#define _CRT_SECURE_NO_DEPRECATE #include #include #include #include #include #include #ifdef _WIN32 #include "getopt.h" #else #include #endif #ifndef bool typedef int bool; #define true 1 #define false 0 #endif /*! \brief Maximum length of a line in a text file (RINEX, motion) */ #define MAX_CHAR (100) /*! \brief Maximum number of satellites in RINEX file */ #define MAX_SAT (32) /*! \brief Maximum number of channels we simulate */ #define MAX_CHAN (16) /*! \brief Maximum number of user motion waypoints */ #define USER_MOTION_SIZE (3000) // max 300 sec at 10Hz /*! \brief Number of subframes */ #define N_SBF (51) // 6 seconds per subframe, 6 sec * 51 = 306 sec (max) /*! \brief Number of words per subframe */ #define N_DWRD_SBF (10) // 10 word per subframe /*! \brief Number of words */ #define N_DWRD (N_SBF*N_DWRD_SBF) // 10 word per subframe /*! \brief C/A code sequence length */ #define CA_SEQ_LEN (1023) #define SECONDS_IN_WEEK 604800.0 #define SECONDS_IN_HALF_WEEK 302400.0 #define SECONDS_IN_DAY 86400.0 #define SECONDS_IN_HOUR 3600.0 #define SECONDS_IN_MINUTE 60.0 #define POW2_M5 0.03125 #define POW2_M19 1.907348632812500e-6 #define POW2_M29 1.862645149230957e-9 #define POW2_M31 4.656612873077393e-10 #define POW2_M33 1.164153218269348e-10 #define POW2_M43 1.136868377216160e-13 #define POW2_M55 2.775557561562891e-17 // Conventional values employed in GPS ephemeris model (ICD-GPS-200) #define GM_EARTH 3.986005e14 #define OMEGA_EARTH 7.2921151467e-5 #define PI 3.1415926535898 #define WGS84_RADIUS 6378137.0 #define WGS84_ECCENTRICITY 0.0818191908426 #define R2D 57.2957795131 #define SPEED_OF_LIGHT 2.99792458e8 #define LAMBDA_L1 0.190293672798365 /*! \brief GPS L1 Carrier frequency */ #define CARR_FREQ (1575.42e6) /*! \brief C/A code frequency */ #define CODE_FREQ (1.023e6) #define CARR_TO_CODE (1.0/1540.0) // Sampling data format #define SC08 (8) #define SC16 (16) int sinTable512[] = { 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 91, 94, 97, 100, 103, 105, 108, 111, 114, 116, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145, 148, 150, 153, 155, 157, 160, 162, 164, 167, 169, 171, 173, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 205, 207, 209, 210, 212, 214, 215, 217, 218, 220, 221, 223, 224, 225, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 245, 246, 247, 247, 248, 248, 248, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 249, 249, 249, 249, 248, 248, 248, 247, 247, 246, 245, 245, 244, 244, 243, 242, 241, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 230, 229, 228, 227, 225, 224, 223, 221, 220, 218, 217, 215, 214, 212, 210, 209, 207, 205, 204, 202, 200, 198, 196, 194, 192, 190, 188, 186, 184, 182, 180, 178, 176, 173, 171, 169, 167, 164, 162, 160, 157, 155, 153, 150, 148, 145, 143, 140, 138, 135, 132, 130, 127, 125, 122, 119, 116, 114, 111, 108, 105, 103, 100, 97, 94, 91, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5, 2, -2, -5, -8, -11, -14, -17, -20, -23, -26, -29, -32, -35, -38, -41, -44, -47, -50, -53, -56, -59, -62, -65, -68, -71, -74, -77, -80, -83, -86, -89, -91, -94, -97,-100,-103,-105,-108,-111,-114,-116,-119,-122,-125,-127,-130,-132,-135,-138, -140,-143,-145,-148,-150,-153,-155,-157,-160,-162,-164,-167,-169,-171,-173,-176, -178,-180,-182,-184,-186,-188,-190,-192,-194,-196,-198,-200,-202,-204,-205,-207, -209,-210,-212,-214,-215,-217,-218,-220,-221,-223,-224,-225,-227,-228,-229,-230, -232,-233,-234,-235,-236,-237,-238,-239,-240,-241,-241,-242,-243,-244,-244,-245, -245,-246,-247,-247,-248,-248,-248,-249,-249,-249,-249,-250,-250,-250,-250,-250, -250,-250,-250,-250,-250,-249,-249,-249,-249,-248,-248,-248,-247,-247,-246,-245, -245,-244,-244,-243,-242,-241,-241,-240,-239,-238,-237,-236,-235,-234,-233,-232, -230,-229,-228,-227,-225,-224,-223,-221,-220,-218,-217,-215,-214,-212,-210,-209, -207,-205,-204,-202,-200,-198,-196,-194,-192,-190,-188,-186,-184,-182,-180,-178, -176,-173,-171,-169,-167,-164,-162,-160,-157,-155,-153,-150,-148,-145,-143,-140, -138,-135,-132,-130,-127,-125,-122,-119,-116,-114,-111,-108,-105,-103,-100, -97, -94, -91, -89, -86, -83, -80, -77, -74, -71, -68, -65, -62, -59, -56, -53, -50, -47, -44, -41, -38, -35, -32, -29, -26, -23, -20, -17, -14, -11, -8, -5, -2 }; int cosTable512[] = { 250, 250, 250, 250, 250, 249, 249, 249, 249, 248, 248, 248, 247, 247, 246, 245, 245, 244, 244, 243, 242, 241, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 230, 229, 228, 227, 225, 224, 223, 221, 220, 218, 217, 215, 214, 212, 210, 209, 207, 205, 204, 202, 200, 198, 196, 194, 192, 190, 188, 186, 184, 182, 180, 178, 176, 173, 171, 169, 167, 164, 162, 160, 157, 155, 153, 150, 148, 145, 143, 140, 138, 135, 132, 130, 127, 125, 122, 119, 116, 114, 111, 108, 105, 103, 100, 97, 94, 91, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5, 2, -2, -5, -8, -11, -14, -17, -20, -23, -26, -29, -32, -35, -38, -41, -44, -47, -50, -53, -56, -59, -62, -65, -68, -71, -74, -77, -80, -83, -86, -89, -91, -94, -97,-100,-103,-105,-108,-111,-114,-116,-119,-122,-125,-127,-130,-132,-135,-138, -140,-143,-145,-148,-150,-153,-155,-157,-160,-162,-164,-167,-169,-171,-173,-176, -178,-180,-182,-184,-186,-188,-190,-192,-194,-196,-198,-200,-202,-204,-205,-207, -209,-210,-212,-214,-215,-217,-218,-220,-221,-223,-224,-225,-227,-228,-229,-230, -232,-233,-234,-235,-236,-237,-238,-239,-240,-241,-241,-242,-243,-244,-244,-245, -245,-246,-247,-247,-248,-248,-248,-249,-249,-249,-249,-250,-250,-250,-250,-250, -250,-250,-250,-250,-250,-249,-249,-249,-249,-248,-248,-248,-247,-247,-246,-245, -245,-244,-244,-243,-242,-241,-241,-240,-239,-238,-237,-236,-235,-234,-233,-232, -230,-229,-228,-227,-225,-224,-223,-221,-220,-218,-217,-215,-214,-212,-210,-209, -207,-205,-204,-202,-200,-198,-196,-194,-192,-190,-188,-186,-184,-182,-180,-178, -176,-173,-171,-169,-167,-164,-162,-160,-157,-155,-153,-150,-148,-145,-143,-140, -138,-135,-132,-130,-127,-125,-122,-119,-116,-114,-111,-108,-105,-103,-100, -97, -94, -91, -89, -86, -83, -80, -77, -74, -71, -68, -65, -62, -59, -56, -53, -50, -47, -44, -41, -38, -35, -32, -29, -26, -23, -20, -17, -14, -11, -8, -5, -2, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 91, 94, 97, 100, 103, 105, 108, 111, 114, 116, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145, 148, 150, 153, 155, 157, 160, 162, 164, 167, 169, 171, 173, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 205, 207, 209, 210, 212, 214, 215, 217, 218, 220, 221, 223, 224, 225, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 245, 246, 247, 247, 248, 248, 248, 249, 249, 249, 249, 250, 250, 250, 250, 250 }; /*! \file gpssim.c * \brief GPS Satellite Simulator */ /*! \brief Structure representing GPS time */ typedef struct { int week; /*!< GPS week number (since January 1980) */ double sec; /*!< second inside the GPS \a week */ } gpstime_t; /*! \brief Structure repreenting UTC time */ typedef struct { int y; /*!< Calendar year */ int m; /*!< Calendar month */ int d; /*!< Calendar day */ int hh; /*!< Calendar hour */ int mm; /*!< Calendar minutes */ double sec; /*!< Calendar seconds */ } datetime_t; /*! \brief Structure representing ephemeris of a single satellite */ typedef struct { int vflg; /*!< Valid Flag */ gpstime_t toc; /*!< Time of Clock */ gpstime_t toe; /*!< Time of Ephemeris */ int iodc; /*!< Issue of Data, Clock */ int iode; /*!< Isuse of Data, Ephemeris */ double deltan; /*!< Delta-N (radians/sec) */ double cuc; /*!< Cuc (radians) */ double cus; /*!< Cus (radians) */ double cic; /*!< Correction to inclination cos (radians) */ double cis; /*!< Correction to inclination sin (radians) */ double crc; /*!< Correction to radius cos (meters) */ double crs; /*!< Correction to radius sin (meters) */ double ecc; /*!< e Eccentricity */ double sqrta; /*!< sqrt(A) (sqrt(m)) */ double m0; /*!< Mean anamoly (radians) */ double omg0; /*!< Longitude of the ascending node (radians) */ double inc0; /*!< Inclination (radians) */ double aop; double omgdot; /*!< Omega dot (radians/s) */ double idot; /*!< IDOT (radians/s) */ double af0; /*!< Clock offset (seconds) */ double af1; /*!< rate (sec/sec) */ double af2; /*!< acceleration (sec/sec^2) */ double tgd; /*!< Group delay L2 bias */ // Working variables follow double n; /*!< Mean motion (Average angular velocity) */ double sq1e2; /*!< sqrt(1-e^2) */ double A; /*!< Semi-major axis */ double omgkdot; /*!< OmegaDot-OmegaEdot */ } ephem_t; typedef struct { gpstime_t g; double range; double rate; double d; } range_t; /*! \brief Structure representing a Channel */ typedef struct { int prn; /*< PRN Number */ int ca[CA_SEQ_LEN]; /*< C/A Sequence */ double f_carr; /*< Carrier frequency */ double f_code; /*< Code frequency */ unsigned int carr_phase; /*< Carrier phase */ int carr_phasestep; /*< Carrier phasestep */ double code_phase; /*< Code phase */ gpstime_t g0; /*!< GPS time at start */ unsigned long dwrd[N_DWRD]; /*!< Data words of sub-frame */ int iword; /*!< initial word */ int ibit; /*!< initial bit */ int icode; /*!< initial code */ int dataBit; /*!< current data bit */ int codeCA; /*!< current C/A code */ } channel_t; /* !\brief generate the C/A code sequence for a given Satellite Vehicle PRN * \param[in] prn PRN nuber of the Satellite Vehicle * \param[out] ca Caller-allocated integer array of 1023 bytes */ void codegen(int *ca, int prn) { int delay[] = { 5, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254, 255, 256, 257, 258, 469, 470, 471, 472, 473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862}; int g1[CA_SEQ_LEN], g2[CA_SEQ_LEN]; int r1[N_DWRD_SBF], r2[N_DWRD_SBF]; int c1, c2; int i,j; if (prn<1 || prn>32) return; for (i=0; i0; j--) { r1[j] = r1[j-1]; r2[j] = r2[j-1]; } r1[0] = c1; r2[0] = c2; } for (i=0,j=CA_SEQ_LEN-delay[prn-1]; iy - 1980; // Compute the number of leap days since Jan 5/Jan 6, 1980. lpdays = ye/4 + 1; if ((ye%4)==0 && t->m<=2) lpdays--; // Compute the number of days elapsed since Jan 5/Jan 6, 1980. de = ye*365 + doy[t->m-1] + t->d + lpdays - 6; // Convert time to GPS weeks and seconds. g->week = de / 7; g->sec = (double)(de%7)*SECONDS_IN_DAY + t->hh*SECONDS_IN_HOUR + t->mm*SECONDS_IN_MINUTE + t->sec; return; } /*! \brief Convert Earth-centered Earth-fixed (ECEF) into Lat/Long/Heighth * \param[in] xyz Input Array of X, Y and Z ECEF coordinates * \param[out] llh Output Array of Latitude, Longitude and Height */ void xyz2llh(const double *xyz, double *llh) { double a,eps,e,e2; double x,y,z; double rho2,dz,zdz,nh,slat,n,dz_new; a = WGS84_RADIUS; e = WGS84_ECCENTRICITY; eps = 1.0e-3; e2 = e*e; x = xyz[0]; y = xyz[1]; z = xyz[2]; rho2 = x*x + y*y; dz = e2*z; while (1) { zdz = z + dz; nh = sqrt(rho2 + zdz*zdz); slat = zdz / nh; n = a / sqrt(1.0-e2*slat*slat); dz_new = n*e2*slat; if (fabs(dz-dz_new) < eps) break; dz = dz_new; } llh[0] = atan2(zdz, sqrt(rho2)); llh[1] = atan2(y, x); llh[2] = nh - n; return; } /*! \brief Convert Lat/Long/Height into Earth-centered Earth-fixed (ECEF) * \param[in] llh Input Array of Latitude, Longitude and Height * \param[out] xyz Output Array of X, Y and Z ECEF coordinates */ void llh2xyz(const double *llh, double *xyz) { double n; double a; double e; double e2; double clat; double slat; double clon; double slon; double d,nph; double tmp; a = WGS84_RADIUS; e = WGS84_ECCENTRICITY; e2 = e*e; clat = cos(llh[0]); slat = sin(llh[0]); clon = cos(llh[1]); slon = sin(llh[1]); d = e*slat; n = a/sqrt(1.0-d*d); nph = n + llh[2]; tmp = nph*clat; xyz[0] = tmp*clon; xyz[1] = tmp*slon; xyz[2] = ((1.0-e2)*n + llh[2])*slat; return; } /*! \brief Compute the intermediate matrix for LLH to ECEF * \param[in] llh Input position in Latitude-Longitude-Height format * \param[out] t Three-by-Three output matrix */ void ltcmat(const double *llh, double t[3][3]) { double slat, clat; double slon, clon; slat = sin(llh[0]); clat = cos(llh[0]); slon = sin(llh[1]); clon = cos(llh[1]); t[0][0] = -slat*clon; t[0][1] = -slat*slon; t[0][2] = clat; t[1][0] = -slon; t[1][1] = clon; t[1][2] = 0.0; t[2][0] = clat*clon; t[2][1] = clat*slon; t[2][2] = slat; return; } /*! \brief Convert Earth-centered Earth-Fixed to ? * \param[in] xyz Input position as vector in ECEF format * \param[in] t Intermediate matrix computed by \ref ltcmat * \param[out] neu Output position as North-East-Up format */ void ecef2neu(const double *xyz, double t[3][3], double *neu) { neu[0] = t[0][0]*xyz[0] + t[0][1]*xyz[1] + t[0][2]*xyz[2]; neu[1] = t[1][0]*xyz[0] + t[1][1]*xyz[1] + t[1][2]*xyz[2]; neu[2] = t[2][0]*xyz[0] + t[2][1]*xyz[1] + t[2][2]*xyz[2]; return; } /*! \brief Convert North-Eeast-Up to Azimuth + Elevation * \param[in] neu Input position in North-East-Up format * \param[out] azel Output array of azimuth + elevation as double */ void neu2azel(double *azel, const double *neu) { double ne; azel[0] = atan2(neu[1],neu[0]); if (azel[0]<0.0) azel[0] += (2.0*PI); ne = sqrt(neu[0]*neu[0] + neu[1]*neu[1]); azel[1] = atan2(neu[2], ne); return; } /*! \brief Compute Satellite position, velocity and clock at given time * \param[in] eph Ephemeris data of the satellite * \param[in] g GPS time at which position is to be computed * \param[out] pos Computed position (vector) * \param[out] vel Computed velociy (vector) * \param[clk] clk Computed clock */ void satpos(ephem_t eph, gpstime_t g, double *pos, double *vel, double *clk) { // Computing Satellite Velocity using the Broadcast Ephemeris // http://www.ngs.noaa.gov/gps-toolbox/bc_velo.htm double tk; double mk; double ek; double ekold; double ekdot; double cek,sek; double pk; double pkdot; double c2pk,s2pk; double uk; double ukdot; double cuk,suk; double ok; double sok,cok; double ik; double ikdot; double sik,cik; double rk; double rkdot; double xpk,ypk; double xpkdot,ypkdot; double relativistic, OneMinusecosE, tmp; tk = g.sec - eph.toe.sec; if(tk>SECONDS_IN_HALF_WEEK) tk -= SECONDS_IN_WEEK; else if(tk<-SECONDS_IN_HALF_WEEK) tk += SECONDS_IN_WEEK; mk = eph.m0 + eph.n*tk; ek = mk; ekold = ek + 1.0; OneMinusecosE = 0; // Suppress the uninitialized warning. while(fabs(ek-ekold)>1.0E-14) { ekold = ek; OneMinusecosE = 1.0-eph.ecc*cos(ekold); ek = ek + (mk-ekold+eph.ecc*sin(ekold))/OneMinusecosE; } sek = sin(ek); cek = cos(ek); ekdot = eph.n/OneMinusecosE; relativistic = -4.442807633E-10*eph.ecc*eph.sqrta*sek; pk = atan2(eph.sq1e2*sek,cek-eph.ecc) + eph.aop; pkdot = eph.sq1e2*ekdot/OneMinusecosE; s2pk = sin(2.0*pk); c2pk = cos(2.0*pk); uk = pk + eph.cus*s2pk + eph.cuc*c2pk; suk = sin(uk); cuk = cos(uk); ukdot = pkdot*(1.0 + 2.0*(eph.cus*c2pk - eph.cuc*s2pk)); rk = eph.A*OneMinusecosE + eph.crc*c2pk + eph.crs*s2pk; rkdot = eph.A*eph.ecc*sek*ekdot + 2.0*pkdot*(eph.crs*c2pk - eph.crc*s2pk); ik = eph.inc0 + eph.idot*tk + eph.cic*c2pk + eph.cis*s2pk; sik = sin(ik); cik = cos(ik); ikdot = eph.idot + 2.0*pkdot*(eph.cis*c2pk - eph.cic*s2pk); xpk = rk*cuk; ypk = rk*suk; xpkdot = rkdot*cuk - ypk*ukdot; ypkdot = rkdot*suk + xpk*ukdot; ok = eph.omg0 + tk*eph.omgkdot - OMEGA_EARTH*eph.toe.sec; sok = sin(ok); cok = cos(ok); pos[0] = xpk*cok - ypk*cik*sok; pos[1] = xpk*sok + ypk*cik*cok; pos[2] = ypk*sik; tmp = ypkdot*cik - ypk*sik*ikdot; vel[0] = -eph.omgkdot*pos[1] + xpkdot*cok - tmp*sok; vel[1] = eph.omgkdot*pos[0] + xpkdot*sok + tmp*cok; vel[2] = ypk*cik*ikdot + ypkdot*sik; // Satellite clock correction tk = g.sec - eph.toc.sec; if(tk>SECONDS_IN_HALF_WEEK) tk -= SECONDS_IN_WEEK; else if(tk<-SECONDS_IN_HALF_WEEK) tk += SECONDS_IN_WEEK; clk[0] = eph.af0 + tk*(eph.af1 + tk*eph.af2) + relativistic - eph.tgd; clk[1] = eph.af1 + 2.0*tk*eph.af2; return; } /*! \brief Compute Subframe from Ephemeris * \param[in] eph Ephemeris of given SV * \param[out] sbf Array of five sub-frames, 10 long words each */ void eph2sbf(const ephem_t eph, unsigned long sbf[5][N_DWRD_SBF]) { unsigned long wn; unsigned long toe; unsigned long toc; unsigned long iode; unsigned long iodc; long deltan; long cuc; long cus; long cic; long cis; long crc; long crs; unsigned long ecc; unsigned long sqrta; long m0; long omg0; long inc0; long aop; long omgdot; long idot; long af0; long af1; long af2; long tgd; unsigned long ura = 2UL; unsigned long dataId = 1UL; unsigned long sbf4_page25_svId = 63UL; unsigned long sbf5_page25_svId = 51UL; unsigned long wna; unsigned long toa; wn = (unsigned long)(eph.toe.week%1024); toe = (unsigned long)(eph.toe.sec/16.0); toc = (unsigned long)(eph.toc.sec/16.0); iode = (unsigned long)(eph.iode); iodc = (unsigned long)(eph.iodc); deltan = (long)(eph.deltan/POW2_M43/PI); cuc = (long)(eph.cuc/POW2_M29); cus = (long)(eph.cus/POW2_M29); cic = (long)(eph.cic/POW2_M29); cis = (long)(eph.cis/POW2_M29); crc = (long)(eph.crc/POW2_M5); crs = (long)(eph.crs/POW2_M5); ecc = (unsigned long)(eph.ecc/POW2_M33); sqrta = (unsigned long)(eph.sqrta/POW2_M19); m0 = (long)(eph.m0/POW2_M31/PI); omg0 = (long)(eph.omg0/POW2_M31/PI); inc0 = (long)(eph.inc0/POW2_M31/PI); aop = (long)(eph.aop/POW2_M31/PI); omgdot = (long)(eph.omgdot/POW2_M43/PI); idot = (long)(eph.idot/POW2_M43/PI); af0 = (long)(eph.af0/POW2_M31); af1 = (long)(eph.af1/POW2_M43); af2 = (long)(eph.af2/POW2_M55); tgd = (long)(eph.tgd/POW2_M31); wna = (unsigned long)(eph.toe.week%256); toa = (unsigned long)(eph.toe.sec/4096.0); // Subframe 1 sbf[0][0] = 0x8B0000UL<<6; sbf[0][1] = 0x1UL<<8; sbf[0][2] = ((wn&0x3FFUL)<<20) | (ura<<14) | (((iodc>>8)&0x3UL)<<6); sbf[0][3] = 0UL; sbf[0][4] = 0UL; sbf[0][5] = 0UL; sbf[0][6] = (tgd&0xFFUL)<<6; sbf[0][7] = ((iodc&0xFFUL)<<22) | ((toc&0xFFFFUL)<<6); sbf[0][8] = ((af2&0xFFUL)<<22) | ((af1&0xFFFFUL)<<6); sbf[0][9] = (af0&0x3FFFFFUL)<<8; // Subframe 2 sbf[1][0] = 0x8B0000UL<<6; sbf[1][1] = 0x2UL<<8; sbf[1][2] = ((iode&0xFFUL)<<22) | ((crs&0xFFFFUL)<<6); sbf[1][3] = ((deltan&0xFFFFUL)<<14) | (((m0>>24)&0xFFUL)<<6); sbf[1][4] = (m0&0xFFFFFFUL)<<6; sbf[1][5] = ((cuc&0xFFFFUL)<<14) | (((ecc>>24)&0xFFUL)<<6); sbf[1][6] = (ecc&0xFFFFFFUL)<<6; sbf[1][7] = ((cus&0xFFFFUL)<<14) | (((sqrta>>24)&0xFFUL)<<6); sbf[1][8] = (sqrta&0xFFFFFFUL)<<6; sbf[1][9] = (toe&0xFFFFUL)<<14; // Subframe 3 sbf[2][0] = 0x8B0000UL<<6; sbf[2][1] = 0x3UL<<8; sbf[2][2] = ((cic&0xFFFFUL)<<14) | (((omg0>>24)&0xFFUL)<<6); sbf[2][3] = (omg0&0xFFFFFFUL)<<6; sbf[2][4] = ((cis&0xFFFFUL)<<14) | (((inc0>>24)&0xFFUL)<<6); sbf[2][5] = (inc0&0xFFFFFFUL)<<6; sbf[2][6] = ((crc&0xFFFFUL)<<14) | (((aop>>24)&0xFFUL)<<6); sbf[2][7] = (aop&0xFFFFFFUL)<<6; sbf[2][8] = (omgdot&0xFFFFFFUL)<<6; sbf[2][9] = ((iode&0xFFUL)<<22) | ((idot&0x3FFFUL)<<8); // Subframe 4, page 25 sbf[3][0] = 0x8B0000UL<<6; sbf[3][1] = 0x4UL<<8; sbf[3][2] = (dataId<<28) | (sbf4_page25_svId<<22); sbf[3][3] = 0UL; sbf[3][4] = 0UL; sbf[3][5] = 0UL; sbf[3][6] = 0UL; sbf[3][7] = 0UL; sbf[3][8] = 0UL; sbf[3][9] = 0UL; // Subframe 5, page 25 sbf[4][0] = 0x8B0000UL<<6; sbf[4][1] = 0x5UL<<8; sbf[4][2] = (dataId<<28) | (sbf5_page25_svId<<22) | ((toa&0xFFUL)<<14) | ((wna&0xFFUL)<<6); sbf[4][3] = 0UL; sbf[4][4] = 0UL; sbf[4][5] = 0UL; sbf[4][6] = 0UL; sbf[4][7] = 0UL; sbf[4][8] = 0UL; sbf[4][9] = 0UL; return; } /*! \brief Count number of bits set to 1 * \param[in] v long word in whihc bits are counted * \returns Count of bits set to 1 */ unsigned long countBits(unsigned long v) { unsigned long c; const int S[] = {1, 2, 4, 8, 16}; const unsigned long B[] = { 0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF}; c = v; c = ((c >> S[0]) & B[0]) + (c & B[0]); c = ((c >> S[1]) & B[1]) + (c & B[1]); c = ((c >> S[2]) & B[2]) + (c & B[2]); c = ((c >> S[3]) & B[3]) + (c & B[3]); c = ((c >> S[4]) & B[4]) + (c & B[4]); return(c); } /*! \brief Compute the Checksum for one given word of a subframe * \param[in] source The input data * \param[in] nib Does this word contain non-information-bearing bits? * \returns Computed Checksum */ unsigned long computeChecksum(unsigned long source, int nib) { /* Bits 31 to 30 = 2 LSBs of the previous transmitted word, D29* and D30* Bits 29 to 6 = Source data bits, d1, d2, ..., d24 Bits 5 to 0 = Empty parity bits */ /* Bits 31 to 30 = 2 LSBs of the previous transmitted word, D29* and D30* Bits 29 to 6 = Data bits transmitted by the SV, D1, D2, ..., D24 Bits 5 to 0 = Computed parity bits, D25, D26, ..., D30 */ /* 1 2 3 bit 12 3456 7890 1234 5678 9012 3456 7890 --- ------------------------------------- D25 11 1011 0001 1111 0011 0100 1000 0000 D26 01 1101 1000 1111 1001 1010 0100 0000 D27 10 1110 1100 0111 1100 1101 0000 0000 D28 01 0111 0110 0011 1110 0110 1000 0000 D29 10 1011 1011 0001 1111 0011 0100 0000 D30 00 1011 0111 1010 1000 1001 1100 0000 */ unsigned long bmask[6] = { 0x3B1F3480UL, 0x1D8F9A40UL, 0x2EC7CD00UL, 0x1763E680UL, 0x2BB1F340UL, 0x0B7A89C0UL }; unsigned long D; unsigned long d = source & 0x3FFFFFC0UL; unsigned long D29 = (source>>31)&0x1UL; unsigned long D30 = (source>>30)&0x1UL; if (nib) // Non-information bearing bits for word 2 and 10 { /* Solve bits 23 and 24 to presearve parity check with zeros in bits 29 and 30. */ if ((D30 + countBits(bmask[4] & d)) % 2) d ^= (0x1UL<<6); if ((D29 + countBits(bmask[5] & d)) % 2) d ^= (0x1UL<<7); } D = d; if (D30) D ^= 0x3FFFFFC0UL; D |= ((D29 + countBits(bmask[0] & d)) % 2) << 5; D |= ((D30 + countBits(bmask[1] & d)) % 2) << 4; D |= ((D29 + countBits(bmask[2] & d)) % 2) << 3; D |= ((D30 + countBits(bmask[3] & d)) % 2) << 2; D |= ((D30 + countBits(bmask[4] & d)) % 2) << 1; D |= ((D29 + countBits(bmask[5] & d)) % 2); D &= 0x3FFFFFFFUL; //D |= (source & 0xC0000000UL); // Add D29* and D30* from source data bits return(D); } /*! \brief Replace all 'E' exponential designators to 'D' * \param str String in which all occurrences of 'E' are replaced with * 'D' * \param len Length of input string in bytes * \returns Number of characters replaced */ int replaceExpDesignator(char *str, int len) { int i,n=0; for (i=0; i-SECONDS_IN_HOUR) && (dt<=SECONDS_IN_HOUR)) { strncpy(tmp, str, 2); tmp[2] = 0; sv = atoi(tmp)-1; if (eph[sv].vflg==0) { eph[sv].toc = g; strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); // tmp[15]='E'; eph[sv].af0 = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].af1 = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].af2 = atof(tmp); // BROADCAST ORBIT - 1 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].iode = (int)atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].crs = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].deltan = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].m0 = atof(tmp); // BROADCAST ORBIT - 2 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].cuc = atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].ecc = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].cus = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].sqrta = atof(tmp); // BROADCAST ORBIT - 3 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].toe.sec = atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].cic = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].omg0 = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].cis = atof(tmp); // BROADCAST ORBIT - 4 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].inc0 = atof(tmp); strncpy(tmp, str+22, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].crc = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].aop = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].omgdot = atof(tmp); // BROADCAST ORBIT - 5 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+3, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].idot = atof(tmp); strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].toe.week = (int)atof(tmp); // BROADCAST ORBIT - 6 if (NULL==fgets(str, MAX_CHAR, fp)) break; strncpy(tmp, str+41, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].tgd = atof(tmp); strncpy(tmp, str+60, 19); tmp[19] = 0; replaceExpDesignator(tmp, 19); eph[sv].iodc = (int)atof(tmp); // BROADCAST ORBIT - 7 if (NULL==fgets(str, MAX_CHAR, fp)) break; eph[sv].vflg = 1; nsat++; } } else break; // Update the working variables eph[sv].A = eph[sv].sqrta * eph[sv].sqrta; eph[sv].n = sqrt(GM_EARTH/(eph[sv].A*eph[sv].A*eph[sv].A)) + eph[sv].deltan; eph[sv].sq1e2 = sqrt(1.0 - eph[sv].ecc*eph[sv].ecc); eph[sv].omgkdot = eph[sv].omgdot - OMEGA_EARTH; } fclose(fp); return(nsat); } /*! \brief Subtract two vectors of double * \param[out] y Result of subtraction * \param[in] x1 Minuend of subtracion * \param[in] x2 Subtrahend of subtracion */ void subVect(double *y, const double *x1, const double *x2) { y[0] = x1[0]-x2[0]; y[1] = x1[1]-x2[1]; y[2] = x1[2]-x2[2]; return; } /*! \brief Compute Norm of Vector * \param[in] x Input vector * \returns Length (Norm) of the input vector */ double normVect(const double *x) { return(sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2])); } /*! \brief Compute dot-product of two vectors * \param[in] x1 First multiplicand * \param[in] x2 Second multiplicand * \returns Dot-product of both multiplicands */ double dotProd(const double *x1, const double *x2) { return(x1[0]*x2[0]+x1[1]*x2[1]+x1[2]*x2[2]); } /*! \brief Compute range between a satellite and the receiver * \param[out] rho The computed range * \param[in] eph Ephemeris data of the satellite * \param[in] g GPS time at time of receiving the signal * \param[in] xyz position of the receiver */ void computeRange(range_t *rho, ephem_t eph, gpstime_t g, double xyz[]) { double pos[3],vel[3],clk[2]; double los[3]; double tau; double range,rate; double xrot,yrot; // SV position at time of the pseudorange observation. satpos(eph, g, pos, vel, clk); // Receiver to satellite vector and light-time. subVect(los, pos, xyz); tau = normVect(los)/SPEED_OF_LIGHT; // Extrapolate the satellite position backwards to the transmission time. pos[0] -= vel[0]*tau; pos[1] -= vel[1]*tau; pos[2] -= vel[2]*tau; // Earth rotation correction. The change in velocity can be neglected. xrot = pos[0] + pos[1]*OMEGA_EARTH*tau; yrot = pos[1] - pos[0]*OMEGA_EARTH*tau; pos[0] = xrot; pos[1] = yrot; // New observer to satellite vector and satellite range. subVect(los, pos, xyz); range = normVect(los); rho->d = range; // Pseudorange. rho->range = range - SPEED_OF_LIGHT*clk[0]; // Relative velocity of SV and receiver. rate = dotProd(vel, los)/range; // Pseudorange rate. rho->rate = rate; // - SPEED_OF_LIGHT*clk[1]; // Time of application rho->g = g; return; } /*! \brief Compute the code phase for a given channel (satellite) * \param chan Channel on which we operate (is updated) * \param[in] rho0 Range at start of interval * \param[in] rho1 Current range, after \a dt has expired * \param[in dt delta-t (time difference) in seconds */ void computeCodePhase(channel_t *chan, range_t rho0, range_t rho1, double dt) { double ms; int ims; double rhorate; // Pseudorange rate. rhorate = (rho1.range - rho0.range)/dt; // Carrier and code frequency. chan->f_carr = -rhorate/LAMBDA_L1; chan->f_code = CODE_FREQ + chan->f_carr*CARR_TO_CODE; // Initial code phase and data bit counters. ms = (((rho0.g.sec-chan->g0.sec)+6.0) - rho0.range/SPEED_OF_LIGHT)*1000.0; ims = (int)ms; chan->code_phase = (ms-(double)ims)*CA_SEQ_LEN; // in chip chan->iword = ims/600; // 1 word = 30 bits = 600 ms ims -= chan->iword*600; chan->ibit = ims/20; // 1 bit = 20 code = 20 ms ims -= chan->ibit*20; chan->icode = ims; // 1 code = 1 ms chan->codeCA = chan->ca[(int)chan->code_phase]*2-1; chan->dataBit = (int)((chan->dwrd[chan->iword]>>(29-chan->ibit)) & 0x1UL)*2-1; return; } /*! \brief Read the list of user motions from the input file * \param[out] xyz Output array of ECEF vectors for user motion * \param[[in] filename File name of the text input file * \returns Number of user data motion records read, -1 on error */ int readUserMotion(double xyz[USER_MOTION_SIZE][3], const char *filename) { FILE *fp; int numd; char str[MAX_CHAR]; double t,x,y,z; if (NULL==(fp=fopen(filename,"rt"))) return(-1); for (numd=0; numd=USER_MOTION_SIZE) break; } } fclose(fp); return (numd); } void usage(void) { printf("Usage: gps-sdr-sim [options]\n" "Options:\n" " -e RINEX navigation file for GPS ephemerides (required)\n" " -u User motion file (dynamic mode)\n" " -g NMEA GGA stream (dynamic mode)\n" " -l Lat,Lon,Hgt (static mode) e.g. 30.286502,120.032669,100\n" " -o I/Q sampling data file (default: gpssim.bin)\n" " -s Sampling frequency [Hz] (default: 2600000)\n" " -b I/Q data format [8/16] (default: 8)\n"); return; } int main(int argc, char *argv[]) { clock_t tstart,tend; FILE *fp; int sv; int neph; ephem_t eph[MAX_SAT]; gpstime_t g0; double llh[3]; double pos[3],vel[3],clk[2]; double tmat[3][3]; double los[3]; double neu[3]; double azel[2]; int i; int nsat; channel_t chan[MAX_CHAN]; double elvmask = 0.0/R2D; int isbf,iwrd; unsigned long tow; unsigned long sbf[5][N_DWRD_SBF]; unsigned long sbfwrd; unsigned long prevwrd; int nib; int ip,qp; int iTable; short *iq_buff = NULL; signed char *iq8_buff = NULL; gpstime_t grx; range_t rho0[MAX_SAT]; double delt; int isamp; int iumd; int numd; char umfile[MAX_CHAR]; double xyz[USER_MOTION_SIZE][3]; bool staticLocationMode = false; bool nmeaGGA = false; char navfile[MAX_CHAR]; char outfile[MAX_CHAR]; double samp_freq; int iq_buff_size; int data_format; int result; int gain[MAX_CHAN]; //////////////////////////////////////////////////////////// // Read options //////////////////////////////////////////////////////////// // Default options navfile[0] = 0; umfile[0] = 0; strcpy(outfile, "gpssim.bin"); samp_freq = 2.6e6; data_format = SC08; if (argc<3) { usage(); exit(1); } while ((result=getopt(argc,argv,"e:u:g:l:o:s:b:"))!=-1) { switch (result) { case 'e': strcpy(navfile, optarg); break; case 'u': strcpy(umfile, optarg); nmeaGGA = false; break; case 'g': strcpy(umfile, optarg); nmeaGGA = true; break; case 'l': // Static geodetic coordinates input mode // Added by scateu@gmail.com staticLocationMode = true; sscanf(optarg,"%lf,%lf,%lf",&llh[0],&llh[1],&llh[2]); llh[0] = llh[0] / R2D; // convert to RAD llh[1] = llh[1] / R2D; // convert to RAD break; case 'o': strcpy(outfile, optarg); break; case 's': samp_freq = atof(optarg); if (samp_freq<1.0e6) { printf("Invalid sampling frequency.\n"); exit(1); } break; case 'b': data_format = atoi(optarg); if (data_format!=SC08 && data_format!=SC16) { printf("Invalid data format.\n"); exit(1); } break; case ':': case '?': usage(); exit(1); default: break; } } if (navfile[0]==0) { printf("GPS ephemeris file is not specified.\n"); exit(1); } if (umfile[0]==0 && !staticLocationMode) { printf("User motion file / NMEA GGA stream is not specified.\n"); printf("You may use -l to specify the static location directly.\n"); exit(1); } // Buffer size samp_freq = floor(samp_freq/10.0); iq_buff_size = (int)samp_freq; // samples per 0.1sec samp_freq *= 10.0; delt = 1.0/samp_freq; //////////////////////////////////////////////////////////// // Receiver position //////////////////////////////////////////////////////////// if (!staticLocationMode) { // Read user motion file if (nmeaGGA==true) numd = readNmeaGGA(xyz, umfile); else numd = readUserMotion(xyz, umfile); if (numd==-1) { printf("Failed to open user motion / NMEA GGA file.\n"); exit(1); } else if (numd==0) { printf("Failed to read user motion / NMEA GGA data.\n"); exit(1); } printf("Track points = %d\n", numd); // Initial location in Geodetic coordinate system xyz2llh(xyz[0], llh); } else { // Static geodetic coordinates input mode: "-l" // Added by scateu@gmail.com printf("Using static location mode.\n"); llh2xyz(llh,xyz[0]); // Convert llh to xyz numd = USER_MOTION_SIZE; for (iumd=1; iumd0) { for (sv=0; svelvmask) { chan[nsat].prn = sv+1; nsat++; printf("%02d %6.1f %5.1f %10.1f\n", sv+1, azel[0]*R2D, azel[1]*R2D, normVect(los)); } } } printf("Number of channels = %d\n", nsat); //////////////////////////////////////////////////////////// // Baseband signal buffer and output file //////////////////////////////////////////////////////////// // Allocate I/Q buffer iq_buff = calloc(2*iq_buff_size, 2); if (iq_buff==NULL) { printf("Faild to allocate IQ buffer.\n"); exit(1); } if (data_format==SC08) { iq8_buff = calloc(2*iq_buff_size, 1); if (iq8_buff==NULL) { printf("Faild to allocate IQ buffer.\n"); exit(1); } } // Open output file if (NULL==(fp=fopen(outfile,"wb"))) { printf("Failed to open output file.\n"); exit(1); } //////////////////////////////////////////////////////////// // Initialize channels //////////////////////////////////////////////////////////// // Initial reception time grx = g0; for (i=0; i> 16) & 511; ip = chan[i].dataBit * chan[i].codeCA * cosTable512[iTable] * gain[i]; qp = chan[i].dataBit * chan[i].codeCA * sinTable512[iTable] * gain[i]; i_acc += ip/100; q_acc += qp/100; // Update code phase chan[i].code_phase += chan[i].f_code * delt; if (chan[i].code_phase>=CA_SEQ_LEN) { chan[i].code_phase -= CA_SEQ_LEN; chan[i].icode++; if (chan[i].icode>=20) // 20 C/A codes = 1 navigation data bit { chan[i].icode = 0; chan[i].ibit++; if (chan[i].ibit>=30) // 30 navigation data bits = 1 word { chan[i].ibit = 0; chan[i].iword++; } // Set new navigation data bit chan[i].dataBit = (int)((chan[i].dwrd[chan[i].iword]>>(29-chan[i].ibit)) & 0x1UL)*2-1; } } // Set currnt code chip chan[i].codeCA = chan[i].ca[(int)chan[i].code_phase]*2-1; // Update carrier phase chan[i].carr_phase += chan[i].carr_phasestep; } // Store I/Q samples into buffer iq_buff[isamp*2] = (short)i_acc; iq_buff[isamp*2+1] = (short)q_acc; } // End of omp parallel for if (data_format==SC08) { for (isamp=0; isamp<2*iq_buff_size; isamp++) iq8_buff[isamp] = iq_buff[isamp]>>4; // 12-bit bladeRF -> 8-bit HackRF fwrite(iq8_buff, 1, 2*iq_buff_size, fp); } else fwrite(iq_buff, 2, 2*iq_buff_size, fp); // Update receiver time grx.sec += 0.1; // Update time counter printf("\rTime = %4.1f", grx.sec-g0.sec); fflush(stdout); } tend = clock(); printf("\nDone!\n"); // Free I/Q buffer free(iq_buff); // Close file fclose(fp); // Process time printf("Process time = %.3f[sec]\n", (double)(tend-tstart)/CLOCKS_PER_SEC); return(0); }