot*(eph.crs*c2pk - eph.crc*s2pk); ik = eph.inc0 + eph.idot*tk + eph.cic*c2pk + eph.cis*s2pk; sik = sin(ik); cik = cos(ik); ikdot = eph.idot + 2.0*pkdot*(eph.cis*c2pk - eph.cic*s2pk); xpk = rk*cuk; ypk = rk*suk; xpkdot = rkdot*cuk - ypk*ukdot; ypkdot = rkdot*suk + xpk*ukdot; ok = eph.omg0 + tk*eph.omgkdot - OMEGA_EARTH*eph.toe.sec; sok = sin(ok); cok = cos(ok); pos[0] = xpk*cok - ypk*cik*sok; pos[1] = xpk*sok + ypk*cik*cok; pos[2] = ypk*sik; tmp = ypkdot*cik - ypk*sik*ikdot; vel[0] = -eph.omgkdot*pos[1] + xpkdot*cok - tmp*sok; vel[1] = eph.omgkdot*pos[0] + xpkdot*sok + tmp*cok; vel[2] = ypk*cik*ikdot + ypkdot*sik; // Satellite clock correction tk = g.sec - eph.toc.sec; if(tk>SECONDS_IN_HALF_WEEK) tk -= SECONDS_IN_WEEK; else if(tk<-SECONDS_IN_HALF_WEEK) tk += SECONDS_IN_WEEK; clk[0] = eph.af0 + tk*(eph.af1 + tk*eph.af2) + relativistic - eph.tgd; clk[1] = eph.af1 + 2.0*tk*eph.af2; return; } /*! \brief Compute Subframe from Ephemeris * \param[in] eph Ephemeris of given SV * \param[out] sbf Array of five sub-frames, 10 long words each */ void eph2sbf(const ephem_t eph, const ionoutc_t ionoutc, unsigned long sbf[5][N_DWRD_SBF]) { unsigned long wn; unsigned long toe; unsigned long toc; unsigned long iode; unsigned long iodc; long deltan; long cuc; long cus; long cic; long cis; long crc; long crs; unsigned long ecc; unsigned long sqrta; long m0; long omg0; long inc0; long aop; long omgdot; long idot; long af0; long af1; long af2; long tgd; int svhlth; int codeL2; unsigned long ura = 0UL; unsigned long dataId = 1UL; unsigned long sbf4_page25_svId = 63UL; unsigned long sbf5_page25_svId = 51UL; unsigned long wna; unsigned long toa; signed long alpha0,alpha1,alpha2,alpha3; signed long beta0,beta1,beta2,beta3; signed long A0,A1; signed long dtls; unsigned long tot,wnt,wnlsf,dtlsf,dn; unsigned long sbf4_page18_svId = 56UL; // FIXED: This has to be the "transmission" week number, not for the ephemeris reference time //wn = (unsigned long)(eph.toe.week%1024); wn = 0UL; toe = (unsigned long)(eph.toe.sec/16.0); toc = (unsigned long)(eph.toc.sec/16.0); iode = (unsigned long)(eph.iode); iodc = (unsigned long)(eph.iodc); deltan = (long)(eph.deltan/POW2_M43/PI); cuc = (long)(eph.cuc/POW2_M29); cus = (long)(eph.cus/POW2_M29); cic = (long)(eph.cic/POW2_M29); cis = (long)(eph.cis/POW2_M29); crc = (long)(eph.crc/POW2_M5); crs = (long)(eph.crs/POW2_M5); ecc = (unsigned long)(eph.ecc/POW2_M33); sqrta = (unsigned long)(eph.sqrta/POW2_M19); m0 = (long)(eph.m0/POW2_M31/PI); omg0 = (long)(eph.omg0/POW2_M31/PI); inc0 = (long)(eph.inc0/POW2_M31/PI); aop = (long)(eph.aop/POW2_M31/PI); omgdot = (long)(eph.omgdot/POW2_M43/PI); idot = (long)(eph.idot/POW2_M43/PI); af0 = (long)(eph.af0/POW2_M31); af1 = (long)(eph.af1/POW2_M43); af2 = (long)(eph.af2/POW2_M55); tgd = (long)(eph.tgd/POW2_M31); svhlth = (unsigned long)(eph.svhlth); codeL2 = (unsigned long)(eph.codeL2); wna = (unsigned long)(eph.toe.week%256); toa = (unsigned long)(eph.toe.sec/4096.0); alpha0 = (signed long)round(ionoutc.alpha0/POW2_M30); alpha1 = (signed long)round(ionoutc.alpha1/POW2_M27); alpha2 = (signed long)round(ionoutc.alpha2/POW2_M24); alpha3 = (signed long)round(ionoutc.alpha3/POW2_M24); beta0 = (signed long)round(ionoutc.beta0/2048.0); beta1 = (signed long)round(ionoutc.beta1/16384.0); beta2 = (signed long)round(ionoutc.beta2/65536.0); beta3 = (signed long)round(ionoutc.beta3/65536.0); A0 = (signed long)round(ionoutc.A0/POW2_M30); A1 = (signed long)round(ionoutc.A1/POW2_M50); dtls = (signed long)(ionoutc.dtls); tot = (unsigned long)(ionoutc.tot/4096); wnt = (unsigned long)(ionoutc.wnt%256); // 2016/12/31 (Sat) -> WNlsf = 1929, DN = 7 (http://navigationservices.agi.com/GNSSWeb/) // Days are counted from 1 to 7 (Sunday is 1). if (ionoutc.leapen==TRUE) { wnlsf = (unsigned long)(ionoutc.wnlsf%256); dn = (unsigned long)(ionoutc.dn); dtlsf = (unsigned long)(ionoutc.dtlsf); } else { wnlsf = 1929%256; dn = 7; dtlsf = 18; } // Subframe 1 sbf[0][0] = 0x8B0000UL<<6; sbf[0][1] = 0x1UL<<8; sbf[0][2] = ((wn&0x3FFUL)<<20) | ((codeL2&0x3UL)<<18) | ((ura&0xFUL)<<14) | ((svhlth&0x3FUL)<<8) | (((iodc>>8)&0x3UL)<<6); sbf[0][3] = 0UL; sbf[0][4] = 0UL; sbf[0][5] = 0UL; sbf[0][6] = (tgd&0xFFUL)<<6; sbf[0][7] = ((iodc&0xFFUL)<<22) | ((toc&0xFFFFUL)<<6); sbf[0][8] = ((af2&0xFFUL)<<22) | ((af1&0xFFFFUL)<<6); sbf[0][9] = (af0&0x3FFFFFUL)<<8; // Subframe 2 sbf[1][0] = 0x8B0000UL<<6; sbf[1][1] = 0x2UL<<8; sbf[1][2] = ((iode&0xFFUL)<<22) | ((crs&0xFFFFUL)<<6); sbf[1][3] = ((deltan&0xFFFFUL)<<14) | (((m0>>24)&0xFFUL)<<6); sbf[1][4] = (m0&0xFFFFFFUL)<<6; sbf[1][5] = ((cuc&0xFFFFUL)<<14) | (((ecc>>24)&0xFFUL)<<6); sbf[1][6] = (ecc&0xFFFFFFUL)<<6; sbf[1][7] = ((cus&0xFFFFUL)<<14) | (((sqrta>>24)&0xFFUL)<<6); sbf[1][8] = (sqrta&0xFFFFFFUL)<<6; sbf[1][9] = (toe&0xFFFFUL)<<14; // Subframe 3 sbf[2][0] = 0x8B0000UL<<6; sbf[2][1] = 0x3UL<<8; sbf[2][2] = ((cic&0xFFFFUL)<<14) | (((omg0>>24)&0xFFUL)<<6); sbf[2][3] = (omg0&0xFFFFFFUL)<<6; sbf[2][4] = ((cis&0xFFFFUL)<<14) | (((inc0>>24)&0xFFUL)<<6); sbf[2][5] = (inc0&0xFFFFFFUL)<<6; sbf[2][6] = ((crc&0xFFFFUL)<<14) | (((aop>>24)&0xFFUL)<<6); sbf[2][7] = (aop&0xFFFFFFUL)<<6; sbf[2][8] = (omgdot&0xFFFFFFUL)<<6; sbf[2][9] = ((iode&0xFFUL)<<22) | ((idot&0x3FFFUL)<<8); if (ionoutc.vflg==TRUE) { // Subframe 4, page 18 sbf[3][0] = 0x8B0000UL<<6; sbf[3][1] = 0x4UL<<8; sbf[3][2] = (dataId<<28) | (sbf4_page18_svId<<22) | ((alpha0&0xFFUL)<<14) | ((alpha1&0xFFUL)<<6); sbf[3][3] = ((alpha2&0xFFUL)<<22) | ((alpha3&0xFFUL)<<14) | ((beta0&0xFFUL)<<6); sbf[3][4] = ((beta1&0xFFUL)<<22) | ((beta2&0xFFUL)<<14) | ((beta3&0xFFUL)<<6); sbf[3][5] = (A1&0xFFFFFFUL)<<6; sbf[3][6] = ((A0>>8)&0xFFFFFFUL)<<6; sbf[3][7] = ((A0&0xFFUL)<<22) | ((tot&0xFFUL)<<14) | ((wnt&0xFFUL)<<6); sbf[3][8] = ((dtls&0xFFUL)<<22) | ((wnlsf&0xFFUL)<<14) | ((dn&0xFFUL)<<6); sbf[3][9] = (dtlsf&0xFFUL)<<22; } else { // Subframe 4, page 25 sbf[3][0] = 0x8B0000UL<<6; sbf[3][1] = 0x4UL<<8; sbf[3][2] = (dataId<<28) | (sbf4_page25_svId<<22); sbf[3][3] = 0UL; sbf[3][4] = 0UL; sbf[3][5] = 0UL; sbf[3][6] = 0UL; sbf[3][7] = 0UL; sbf[3][8] = 0UL; sbf[3][9] = 0UL; } // Subframe 5, page 25 sbf[4][0] = 0x8B0000UL<<6; sbf[4][1] = 0x5UL<<8; sbf[4][2] = (dataId<<28) | (sbf5_page25_svId<<22) | ((toa&0xFFUL)<<14) | ((wna&0xFFUL)<<6); sbf[4][3] = 0UL; sbf[4][4] = 0UL; sbf[4][5] = 0UL; sbf[4][6] = 0UL; sbf[4][7] = 0UL; sbf[4][8] = 0UL; sbf[4][9] = 0UL; return; } /*! \brief Count number of bits set to 1 * \param[in] v long word in which bits are counted * \returns Count of bits set to 1 */ unsigned long countBits(unsigned long v) { unsigned long c; const int S[] = {1, 2, 4, 8, 16}; const unsigned long B[] = { 0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF}; c = v; c = ((c >> S[0]) & B[0]) + (c & B[0]); c = ((c >> S[1]) & B[1]) + (c & B[1]); c = ((c >> S[2]) & B[2]) + (c & B[2]); c = ((c >> S[3]) & B[3]) + (c & B[3]); c = ((c >> S[4]) & B[4]) + (c & B[4]); return(c); } /*! \brief Compute the Checksum for one given word of a subframe * \param[in] source The input data * \param[in] nib Does this word contain non-information-bearing bits? * \returns Computed Checksum */ unsigned long computeChecksum(unsigned long source, int nib) { /* Bits 31 to 30 = 2 LSBs of the previous transmitted word, D29* and D30* Bits 29 to 6 = Source data bits, d1, d2, ..., d24 Bits 5 to 0 = Empty parity bits */ /* Bits 31 to 30 = 2 LSBs of the previous transmitted word, D29* and D30* Bits 29 to 6 = Data bits transmitted by the SV, D1, D2, ..., D24 Bits 5 to 0 = Computed parity bits, D25, D26, ..., D30 */ /* 1 2 3 bit 12 3456 7890 1234 5678 9012 3456 7890 --- ------------------------------------- D25 11 1011 0001 1111 0011 0100 1000 0000 D26 01 1101 1000 1111 1001 1010 0100 0000 D27 10 1110 1100 0111 1100 1101 0000 0000 D28 01 0111 0110 0011 1110 0110 1000 0000 D29 10 1011 1011 0001 1111 0011 0100 0000 D30 00 1011 0111 1010 1000 1001 1100 0000 */ unsigned long bmask[6] = { 0x3B1F3480UL, 0x1D8F9A40UL, 0x2EC7CD00UL, 0x1763E680UL, 0x2BB1F340UL, 0x0B7A89C0UL }; unsigned long D; unsigned long d = source & 0x3FFFFFC0UL; unsigned long D29 = (source>>31)&0x1UL; unsigned long D30 = (source>>30)&0x1UL; if (nib) // Non-information bearing bits for word 2 and 10 { /* Solve bits 23 and 24 to preserve parity check with zeros in bits 29 and 30. */ if ((D30 + countBits(bmask[4] & d)) % 2) d ^= (0x1UL<<6); if ((D29 + countBits(bmask[5] & d)) % 2) d ^= (0x1UL<<7); } D = d; if (D30) D ^= 0x3FFFFFC0UL; D |= ((D29 + countBits(bmask[0] & d)) % 2) << 5; D |= ((D30 + countBits(bmask[1] & d)) % 2) << 4; D |= ((D29 + countBits(bmask[2] & d)) % 2) << 3; D |= ((D30 + countBits(bmask[3] & d)) % 2) << 2; D |= ((D30 + countBits(bmask[4] & d)) % 2) << 1; D |= ((D29 + countBits(bmask[5] & d)) % 2); D &= 0x3FFFFFFFUL; //D |= (source & 0xC0000000UL); // Add D29* and D30* from source data bits return(D); } /*! \brief Replace all 'E' exponential designators to 'D' * \param str String in which all occurrences of 'E' are replaced with * 'D' * \param len Length of input string in bytes * \returns Number of characters replaced */ int replaceExpDesignator(char *str, int len) { int i,n=0; for (i=0; i=SECONDS_IN_WEEK) { g1.sec -= SECONDS_IN_WEEK; g1.week++; } while (g1.sec<0.0) { g1.sec += SECONDS_IN_WEEK; g1.week--; } return(g1); } /*! \brief Read Ephemeris data from the RINEX Navigation file */ /* \param[out] eph Array of Output SV ephemeris data * \param[in] fname File name of the RINEX file * \returns Number of sets of ephemerides in the file */ int readRinexNavAll(ephem_t eph[][MAX_SAT], ionoutc_t *ionoutc, const char *fname) { FILE *fp; int ieph; int sv; char str[MAX_CHAR]; char tmp[20]; datetime_t t; gpstime_t g; gpstime_t g0; double dt; int flags = 0x0; if (NULL==(fp=fopen(fname, "rt"))) return(-1); // Clear valid flag for (ieph=0; iephalpha0 = atof(tmp); strncpy(tmp, str+14, 12); tmp[12] = 0; replaceExpDesignator(tmp, 12); ionoutc->alpha1 = atof(tmp); strncpy(tmp, str+26, 12); tmp[12] = 0; replaceExpDesignator(tmp, 12); ionoutc->alpha2 = atof(tmp); strncpy(tmp, str+38, 12); tmp[12] = 0; replaceExpDesignator(tmp, 12); ionoutc->alpha3 = atof(tmp); //read wntlsf, dn, and dtlsf from fil flags |= 0x1; } else if (strncmp(str+60, "ION BETA", 8)==0) { strncpy(tmp, str+2, 12); tmp[12] = 0; replaceExpDesignator(tmp, 12); ionoutc->beta0 = atof(tmp); strncpy(tmp, str+14, 12); tmp[12] = 0; replaceExpDesignator(tmp, 12); ionoutc->beta1 = atof(tmp); strncpy(tmp, str+26, 12); tmp[12] = 0; replaceExpDesignator(tmp, 12); ionoutc->beta2 = atof(tmp); strncpy(tmp, str+38, 12); tmp[12] = 0; replaceExpDesignator(tmp, 12); ionoutc->beta3 = atof(tmp); flags |= 0x1<<1; } else if (strncmp(str+60, "DELTA-UTC", 9)==0) { strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); ionoutc->A0 = atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); ionoutc->A1 = atof(tmp); strncpy(tmp, str+41, 9); tmp[9] = 0; ionoutc->tot = atoi(tmp); strncpy(tmp, str+50, 9); tmp[9] = 0; ionoutc->wnt = atoi(tmp); if (ionoutc->tot%4096==0) flags |= 0x1<<2; } else if (strncmp(str+60, "LEAP SECONDS", 12)==0) { strncpy(tmp, str, 6); tmp[6] = 0; ionoutc->dtls = atoi(tmp); flags |= 0x1<<3; } } ionoutc->vflg = FALSE; if (flags==0xF) // Read all Iono/UTC lines ionoutc->vflg = TRUE; // Read ephemeris blocks g0.week = -1; ieph = 0; while (1) { if (NULL==fgets(str, MAX_CHAR, fp)) break; // PRN strncpy(tmp, str, 2); tmp[2] = 0; sv = atoi(tmp)-1; // EPOCH strncpy(tmp, str+3, 2); tmp[2] = 0; t.y = atoi(tmp) + 2000; strncpy(tmp, str+6, 2); tmp[2] = 0; t.m = atoi(tmp); strncpy(tmp, str+9, 2); tmp[2] = 0; t.d = atoi(tmp); strncpy(tmp, str+12, 2); tmp[2] = 0; t.hh = atoi(tmp); strncpy(tmp, str+15, 2); tmp[2] = 0; t.mm = atoi(tmp); strncpy(tmp, str+18, 4); tmp[2] = 0; t.sec = atof(tmp); date2gps(&t, &g); if (g0.week==-1) g0 = g; // Check current time of clock dt = subGpsTime(g, g0); if (dt>SECONDS_IN_HOUR) { g0 = g; ieph++; // a new set of ephemerides if (ieph>=EPHEM_ARRAY_SIZE) break; } // Date and time eph[ieph][sv].t = t; // SV CLK eph[ieph][sv].toc = g; strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); // tmp[15]='E'; eph[ieph][sv].af0 = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].af1 = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].af2 = atof(tmp); // BROADCAST ORBIT - 1 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].iode = (int)atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].crs = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].deltan = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].m0 = atof(tmp); // BROADCAST ORBIT - 2 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].cuc = atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].ecc = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].cus = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].sqrta = atof(tmp); // BROADCAST ORBIT - 3 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].toe.sec = atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].cic = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].omg0 = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].cis = atof(tmp); // BROADCAST ORBIT - 4 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].inc0 = atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].crc = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].aop = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].omgdot = atof(tmp); // BROADCAST ORBIT - 5 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].idot = atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].codeL2 = (int)atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].toe.week = (int)atof(tmp); // BROADCAST ORBIT - 6 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].svhlth = (int)atof(tmp); if ((eph[ieph][sv].svhlth>0) && (eph[ieph][sv].svhlth<32)) eph[ieph][sv].svhlth += 32; // Set MSB to 1 strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].tgd = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[ieph][sv].iodc = (int)atof(tmp); // BROADCAST ORBIT - 7 if (NULL==fgets(str, MAX_CHAR, fp)) break; // Set valid flag eph[ieph][sv].vflg = 1; // Update the working variables eph[ieph][sv].A = eph[ieph][sv].sqrta * eph[ieph][sv].sqrta; eph[ieph][sv].n = sqrt(GM_EARTH/(eph[ieph][sv].A*eph[ieph][sv].A*eph[ieph][sv].A)) + eph[ieph][sv].deltan; eph[ieph][sv].sq1e2 = sqrt(1.0 - eph[ieph][sv].ecc*eph[ieph][sv].ecc); eph[ieph][sv].omgkdot = eph[ieph][sv].omgdot - OMEGA_EARTH; } fclose(fp); if (g0.week>=0) ieph += 1; // Number of sets of ephemerides return(ieph); } double ionosphericDelay(const ionoutc_t *ionoutc, gpstime_t g, double *llh, double *azel) { double iono_delay = 0.0; double E,phi_u,lam_u,F; if (ionoutc->enable==FALSE) return (0.0); // No ionospheric delay E = azel[1]/PI; phi_u = llh[0]/PI; lam_u = llh[1]/PI; // Obliquity factor F = 1.0 + 16.0*pow((0.53 - E),3.0); if (ionoutc->vflg==FALSE) iono_delay = F*5.0e-9*SPEED_OF_LIGHT; else { double t,psi,phi_i,lam_i,phi_m,phi_m2,phi_m3; double AMP,PER,X,X2,X4; // Earth's central angle between the user position and the earth projection of // ionospheric intersection point (semi-circles) psi = 0.0137/(E + 0.11) - 0.022; // Geodetic latitude of the earth projection of the ionospheric intersection point // (semi-circles) phi_i = phi_u + psi*cos(azel[0]); if(phi_i>0.416) phi_i = 0.416; else if(phi_i<-0.416) phi_i = -0.416; // Geodetic longitude of the earth projection of the ionospheric intersection point // (semi-circles) lam_i = lam_u + psi*sin(azel[0])/cos(phi_i*PI); // Geomagnetic latitude of the earth projection of the ionospheric intersection // point (mean ionospheric height assumed 350 km) (semi-circles) phi_m = phi_i + 0.064*cos((lam_i - 1.617)*PI); phi_m2 = phi_m*phi_m; phi_m3 = phi_m2*phi_m; AMP = ionoutc->alpha0 + ionoutc->alpha1*phi_m + ionoutc->alpha2*phi_m2 + ionoutc->alpha3*phi_m3; if (AMP<0.0) AMP = 0.0; PER = ionoutc->beta0 + ionoutc->beta1*phi_m + ionoutc->beta2*phi_m2 + ionoutc->beta3*phi_m3; if (PER<72000.0) PER = 72000.0; // Local time (sec) t = SECONDS_IN_DAY/2.0*lam_i + g.sec; while(t>=SECONDS_IN_DAY) t -= SECONDS_IN_DAY; while(t<0) t += SECONDS_IN_DAY; // Phase (radians) X = 2.0*PI*(t - 50400.0)/PER; if(fabs(X)<1.57) { X2 = X*X; X4 = X2*X2; iono_delay = F*(5.0e-9 + AMP*(1.0 - X2/2.0 + X4/24.0))*SPEED_OF_LIGHT; } else iono_delay = F*5.0e-9*SPEED_OF_LIGHT; } return (iono_delay); } /*! \brief Compute range between a satellite and the receiver * \param[out] rho The computed range * \param[in] eph Ephemeris data of the satellite * \param[in] g GPS time at time of receiving the signal * \param[in] xyz position of the receiver */ void computeRange(range_t *rho, ephem_t eph, ionoutc_t *ionoutc, gpstime_t g, double xyz[]) { double pos[3],vel[3],clk[2]; double los[3]; double tau; double range,rate; double xrot,yrot; double llh[3],neu[3]; double tmat[3][3]; // SV position at time of the pseudorange observation. satpos(eph, g, pos, vel, clk); // Receiver to satellite vector and light-time. subVect(los, pos, xyz); tau = normVect(los)/SPEED_OF_LIGHT; // Extrapolate the satellite position backwards to the transmission time. pos[0] -= vel[0]*tau; pos[1] -= vel[1]*tau; pos[2] -= vel[2]*tau; // Earth rotation correction. The change in velocity can be neglected. xrot = pos[0] + pos[1]*OMEGA_EARTH*tau; yrot = pos[1] - pos[0]*OMEGA_EARTH*tau; pos[0] = xrot; pos[1] = yrot; // New observer to satellite vector and satellite range. subVect(los, pos, xyz); range = normVect(los); rho->d = range; // Pseudorange. rho->range = range - SPEED_OF_LIGHT*clk[0]; // Relative velocity of SV and receiver. rate = dotProd(vel, los)/range; // Pseudorange rate. rho->rate = rate; // - SPEED_OF_LIGHT*clk[1]; // Time of application. rho->g = g; // Azimuth and elevation angles. xyz2llh(xyz, llh); ltcmat(llh, tmat); ecef2neu(los, tmat, neu); neu2azel(rho->azel, neu); // Add ionospheric delay rho->iono_delay = ionosphericDelay(ionoutc, g, llh, rho->azel); rho->range += rho->iono_delay; return; } /*! \brief Compute the code phase for a given channel (satellite) * \param chan Channel on which we operate (is updated) * \param[in] rho1 Current range, after \a dt has expired * \param[in dt delta-t (time difference) in seconds */ void computeCodePhase(channel_t *chan, range_t rho1, double dt) { double ms; int ims; double rhorate; // Pseudorange rate. rhorate = (rho1.range - chan->rho0.range)/dt; // Carrier and code frequency. chan->f_carr = -rhorate/LAMBDA_L1; chan->f_code = CODE_FREQ + chan->f_carr*CARR_TO_CODE; // Initial code phase and data bit counters. ms = ((subGpsTime(chan->rho0.g,chan->g0)+6.0) - chan->rho0.range/SPEED_OF_LIGHT)*1000.0; ims = (int)ms; chan->code_phase = (ms-(double)ims)*CA_SEQ_LEN; // in chip chan->iword = ims/600; // 1 word = 30 bits = 600 ms ims -= chan->iword*600; chan->ibit = ims/20; // 1 bit = 20 code = 20 ms ims -= chan->ibit*20; chan->icode = ims; // 1 code = 1 ms chan->codeCA = chan->ca[(int)chan->code_phase]*2-1; chan->dataBit = (int)((chan->dwrd[chan->iword]>>(29-chan->ibit)) & 0x1UL)*2-1; // Save current pseudorange chan->rho0 = rho1; return; } /*! \brief Read the list of user motions from the input file * \param[out] xyz Output array of ECEF vectors for user motion * \param[[in] filename File name of the text input file * \returns Number of user data motion records read, -1 on error */ int readUserMotion(double xyz[USER_MOTION_SIZE][3], const char *filename) { FILE *fp; int numd; char str[MAX_CHAR]; double t,x,y,z; if (NULL==(fp=fopen(filename,"rt"))) return(-1); for (numd=0; numd 90.0 || llh[0] < -90.0 || llh[1]>180.0 || llh[1] < -180.0) { fprintf(stderr, "ERROR: Invalid file format (time[s], latitude[deg], longitude[deg], height [m].\n"); numd = 0; // Empty user motion break; } llh[0] /= R2D; // convert to RAD llh[1] /= R2D; // convert to RAD llh2xyz(llh, xyz[numd]); } fclose(fp); return (numd); } int readNmeaGGA(double xyz[USER_MOTION_SIZE][3], const char *filename) { FILE *fp; int numd = 0; char str[MAX_CHAR]; char *token; double llh[3],pos[3]; char tmp[8]; if (NULL==(fp=fopen(filename,"rt"))) return(-1); while (1) { if (fgets(str, MAX_CHAR, fp)==NULL) break; token = strtok(str, ","); if (strncmp(token+3, "GGA", 3)==0) { token = strtok(NULL, ","); // Date and time token = strtok(NULL, ","); // Latitude strncpy(tmp, token, 2); tmp[2] = 0; llh[0] = atof(tmp) + atof(token+2)/60.0; token = strtok(NULL, ","); // North or south if (token[0]=='S') llh[0] *= -1.0; llh[0] /= R2D; // in radian token = strtok(NULL, ","); // Longitude strncpy(tmp, token, 3); tmp[3] = 0; llh[1] = atof(tmp) + atof(token+3)/60.0; token = strtok(NULL, ","); // East or west if (token[0]=='W') llh[1] *= -1.0; llh[1] /= R2D; // in radian token = strtok(NULL, ","); // GPS fix token = strtok(NULL, ","); // Number of satellites token = strtok(NULL, ","); // HDOP token = strtok(NULL, ","); // Altitude above meas sea level llh[2] = atof(token); token = strtok(NULL, ","); // in meter token = strtok(NULL, ","); // Geoid height above WGS84 ellipsoid llh[2] += atof(token); // Convert geodetic position into ECEF coordinates llh2xyz(llh, pos); xyz[numd][0] = pos[0]; xyz[numd][1] = pos[1]; xyz[numd][2] = pos[2]; // Update the number of track points numd++; if (numd>=USER_MOTION_SIZE) break; } } fclose(fp); return (numd); } int generateNavMsg(gpstime_t g, channel_t *chan, int init) { int iwrd,isbf; gpstime_t g0; unsigned long wn,tow; unsigned sbfwrd; unsigned long prevwrd; int nib; g0.week = g.week; g0.sec = (double)(((unsigned long)(g.sec+0.5))/30UL) * 30.0; // Align with the full frame length = 30 sec chan->g0 = g0; // Data bit reference time wn = (unsigned long)(g0.week%1024); tow = ((unsigned long)g0.sec)/6UL; if (init==1) // Initialize subframe 5 { prevwrd = 0UL; for (iwrd=0; iwrdsbf[4][iwrd]; // Add TOW-count message into HOW if (iwrd==1) sbfwrd |= ((tow&0x1FFFFUL)<<13); // Compute checksum sbfwrd |= (prevwrd<<30) & 0xC0000000UL; // 2 LSBs of the previous transmitted word nib = ((iwrd==1)||(iwrd==9))?1:0; // Non-information bearing bits for word 2 and 10 chan->dwrd[iwrd] = computeChecksum(sbfwrd, nib); prevwrd = chan->dwrd[iwrd]; } } else // Save subframe 5 { for (iwrd=0; iwrddwrd[iwrd] = chan->dwrd[N_DWRD_SBF*N_SBF+iwrd]; prevwrd = chan->dwrd[iwrd]; } /* // Sanity check if (((chan->dwrd[1])&(0x1FFFFUL<<13)) != ((tow&0x1FFFFUL)<<13)) { fprintf(stderr, "\nWARNING: Invalid TOW in subframe 5.\n"); return(0); } */ } for (isbf=0; isbfsbf[isbf][iwrd]; // Add transmission week number to Subframe 1 if ((isbf==0)&&(iwrd==2)) sbfwrd |= (wn&0x3FFUL)<<20; // Add TOW-count message into HOW if (iwrd==1) sbfwrd |= ((tow&0x1FFFFUL)<<13); // Compute checksum sbfwrd |= (prevwrd<<30) & 0xC0000000UL; // 2 LSBs of the previous transmitted word nib = ((iwrd==1)||(iwrd==9))?1:0; // Non-information bearing bits for word 2 and 10 chan->dwrd[(isbf+1)*N_DWRD_SBF+iwrd] = computeChecksum(sbfwrd, nib); prevwrd = chan->dwrd[(isbf+1)*N_DWRD_SBF+iwrd]; } } return(1); } int checkSatVisibility(ephem_t eph, gpstime_t g, double *xyz, double elvMask, double *azel) { double llh[3],neu[3]; double pos[3],vel[3],clk[3],los[3]; double tmat[3][3]; if (eph.vflg != 1) return (-1); // Invalid xyz2llh(xyz,llh); ltcmat(llh, tmat); satpos(eph, g, pos, vel, clk); subVect(los, pos, xyz); ecef2neu(los, tmat, neu); neu2azel(azel, neu); if (azel[1]*R2D > elvMask) return (1); // Visible // else return (0); // Invisible } int allocateChannel(channel_t *chan, ephem_t *eph, ionoutc_t ionoutc, gpstime_t grx, double *xyz, double elvMask) { int nsat=0; int i,sv; double azel[2]; range_t rho; double ref[3]={0.0}; double r_ref,r_xyz; double phase_ini; for (sv=0; sv=0) // Not visible but allocated { // Clear channel chan[allocatedSat[sv]].prn = 0; // Clear satellite allocation flag allocatedSat[sv] = -1; } } return(nsat); } void usage(void) { fprintf(stderr, "Usage: gps-sdr-sim [options]\n" "Options:\n" " -e RINEX navigation file for GPS ephemerides (required)\n" " -u User motion file in ECEF x, y, z format (dynamic mode)\n" " -x User motion file in lat, lon, height format (dynamic mode)\n" " -g NMEA GGA stream (dynamic mode)\n" " -c ECEF X,Y,Z in meters (static mode) e.g. 3967283.154,1022538.181,4872414.484\n" " -l Lat, lon, height (static mode) e.g. 35.681298,139.766247,10.0\n" " -L User leap future event in GPS week number, day number, next leap second e.g. 2347,3,19\n" " -t Scenario start time YYYY/MM/DD,hh:mm:ss\n" " -T Overwrite TOC and TOE to scenario start time\n" " -d Duration [sec] (dynamic mode max: %.0f, static mode max: %d)\n" " -o I/Q sampling data file (default: gpssim.bin)\n" " -s Sampling frequency [Hz] (default: 2600000)\n" " -b I/Q data format [1/8/16] (default: 16)\n" " -i Disable ionospheric delay for spacecraft scenario\n" " -p [fixed_gain] Disable path loss and hold power level constant\n" " -v Show details about simulated channels\n", ((double)USER_MOTION_SIZE) / 10.0, STATIC_MAX_DURATION); return; } int main(int argc, char *argv[]) { clock_t tstart,tend; FILE *fp; int sv; int neph,ieph; ephem_t eph[EPHEM_ARRAY_SIZE][MAX_SAT]; gpstime_t g0; double llh[3]; int i; channel_t chan[MAX_CHAN]; double elvmask = 0.0; // in degree int ip,qp; int iTable; short *iq_buff = NULL; signed char *iq8_buff = NULL; gpstime_t grx; double delt; int isamp; int iumd; int numd; char umfile[MAX_CHAR]; int staticLocationMode = FALSE; int nmeaGGA = FALSE; int umLLH = FALSE; char navfile[MAX_CHAR]; char outfile[MAX_CHAR]; double samp_freq; int iq_buff_size; int data_format; int result; int gain[MAX_CHAN]; double path_loss; double ant_gain; int fixed_gain = 128; double ant_pat[37]; int ibs; // boresight angle index datetime_t t0,tmin,tmax; gpstime_t gmin,gmax; double dt; int igrx; double duration; int iduration; int verb; int timeoverwrite = FALSE; // Overwrite the TOC and TOE in the RINEX file ionoutc_t ionoutc; int path_loss_enable = TRUE; //////////////////////////////////////////////////////////// // Read options //////////////////////////////////////////////////////////// // Default options navfile[0] = 0; umfile[0] = 0; strcpy(outfile, "gpssim.bin"); samp_freq = 2.6e6; data_format = SC16; g0.week = -1; // Invalid start time iduration = USER_MOTION_SIZE; duration = (double)iduration/10.0; // Default duration verb = FALSE; ionoutc.enable = TRUE; ionoutc.leapen = FALSE; if (argc<3) { usage(); exit(1); } while ((result=getopt(argc,argv,"e:u:x:g:c:l:o:s:b:L:T:t:d:ipv"))!=-1) { switch (result) { case 'e': strcpy(navfile, optarg); break; case 'u': strcpy(umfile, optarg); nmeaGGA = FALSE; umLLH = FALSE; break; case 'x': // Added by romalvarezllorens@gmail.com strcpy(umfile, optarg); umLLH = TRUE; break; case 'g': strcpy(umfile, optarg); nmeaGGA = TRUE; break; case 'c': // Static ECEF coordinates input mode staticLocationMode = TRUE; sscanf(optarg,"%lf,%lf,%lf",&xyz[0][0],&xyz[0][1],&xyz[0][2]); break; case 'l': // Static geodetic coordinates input mode // Added by scateu@gmail.com staticLocationMode = TRUE; sscanf(optarg,"%lf,%lf,%lf",&llh[0],&llh[1],&llh[2]); llh[0] = llh[0] / R2D; // convert to RAD llh[1] = llh[1] / R2D; // convert to RAD llh2xyz(llh,xyz[0]); // Convert llh to xyz break; case 'o': strcpy(outfile, optarg); break; case 's': samp_freq = atof(optarg); if (samp_freq<1.0e6) { fprintf(stderr, "ERROR: Invalid sampling frequency.\n"); exit(1); } break; case 'b': data_format = atoi(optarg); if (data_format!=SC01 && data_format!=SC08 && data_format!=SC16) { fprintf(stderr, "ERROR: Invalid I/Q data format.\n"); exit(1); } break; case 'L': // enable custom Leap Event ionoutc.leapen = TRUE; sscanf(optarg,"%d,%d,%d", &ionoutc.wnlsf, &ionoutc.dn, &ionoutc.dtlsf); if (ionoutc.dn<1 && ionoutc.dn>7) { fprintf(stderr, "ERROR: Invalid GPS day number"); exit(1); } if (ionoutc.wnlsf<0) { fprintf(stderr, "ERROR: Invalid GPS week number"); exit(1); } if (ionoutc.dtlsf<-128 && ionoutc.dtlsf>127) { fprintf(stderr, "ERROR: Invalid delta leap second"); exit(1); } break; case 'T': timeoverwrite = TRUE; if (strncmp(optarg, "now", 3)==0) { time_t timer; struct tm *gmt; time(&timer); gmt = gmtime(&timer); t0.y = gmt->tm_year+1900; t0.m = gmt->tm_mon+1; t0.d = gmt->tm_mday; t0.hh = gmt->tm_hour; t0.mm = gmt->tm_min; t0.sec = (double)gmt->tm_sec; date2gps(&t0, &g0); break; } case 't': sscanf(optarg, "%d/%d/%d,%d:%d:%lf", &t0.y, &t0.m, &t0.d, &t0.hh, &t0.mm, &t0.sec); if (t0.y<=1980 || t0.m<1 || t0.m>12 || t0.d<1 || t0.d>31 || t0.hh<0 || t0.hh>23 || t0.mm<0 || t0.mm>59 || t0.sec<0.0 || t0.sec>=60.0) { fprintf(stderr, "ERROR: Invalid date and time.\n"); exit(1); } t0.sec = floor(t0.sec); date2gps(&t0, &g0); break; case 'd': duration = atof(optarg); break; case 'i': ionoutc.enable = FALSE; // Disable ionospheric correction break; case 'p': if (optind < argc && argv[optind][0] != '-') // Check if next item is an argument { fixed_gain = atoi(argv[optind]); if (fixed_gain < 1 || fixed_gain > 128) { fprintf(stderr, "ERROR: Fixed gain must be between 1 and 128.\n"); exit(1); } optind++; // Move past this argument for next iteration } path_loss_enable = FALSE; // Disable path loss break; case 'v': verb = TRUE; break; case ':': case '?': usage(); exit(1); default: break; } } if (navfile[0]==0) { fprintf(stderr, "ERROR: GPS ephemeris file is not specified.\n"); exit(1); } if (umfile[0]==0 && !staticLocationMode) { // Default static location; Tokyo staticLocationMode = TRUE; llh[0] = 35.681298 / R2D; llh[1] = 139.766247 / R2D; llh[2] = 10.0; } if (duration<0.0 || (duration>((double)USER_MOTION_SIZE)/10.0 && !staticLocationMode) || (duration>STATIC_MAX_DURATION && staticLocationMode)) { fprintf(stderr, "ERROR: Invalid duration.\n"); exit(1); } iduration = (int)(duration*10.0 + 0.5); // Buffer size samp_freq = floor(samp_freq/10.0); iq_buff_size = (int)samp_freq; // samples per 0.1sec samp_freq *= 10.0; delt = 1.0/samp_freq; //////////////////////////////////////////////////////////// // Receiver position //////////////////////////////////////////////////////////// if (!staticLocationMode) { // Read user motion file if (nmeaGGA==TRUE) numd = readNmeaGGA(xyz, umfile); else if (umLLH == TRUE) numd = readUserMotionLLH(xyz, umfile); else numd = readUserMotion(xyz, umfile); if (numd==-1) { fprintf(stderr, "ERROR: Failed to open user motion / NMEA GGA file.\n"); exit(1); } else if (numd==0) { fprintf(stderr, "ERROR: Failed to read user motion / NMEA GGA data.\n"); exit(1); } // Set simulation duration if (numd>iduration) numd = iduration; // Set user initial position xyz2llh(xyz[0], llh); } else { // Static geodetic coordinates input mode: "-l" // Added by scateu@gmail.com fprintf(stderr, "Using static location mode.\n"); // Set simulation duration numd = iduration; // Set user initial position llh2xyz(llh, xyz[0]); } fprintf(stderr, "xyz = %11.1f, %11.1f, %11.1f\n", xyz[0][0], xyz[0][1], xyz[0][2]); fprintf(stderr, "llh = %11.6f, %11.6f, %11.1f\n", llh[0]*R2D, llh[1]*R2D, llh[2]); //////////////////////////////////////////////////////////// // Read ephemeris //////////////////////////////////////////////////////////// neph = readRinexNavAll(eph, &ionoutc, navfile); if (neph==0) { fprintf(stderr, "ERROR: No ephemeris available.\n"); exit(1); } else if (neph==-1) { fprintf(stderr, "ERROR: ephemeris file not found.\n"); exit(1); } if ((verb==TRUE)&&(ionoutc.vflg==TRUE)) { fprintf(stderr, " %12.3e %12.3e %12.3e %12.3e\n", ionoutc.alpha0, ionoutc.alpha1, ionoutc.alpha2, ionoutc.alpha3); fprintf(stderr, " %12.3e %12.3e %12.3e %12.3e\n", ionoutc.beta0, ionoutc.beta1, ionoutc.beta2, ionoutc.beta3); fprintf(stderr, " %19.11e %19.11e %9d %9d\n", ionoutc.A0, ionoutc.A1, ionoutc.tot, ionoutc.wnt); fprintf(stderr, "%6d\n", ionoutc.dtls); } for (sv=0; sv=0) // Scenario start time has been set. { if (timeoverwrite==TRUE) { gpstime_t gtmp; datetime_t ttmp; double dsec; gtmp.week = g0.week; gtmp.sec = (double)(((int)(g0.sec))/7200)*7200.0; dsec = subGpsTime(gtmp,gmin); // Overwrite the UTC reference week number ionoutc.wnt = gtmp.week; ionoutc.tot = (int)gtmp.sec; // Iono/UTC parameters may no longer valid //ionoutc.vflg = FALSE; // Overwrite the TOC and TOE to the scenario start time for (sv=0; sv=-SECONDS_IN_HOUR && dt=0) // ieph has been set break; } if (ieph == -1) { fprintf(stderr, "ERROR: No current set of ephemerides has been found.\n"); exit(1); } //////////////////////////////////////////////////////////// // Baseband signal buffer and output file //////////////////////////////////////////////////////////// // Allocate I/Q buffer iq_buff = calloc(2*iq_buff_size, 2); if (iq_buff==NULL) { fprintf(stderr, "ERROR: Failed to allocate 16-bit I/Q buffer.\n"); exit(1); } if (data_format==SC08) { iq8_buff = calloc(2*iq_buff_size, 1); if (iq8_buff==NULL) { fprintf(stderr, "ERROR: Failed to allocate 8-bit I/Q buffer.\n"); exit(1); } } else if (data_format==SC01) { iq8_buff = calloc(iq_buff_size/4, 1); // byte = {I0, Q0, I1, Q1, I2, Q2, I3, Q3} if (iq8_buff==NULL) { fprintf(stderr, "ERROR: Failed to allocate compressed 1-bit I/Q buffer.\n"); exit(1); } } // Open output file // "-" can be used as name for stdout if(strcmp("-", outfile)){ if (NULL==(fp=fopen(outfile,"wb"))) { fprintf(stderr, "ERROR: Failed to open output file.\n"); exit(1); } }else{ fp = stdout; } //////////////////////////////////////////////////////////// // Initialize channels //////////////////////////////////////////////////////////// // Clear all channels for (i=0; i0) fprintf(stderr, "%02d %6.1f %5.1f %11.1f %5.1f\n", chan[i].prn, chan[i].azel[0]*R2D, chan[i].azel[1]*R2D, chan[i].rho0.d, chan[i].rho0.iono_delay); } //////////////////////////////////////////////////////////// // Receiver antenna gain pattern //////////////////////////////////////////////////////////// for (i=0; i<37; i++) ant_pat[i] = pow(10.0, -ant_pat_db[i]/20.0); //////////////////////////////////////////////////////////// // Generate baseband signals //////////////////////////////////////////////////////////// tstart = clock(); // Update receiver time grx = incGpsTime(grx, 0.1); for (iumd=1; iumd0) { // Refresh code phase and data bit counters range_t rho; sv = chan[i].prn-1; // Current pseudorange if (!staticLocationMode) computeRange(&rho, eph[ieph][sv], &ionoutc, grx, xyz[iumd]); else computeRange(&rho, eph[ieph][sv], &ionoutc, grx, xyz[0]); chan[i].azel[0] = rho.azel[0]; chan[i].azel[1] = rho.azel[1]; // Update code phase and data bit counters computeCodePhase(&chan[i], rho, 0.1); #ifndef FLOAT_CARR_PHASE chan[i].carr_phasestep = (int)round(512.0 * 65536.0 * chan[i].f_carr * delt); #endif // Path loss path_loss = 20200000.0/rho.d; // Receiver antenna gain ibs = (int)((90.0-rho.azel[1]*R2D)/5.0); // covert elevation to boresight ant_gain = ant_pat[ibs]; // Signal gain if (path_loss_enable == TRUE) gain[i] = (int)(path_loss * ant_gain * 128.0); // scaled by 2^7 else gain[i] = fixed_gain; // hold the power level constant } } for (isamp=0; isamp0) { #ifdef FLOAT_CARR_PHASE iTable = (int)floor(chan[i].carr_phase*512.0); #else iTable = (chan[i].carr_phase >> 16) & 0x1ff; // 9-bit index #endif ip = chan[i].dataBit * chan[i].codeCA * cosTable512[iTable] * gain[i]; qp = chan[i].dataBit * chan[i].codeCA * sinTable512[iTable] * gain[i]; // Accumulate for all visible satellites i_acc += ip; q_acc += qp; // Update code phase chan[i].code_phase += chan[i].f_code * delt; if (chan[i].code_phase>=CA_SEQ_LEN) { chan[i].code_phase -= CA_SEQ_LEN; chan[i].icode++; if (chan[i].icode>=20) // 20 C/A codes = 1 navigation data bit { chan[i].icode = 0; chan[i].ibit++; if (chan[i].ibit>=30) // 30 navigation data bits = 1 word { chan[i].ibit = 0; chan[i].iword++; /* if (chan[i].iword>=N_DWRD) fprintf(stderr, "\nWARNING: Subframe word buffer overflow.\n"); */ } // Set new navigation data bit chan[i].dataBit = (int)((chan[i].dwrd[chan[i].iword]>>(29-chan[i].ibit)) & 0x1UL)*2-1; } } // Set current code chip chan[i].codeCA = chan[i].ca[(int)chan[i].code_phase]*2-1; // Update carrier phase #ifdef FLOAT_CARR_PHASE chan[i].carr_phase += chan[i].f_carr * delt; if (chan[i].carr_phase >= 1.0) chan[i].carr_phase -= 1.0; else if (chan[i].carr_phase<0.0) chan[i].carr_phase += 1.0; #else chan[i].carr_phase += chan[i].carr_phasestep; #endif } } // Scaled by 2^7 i_acc = (i_acc+64)>>7; q_acc = (q_acc+64)>>7; // Store I/Q samples into buffer iq_buff[isamp*2] = (short)i_acc; iq_buff[isamp*2+1] = (short)q_acc; } if (data_format==SC01) { for (isamp=0; isamp<2*iq_buff_size; isamp++) { if (isamp%8==0) iq8_buff[isamp/8] = 0x00; iq8_buff[isamp/8] |= (iq_buff[isamp]>0?0x01:0x00)<<(7-isamp%8); } fwrite(iq8_buff, 1, iq_buff_size/4, fp); } else if (data_format==SC08) { for (isamp=0; isamp<2*iq_buff_size; isamp++) iq8_buff[isamp] = iq_buff[isamp]>>4; // 12-bit bladeRF -> 8-bit HackRF fwrite(iq8_buff, 1, 2*iq_buff_size, fp); } else // data_format==SC16 { fwrite(iq_buff, 2, 2*iq_buff_size, fp); } // // Update navigation message and channel allocation every 30 seconds // igrx = (int)(grx.sec*10.0+0.5); if (igrx%300==0) // Every 30 seconds { // Update navigation message for (i=0; i0) generateNavMsg(grx, &chan[i], 0); } // Refresh ephemeris and subframes // Quick and dirty fix. Need more elegant way. for (sv=0; sv0) fprintf(stderr, "%02d %6.1f %5.1f %11.1f %5.1f\n", chan[i].prn, chan[i].azel[0]*R2D, chan[i].azel[1]*R2D, chan[i].rho0.d, chan[i].rho0.iono_delay); } } } // Update receiver time grx = incGpsTime(grx, 0.1); // Update time counter fprintf(stderr, "\rTime into run = %4.1f", subGpsTime(grx, g0)); fflush(stdout); } tend = clock(); fprintf(stderr, "\nDone!\n"); // Free I/Q buffer free(iq_buff); // Close file fclose(fp); // Process time fprintf(stderr, "Process time = %.1f [sec]\n", (double)(tend-tstart)/CLOCKS_PER_SEC); return(0); }