nextpnr/mistral/bitstream.cc

407 lines
19 KiB
C++
Raw Permalink Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "log.h"
#include "nextpnr.h"
2023-05-16 23:39:44 +08:00
#include "timing.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct MistralBitgen
{
MistralBitgen(Context *ctx) : ctx(ctx), cv(ctx->cyclonev) {};
Context *ctx;
CycloneV *cv;
using rnode_t = CycloneV::rnode_t;
using pnode_t = CycloneV::pnode_t;
using pos_t = CycloneV::pos_t;
using block_type_t = CycloneV::block_type_t;
using port_type_t = CycloneV::port_type_t;
rnode_t find_rnode(block_type_t bt, pos_t pos, port_type_t port, int bi = -1, int pi = -1) const
{
auto pn1 = CycloneV::pnode(bt, pos, port, bi, pi);
auto rn1 = cv->pnode_to_rnode(pn1);
if (rn1)
return rn1;
if (bt == CycloneV::GPIO) {
auto pn2 = cv->p2p_to(pn1);
if (!pn2) {
auto pnv = cv->p2p_from(pn1);
if (!pnv.empty())
pn2 = pnv[0];
}
auto pn3 = cv->hmc_get_bypass(pn2);
auto rn2 = cv->pnode_to_rnode(pn3);
return rn2;
}
return 0;
}
2022-01-18 22:12:45 +08:00
void options()
{
2022-01-18 22:12:45 +08:00
if (!ctx->setting<bool>("compress_rbf", false)) {
cv->opt_b_set(CycloneV::COMPRESSION_DIS, true);
cv->opt_r_set(CycloneV::OPT_B, 0xffffff40adffffffULL);
2022-01-18 22:12:45 +08:00
} else
cv->opt_r_set(CycloneV::OPT_B, 0xffffff402dffffffULL);
}
void write_routing()
{
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
for (auto &wire : ni->wires) {
PipId pip = wire.second.pip;
if (pip == PipId())
continue;
WireId src = ctx->getPipSrcWire(pip), dst = ctx->getPipDstWire(pip);
// Only write out routes that are entirely in the Mistral domain. Everything else is dealt with
// specially
if (src.is_nextpnr_created() || dst.is_nextpnr_created())
continue;
cv->rnode_link(src.node, dst.node);
}
}
}
void write_io_cell(CellInfo *ci, int x, int y, int bi)
{
bool is_output = (ci->type == id_MISTRAL_OB || (ci->type == id_MISTRAL_IO && ci->getPort(id_OE) != nullptr));
auto pos = CycloneV::xy2pos(x, y);
// TODO: configurable pull, IO standard, etc
cv->bmux_b_set(CycloneV::GPIO, pos, CycloneV::USE_WEAK_PULLUP, bi, false);
if (is_output) {
cv->bmux_m_set(CycloneV::GPIO, pos, CycloneV::DRIVE_STRENGTH, bi, CycloneV::V3P3_LVTTL_16MA_LVCMOS_2MA);
cv->bmux_m_set(CycloneV::GPIO, pos, CycloneV::IOCSR_STD, bi, CycloneV::DIS);
// Output gpios must also bypass things in the associated dqs
auto dqs = cv->p2p_to(CycloneV::pnode(CycloneV::GPIO, pos, CycloneV::PNONE, bi, -1));
if (dqs) {
cv->bmux_m_set(CycloneV::DQS16, CycloneV::pn2p(dqs), CycloneV::INPUT_REG4_SEL, CycloneV::pn2bi(dqs),
CycloneV::SEL_LOCKED_DPA);
cv->bmux_r_set(CycloneV::DQS16, CycloneV::pn2p(dqs), CycloneV::RB_T9_SEL_EREG_CFF_DELAY,
CycloneV::pn2bi(dqs), 0x1f);
}
}
// There seem to be two mirrored OEIN inversion bits for constant OE for inputs/outputs. This might be to
// prevent a single bitflip from turning inputs to outputs and messing up other devices on the boards, notably
// ECP5 does similar. OEIN.0 inverted for outputs; OEIN.1 for inputs
cv->inv_set(find_rnode(CycloneV::GPIO, pos, CycloneV::OEIN, bi, 0), is_output);
cv->inv_set(find_rnode(CycloneV::GPIO, pos, CycloneV::OEIN, bi, 1), !is_output);
}
void write_clkbuf_cell(CellInfo *ci, int x, int y, int bi)
{
(void)ci; // currently unused
auto pos = CycloneV::xy2pos(x, y);
cv->bmux_r_set(CycloneV::CMUXHG, pos, CycloneV::INPUT_SEL, bi, 0x1b); // hardcode to general routing
cv->bmux_m_set(CycloneV::CMUXHG, pos, CycloneV::TESTSYN_ENOUT_SELECT, bi, CycloneV::PRE_SYNENB);
}
2022-03-08 02:22:56 +08:00
void write_m10k_cell(CellInfo *ci, int x, int y, int bi)
2021-12-22 20:01:24 +08:00
{
auto pos = CycloneV::xy2pos(x, y);
// Notes:
// DATA_FLOW_THRU is probably transparent reads.
auto dbits = ci->params.at(id_CFG_DBITS).as_int64();
2021-12-22 20:01:24 +08:00
cv->bmux_b_set(CycloneV::M10K, pos, CycloneV::A_DATA_FLOW_THRU, bi, 1);
cv->bmux_n_set(CycloneV::M10K, pos, CycloneV::A_DATA_WIDTH, bi, dbits);
cv->bmux_m_set(CycloneV::M10K, pos, CycloneV::A_FAST_WRITE, bi, dbits == 40 ? CycloneV::SLOW : CycloneV::FAST);
2022-03-08 02:22:56 +08:00
cv->bmux_m_set(CycloneV::M10K, pos, CycloneV::A_OUTPUT_SEL, bi, CycloneV::ASYNC);
2021-12-22 20:01:24 +08:00
cv->bmux_r_set(CycloneV::M10K, pos, CycloneV::A_SA_WREN_DELAY, bi, 1);
cv->bmux_r_set(CycloneV::M10K, pos, CycloneV::A_SAEN_DELAY, bi, 2);
cv->bmux_r_set(CycloneV::M10K, pos, CycloneV::A_WL_DELAY, bi, 2);
cv->bmux_r_set(CycloneV::M10K, pos, CycloneV::A_WR_TIMER_PULSE, bi, 0x0b);
2022-03-08 02:22:56 +08:00
cv->bmux_b_set(CycloneV::M10K, pos, CycloneV::B_DATA_FLOW_THRU, bi, 1);
cv->bmux_n_set(CycloneV::M10K, pos, CycloneV::B_DATA_WIDTH, bi, dbits);
cv->bmux_m_set(CycloneV::M10K, pos, CycloneV::B_FAST_WRITE, bi, dbits == 40 ? CycloneV::SLOW : CycloneV::FAST);
2022-03-08 02:22:56 +08:00
cv->bmux_m_set(CycloneV::M10K, pos, CycloneV::B_OUTPUT_SEL, bi, CycloneV::ASYNC);
2021-12-22 20:01:24 +08:00
cv->bmux_r_set(CycloneV::M10K, pos, CycloneV::B_SA_WREN_DELAY, bi, 1);
cv->bmux_r_set(CycloneV::M10K, pos, CycloneV::B_SAEN_DELAY, bi, 2);
cv->bmux_r_set(CycloneV::M10K, pos, CycloneV::B_WL_DELAY, bi, 2);
cv->bmux_r_set(CycloneV::M10K, pos, CycloneV::B_WR_TIMER_PULSE, bi, 0x0b);
2022-03-08 02:22:56 +08:00
cv->bmux_n_set(CycloneV::M10K, pos, CycloneV::TOP_CLK_SEL, bi, 1);
cv->bmux_b_set(CycloneV::M10K, pos, CycloneV::TOP_W_INV, bi, dbits != 40);
cv->bmux_n_set(CycloneV::M10K, pos, CycloneV::TOP_W_SEL, bi, dbits != 40);
cv->bmux_b_set(CycloneV::M10K, pos, CycloneV::BOT_CLK_INV, bi, dbits != 40);
cv->bmux_n_set(CycloneV::M10K, pos, CycloneV::BOT_W_SEL, bi, dbits != 40);
2021-12-22 20:01:24 +08:00
2022-03-08 02:22:56 +08:00
cv->bmux_b_set(CycloneV::M10K, pos, CycloneV::TRUE_DUAL_PORT, bi, 0);
2021-12-22 20:01:24 +08:00
cv->bmux_b_set(CycloneV::M10K, pos, CycloneV::DISABLE_UNUSED, bi, 0);
2022-03-10 18:28:57 +08:00
auto permute_init = [](int64_t init) -> int64_t {
const int permutation[40] = {0, 20, 10, 30, 1, 21, 11, 31, 2, 22, 12, 32, 3, 23, 13, 33, 4, 24, 14, 34,
5, 25, 15, 35, 6, 26, 16, 36, 7, 27, 17, 37, 8, 28, 18, 38, 9, 29, 19, 39};
int64_t output = 0;
for (int bit = 0; bit < 40; bit++)
output |= ((init >> permutation[bit]) & 1) << bit;
return ~output; // RAM init is inverted.
};
Property init;
if (ci->params.count(id_INIT) == 0) {
init = Property{0, 10240};
} else {
init = ci->params.at(id_INIT);
}
2021-12-22 20:01:24 +08:00
for (int bi = 0; bi < 256; bi++)
2022-03-10 18:28:57 +08:00
cv->bmux_r_set(CycloneV::M10K, pos, CycloneV::RAM, bi, permute_init(init.extract(bi * 40, 40).as_int64()));
2021-12-22 20:01:24 +08:00
}
void write_cells()
{
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
Loc loc = ctx->getBelLocation(ci->bel);
int bi = ctx->bel_data(ci->bel).block_index;
if (ctx->is_io_cell(ci->type))
write_io_cell(ci, loc.x, loc.y, bi);
else if (ctx->is_clkbuf_cell(ci->type))
write_clkbuf_cell(ci, loc.x, loc.y, bi);
2021-12-22 20:01:24 +08:00
else if (ci->type == id_MISTRAL_M10K)
write_m10k_cell(ci, loc.x, loc.y, bi);
}
}
bool write_alm(uint32_t lab, uint8_t alm)
{
auto &alm_data = ctx->labs.at(lab).alms.at(alm);
auto block_type = ctx->labs.at(lab).is_mlab ? CycloneV::MLAB : CycloneV::LAB;
std::array<CellInfo *, 2> luts{ctx->getBoundBelCell(alm_data.lut_bels[0]),
ctx->getBoundBelCell(alm_data.lut_bels[1])};
std::array<CellInfo *, 4> ffs{
ctx->getBoundBelCell(alm_data.ff_bels[0]), ctx->getBoundBelCell(alm_data.ff_bels[1]),
ctx->getBoundBelCell(alm_data.ff_bels[2]), ctx->getBoundBelCell(alm_data.ff_bels[3])};
// Skip empty ALMs
if (std::all_of(luts.begin(), luts.end(), [](CellInfo *c) { return !c; }) &&
std::all_of(ffs.begin(), ffs.end(), [](CellInfo *c) { return !c; }))
return false;
bool is_lutram =
(luts[0] && luts[0]->combInfo.mlab_group != -1) || (luts[1] && luts[1]->combInfo.mlab_group != -1);
auto pos = alm_data.lut_bels[0].pos;
if (is_lutram) {
for (int i = 0; i < 10; i++) {
// Many MLAB settings apply to the whole LAB, not just the ALM
cv->bmux_m_set(block_type, pos, CycloneV::TMODE, i, CycloneV::RAM);
cv->bmux_m_set(block_type, pos, CycloneV::BMODE, i, CycloneV::RAM);
cv->bmux_n_set(block_type, pos, CycloneV::T_FEEDBACK_SEL, i, 1);
}
cv->bmux_r_set(block_type, pos, CycloneV::LUT_MASK, alm, 0xFFFFFFFFFFFFFFFFULL); // TODO: LUTRAM init
cv->bmux_b_set(block_type, pos, CycloneV::BPKREG1, alm, true);
cv->bmux_b_set(block_type, pos, CycloneV::TPKREG0, alm, true);
cv->bmux_m_set(block_type, pos, CycloneV::MCRG_VOLTAGE, 0, CycloneV::VCCL);
cv->bmux_b_set(block_type, pos, CycloneV::RAM_DIS, 0, false);
cv->bmux_b_set(block_type, pos, CycloneV::WRITE_EN, 0, true);
cv->bmux_n_set(block_type, pos, CycloneV::WRITE_PULSE_LENGTH, 0, 650); // picoseconds, presumably
// TODO: understand how these enables really work
cv->bmux_b_set(block_type, pos, CycloneV::EN2_EN, 0, false);
cv->bmux_b_set(block_type, pos, CycloneV::SCLR_DIS, 0, true);
} else {
// Combinational mode - TODO: flop feedback and more modes...
cv->bmux_m_set(block_type, pos, CycloneV::TMODE, alm, alm_data.l6_mode ? CycloneV::C_E : CycloneV::E_0);
cv->bmux_m_set(block_type, pos, CycloneV::BMODE, alm, alm_data.l6_mode ? CycloneV::D_E : CycloneV::E_1);
// LUT function
cv->bmux_r_set(block_type, pos, CycloneV::LUT_MASK, alm, ctx->compute_lut_mask(lab, alm));
}
// DFF/LUT output selection
const std::array<CycloneV::bmux_type_t, 6> mux_settings{CycloneV::TDFF0, CycloneV::TDFF1, CycloneV::TDFF1L,
CycloneV::BDFF0, CycloneV::BDFF1, CycloneV::BDFF1L};
const std::array<CycloneV::port_type_t, 6> mux_port{CycloneV::FFT0, CycloneV::FFT1, CycloneV::FFT1L,
CycloneV::FFB0, CycloneV::FFB1, CycloneV::FFB1L};
for (int i = 0; i < 6; i++) {
if (ctx->wires_connected(alm_data.comb_out[i / 3], ctx->get_port(block_type, CycloneV::pos2x(pos),
CycloneV::pos2y(pos), alm, mux_port[i])))
cv->bmux_m_set(block_type, pos, mux_settings[i], alm, CycloneV::NLUT);
}
bool is_carry = (luts[0] && luts[0]->combInfo.is_carry) || (luts[1] && luts[1]->combInfo.is_carry);
if (is_carry)
cv->bmux_m_set(block_type, pos, CycloneV::ARITH_SEL, alm, CycloneV::ADDER);
// The carry in/out enable bits
if (is_carry && alm == 0 && !luts[0]->combInfo.carry_start)
cv->bmux_b_set(block_type, pos, CycloneV::TTO_DIS, 0, true);
if (is_carry && alm == 5)
cv->bmux_b_set(block_type, pos, CycloneV::BTO_DIS, 0, true);
// Flipflop configuration
const std::array<CycloneV::bmux_type_t, 2> ef_sel{CycloneV::TEF_SEL, CycloneV::BEF_SEL};
// This isn't a typo; the *PKREG* bits really are mirrored.
const std::array<CycloneV::bmux_type_t, 4> pkreg{CycloneV::TPKREG1, CycloneV::TPKREG0, CycloneV::BPKREG1,
CycloneV::BPKREG0};
const std::array<CycloneV::bmux_type_t, 2> clk_sel{CycloneV::TCLK_SEL, CycloneV::BCLK_SEL},
clr_sel{CycloneV::TCLR_SEL, CycloneV::BCLR_SEL}, sclr_dis{CycloneV::TSCLR_DIS, CycloneV::BSCLR_DIS},
sload_en{CycloneV::TSLOAD_EN, CycloneV::BSLOAD_EN};
const std::array<CycloneV::bmux_type_t, 3> clk_choice{CycloneV::CLK0, CycloneV::CLK1, CycloneV::CLK2};
const std::array<CycloneV::bmux_type_t, 3> clk_inv{CycloneV::CLK0_INV, CycloneV::CLK1_INV, CycloneV::CLK2_INV},
en_en{CycloneV::EN0_EN, CycloneV::EN1_EN, CycloneV::EN2_EN},
en_ninv{CycloneV::EN0_NINV, CycloneV::EN1_NINV, CycloneV::EN2_NINV};
const std::array<CycloneV::bmux_type_t, 2> aclr_inv{CycloneV::ACLR0_INV, CycloneV::ACLR1_INV};
for (int i = 0; i < 2; i++) {
// EF selection mux
if (ctx->wires_connected(ctx->getBelPinWire(alm_data.lut_bels[i], i ? id_F0 : id_F1), alm_data.sel_ef[i]))
cv->bmux_m_set(block_type, pos, ef_sel[i], alm, CycloneV::bmux_type_t::F);
}
for (int i = 0; i < 4; i++) {
CellInfo *ff = ffs[i];
if (!ff)
continue;
// PKREG (input selection)
if (ctx->wires_connected(alm_data.sel_ef[i / 2], alm_data.ff_in[i]))
cv->bmux_b_set(block_type, pos, pkreg[i], alm, true);
// Control set
// CLK+ENA
int ce_idx = alm_data.clk_ena_idx[i / 2];
cv->bmux_m_set(block_type, pos, clk_sel[i / 2], alm, clk_choice[ce_idx]);
if (ff->ffInfo.ctrlset.clk.inverted)
cv->bmux_b_set(block_type, pos, clk_inv[ce_idx], 0, true);
if (ff->getPort(id_ENA) != nullptr) { // not using ffInfo.ctrlset, this has a fake net always to
// ensure different constants don't collide
cv->bmux_b_set(block_type, pos, en_en[ce_idx], 0, true);
cv->bmux_b_set(block_type, pos, en_ninv[ce_idx], 0, ff->ffInfo.ctrlset.ena.inverted);
} else {
cv->bmux_b_set(block_type, pos, en_en[ce_idx], 0, false);
}
// ACLR
int aclr_idx = alm_data.aclr_idx[i / 2];
cv->bmux_b_set(block_type, pos, clr_sel[i / 2], alm, aclr_idx == 1);
if (ff->ffInfo.ctrlset.aclr.inverted)
cv->bmux_b_set(block_type, pos, aclr_inv[aclr_idx], 0, true);
// SCLR
if (ff->ffInfo.ctrlset.sclr.net != nullptr) {
cv->bmux_b_set(block_type, pos, CycloneV::SCLR_INV, 0, ff->ffInfo.ctrlset.sclr.inverted);
cv->bmux_b_set(block_type, pos, CycloneV::SCLR_DIS, 0, false);
} else {
cv->bmux_b_set(block_type, pos, sclr_dis[i / 2], alm, true);
}
// SLOAD
if (ff->ffInfo.ctrlset.sload.net != nullptr) {
cv->bmux_b_set(block_type, pos, sload_en[i / 2], alm, true);
if (ff->ffInfo.ctrlset.sload.net->name == ctx->id("$PACKER_GND_NET")) {
// force-disabled LOAD (see workaround in assign_ff_info)
cv->bmux_b_set(block_type, pos, CycloneV::SLOAD_EN, 0, false);
}
cv->bmux_b_set(block_type, pos, CycloneV::SLOAD_INV, 0, ff->ffInfo.ctrlset.sload.inverted);
}
}
if (is_lutram) {
for (int i = 0; i < 2; i++) {
CellInfo *lut = luts[i];
if (!lut || lut->combInfo.mlab_group == -1)
continue;
int ce_idx = alm_data.clk_ena_idx[1];
cv->bmux_m_set(block_type, pos, clk_sel[1], alm, clk_choice[ce_idx]);
if (lut->combInfo.wclk.inverted)
cv->bmux_b_set(block_type, pos, clk_inv[ce_idx], 0, true);
if (lut->getPort(id_A1EN) != nullptr) {
cv->bmux_b_set(block_type, pos, en_en[ce_idx], 0, true);
cv->bmux_b_set(block_type, pos, en_ninv[ce_idx], 0, lut->combInfo.we.inverted);
} else {
cv->bmux_b_set(block_type, pos, en_en[ce_idx], 0, false);
}
// TODO: understand what these are doing
cv->bmux_b_set(block_type, pos, sclr_dis[0], alm, true);
cv->bmux_b_set(block_type, pos, sclr_dis[1], alm, true);
}
}
return true;
}
void write_ff_routing(uint32_t lab)
{
auto &lab_data = ctx->labs.at(lab);
auto pos = lab_data.alms.at(0).lut_bels[0].pos;
auto block_type = ctx->labs.at(lab).is_mlab ? CycloneV::MLAB : CycloneV::LAB;
const std::array<CycloneV::bmux_type_t, 2> aclr_inp{CycloneV::ACLR0_SEL, CycloneV::ACLR1_SEL};
for (int i = 0; i < 2; i++) {
// Quartus seems to set unused ACLRs to ACLR0
if (lab_data.aclr_used[i])
cv->bmux_m_set(block_type, pos, aclr_inp[i], 0, (i == 1) ? CycloneV::DIN2 : CycloneV::DIN3);
else if (i == 0)
cv->bmux_m_set(block_type, pos, aclr_inp[i], 0, CycloneV::ACLR0);
}
for (int i = 0; i < 3; i++) {
// Check for fabric->clock routing
if (ctx->wires_connected(
ctx->get_port(block_type, CycloneV::pos2x(pos), CycloneV::pos2y(pos), -1, CycloneV::DATAIN, 0),
lab_data.clk_wires[i]))
cv->bmux_m_set(block_type, pos, CycloneV::CLKA_SEL, 0, CycloneV::DIN0);
}
}
void write_labs()
{
for (size_t lab = 0; lab < ctx->labs.size(); lab++) {
bool used = false;
for (uint8_t alm = 0; alm < 10; alm++)
used |= write_alm(lab, alm);
if (used)
write_ff_routing(lab);
}
}
void run()
{
cv->clear();
2022-01-18 22:12:45 +08:00
options();
write_routing();
write_cells();
write_labs();
2023-05-16 23:39:44 +08:00
ctx->bitstream_configured = true;
}
};
} // namespace
void Arch::build_bitstream()
{
MistralBitgen gen(getCtx());
gen.run();
2023-05-16 23:39:44 +08:00
// This is a hack to run timing analysis yet again after the bitstream is
// configured in Mistral, because the analogue simulator won't work until
// it has a bitstream in the library.
//
// A better solution would be to move a lot of this bitstream code to
// {un,}bind{Bel, Pip} and friends, but we're not there yet.
log_info("Running signoff timing analysis...\n");
timing_analysis(getCtx(), true, true, true, true, true);
}
NEXTPNR_NAMESPACE_END