nextpnr/fpga_interchange/arch.h

1745 lines
52 KiB
C
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Claire Wolf <claire@symbioticeda.com>
* Copyright (C) 2018-19 David Shah <david@symbioticeda.com>
* Copyright (C) 2021 Symbiflow Authors
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef NEXTPNR_H
#error Include "arch.h" via "nextpnr.h" only.
#endif
#include <boost/iostreams/device/mapped_file.hpp>
#include <iostream>
#include <regex>
#include "constraints.h"
#include "dedicated_interconnect.h"
#include "site_router.h"
NEXTPNR_NAMESPACE_BEGIN
/**** Everything in this section must be kept in sync with chipdb.py ****/
#include "relptr.h"
// Flattened site indexing.
//
// To enable flat BelId.z spaces, every tile and sites within that tile are
// flattened.
//
// This has implications on BelId's, WireId's and PipId's.
// The flattened site space works as follows:
// - Objects that belong to the tile are first. BELs are always part of Sites,
// so no BEL objects are in this category.
// - All site alternative modes are exposed as a "full" site.
// - Each site appends it's BEL's, wires (site wires) and PIP's.
// - Sites add two types of pips. Sites will add pip data first for site
// pips, and then for site pin edges.
// 1. The first type is site pips, which connect site wires to other site
// wires.
// 2. The second type is site pin edges, which connect site wires to tile
// wires (or vise-versa).
NPNR_PACKED_STRUCT(struct BelInfoPOD {
int32_t name; // bel name (in site) constid
int32_t type; // Type name constid
int32_t bel_bucket; // BEL bucket constid.
int32_t num_bel_wires;
RelPtr<int32_t> ports; // port name constid
RelPtr<int32_t> types; // port type (IN/OUT/BIDIR)
RelPtr<int32_t> wires; // connected wire index in tile, or -1 if NA
int16_t site;
int16_t site_variant; // some sites have alternative types
int16_t category;
int8_t synthetic;
int8_t lut_element;
RelPtr<int32_t> pin_map; // Index into CellMapPOD::cell_bel_map
});
enum BELCategory
{
// BEL is a logic element
BEL_CATEGORY_LOGIC = 0,
// BEL is a site routing mux
BEL_CATEGORY_ROUTING = 1,
// BEL is a site port, e.g. boundry between site and routing graph.
BEL_CATEGORY_SITE_PORT = 2
};
NPNR_PACKED_STRUCT(struct BelPortPOD {
int32_t bel_index;
int32_t port;
});
NPNR_PACKED_STRUCT(struct TileWireInfoPOD {
int32_t name; // wire name constid
// Pip index inside tile
RelSlice<int32_t> pips_uphill;
// Pip index inside tile
RelSlice<int32_t> pips_downhill;
// Bel index inside tile
RelSlice<BelPortPOD> bel_pins;
int16_t site; // site index in tile
int16_t site_variant; // site variant index in tile
});
NPNR_PACKED_STRUCT(struct PipInfoPOD {
int32_t src_index, dst_index;
int16_t site; // site index in tile
int16_t site_variant; // site variant index in tile
int16_t bel; // BEL this pip belongs to if site pip.
int16_t extra_data;
});
NPNR_PACKED_STRUCT(struct ConstraintTagPOD {
int32_t tag_prefix; // constid
int32_t default_state; // constid
RelSlice<int32_t> states; // constid
});
NPNR_PACKED_STRUCT(struct LutBelPOD {
uint32_t name; // constid
RelSlice<int32_t> pins; // constid
uint32_t low_bit;
uint32_t high_bit;
});
NPNR_PACKED_STRUCT(struct LutElementPOD {
int32_t width;
RelSlice<LutBelPOD> lut_bels;
});
NPNR_PACKED_STRUCT(struct TileTypeInfoPOD {
int32_t name; // Tile type constid
RelSlice<BelInfoPOD> bel_data;
RelSlice<TileWireInfoPOD> wire_data;
RelSlice<PipInfoPOD> pip_data;
RelSlice<ConstraintTagPOD> tags;
RelSlice<LutElementPOD> lut_elements;
RelSlice<int32_t> site_types; // constid
});
NPNR_PACKED_STRUCT(struct SiteInstInfoPOD {
RelPtr<char> name;
RelPtr<char> site_name;
// Which site type is this site instance?
// constid
int32_t site_type;
});
NPNR_PACKED_STRUCT(struct TileInstInfoPOD {
// Name of this tile.
RelPtr<char> name;
// Index into root.tile_types.
int32_t type;
// This array is root.tile_types[type].site_types.size() long.
// Index into root.sites
RelSlice<int32_t> sites;
// Number of tile wires; excluding any site-internal wires
// which come after general wires and are not stored here
// as they will never be nodal
// -1 if a tile-local wire; node index if nodal wire
RelSlice<int32_t> tile_wire_to_node;
});
NPNR_PACKED_STRUCT(struct TileWireRefPOD {
int32_t tile;
int32_t index;
});
NPNR_PACKED_STRUCT(struct NodeInfoPOD { RelSlice<TileWireRefPOD> tile_wires; });
NPNR_PACKED_STRUCT(struct CellBelPinPOD {
int32_t cell_pin; // constid
int32_t bel_pin; // constid
});
NPNR_PACKED_STRUCT(struct ParameterPinsPOD {
int32_t key; // constid
int32_t value; // constid
RelSlice<CellBelPinPOD> pins;
});
NPNR_PACKED_STRUCT(struct CellConstraintPOD {
int32_t tag; // Tag index
int32_t constraint_type; // Constraint::ConstraintType
RelSlice<int32_t> states; // State indicies
});
NPNR_PACKED_STRUCT(struct CellBelMapPOD {
RelSlice<CellBelPinPOD> common_pins;
RelSlice<ParameterPinsPOD> parameter_pins;
RelSlice<CellConstraintPOD> constraints;
});
NPNR_PACKED_STRUCT(struct LutCellPOD {
int32_t cell; // constid
RelSlice<int32_t> input_pins; // constids
int32_t parameter;
});
NPNR_PACKED_STRUCT(struct CellMapPOD {
// Cell names supported in this arch.
RelSlice<int32_t> cell_names; // constids
RelSlice<int32_t> cell_bel_buckets; // constids
RelSlice<CellBelMapPOD> cell_bel_map;
RelSlice<LutCellPOD> lut_cells;
});
NPNR_PACKED_STRUCT(struct PackagePinPOD {
int32_t package_pin; // constid
int32_t site; // constid
int32_t bel; // constid
});
NPNR_PACKED_STRUCT(struct PackagePOD {
int32_t package; // constid
RelSlice<PackagePinPOD> pins;
});
NPNR_PACKED_STRUCT(struct ConstantsPOD {
// Cell type and port for the GND and VCC global source.
int32_t gnd_cell_name; // constid
int32_t gnd_cell_port; // constid
int32_t vcc_cell_name; // constid
int32_t vcc_cell_port; // constid
int32_t gnd_bel_tile;
int32_t gnd_bel_index;
int32_t gnd_bel_pin; // constid
int32_t vcc_bel_tile;
int32_t vcc_bel_index;
int32_t vcc_bel_pin; // constid
// Name to use for the global GND constant net
int32_t gnd_net_name; // constid
// Name to use for the global VCC constant net
int32_t vcc_net_name; // constid
});
NPNR_PACKED_STRUCT(struct ChipInfoPOD {
RelPtr<char> name;
RelPtr<char> generator;
int32_t version;
int32_t width, height;
RelSlice<TileTypeInfoPOD> tile_types;
RelSlice<SiteInstInfoPOD> sites;
RelSlice<TileInstInfoPOD> tiles;
RelSlice<NodeInfoPOD> nodes;
RelSlice<PackagePOD> packages;
// BEL bucket constids.
RelSlice<int32_t> bel_buckets;
RelPtr<CellMapPOD> cell_map;
RelPtr<ConstantsPOD> constants;
// Constid string data.
RelPtr<RelSlice<RelPtr<char>>> constids;
});
/************************ End of chipdb section. ************************/
inline const TileTypeInfoPOD &tile_info(const ChipInfoPOD *chip_info, int32_t tile)
{
return chip_info->tile_types[chip_info->tiles[tile].type];
}
template <typename Id> const TileTypeInfoPOD &loc_info(const ChipInfoPOD *chip_info, Id &id)
{
return chip_info->tile_types[chip_info->tiles[id.tile].type];
}
inline const BelInfoPOD &bel_info(const ChipInfoPOD *chip_info, BelId bel)
{
NPNR_ASSERT(bel != BelId());
return loc_info(chip_info, bel).bel_data[bel.index];
}
inline const PipInfoPOD &pip_info(const ChipInfoPOD *chip_info, PipId pip)
{
NPNR_ASSERT(pip != PipId());
return loc_info(chip_info, pip).pip_data[pip.index];
}
inline const SiteInstInfoPOD &site_inst_info(const ChipInfoPOD *chip_info, int32_t tile, int32_t site)
{
return chip_info->sites[chip_info->tiles[tile].sites[site]];
}
struct BelIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
BelIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->tiles.ssize() && cursor_index >= tile_info(chip, cursor_tile).bel_data.ssize()) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
BelIterator operator++(int)
{
BelIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const BelIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const BelIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
BelId operator*() const
{
BelId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct BelRange
{
BelIterator b, e;
BelIterator begin() const { return b; }
BelIterator end() const { return e; }
};
struct FilteredBelIterator
{
std::function<bool(BelId)> filter;
BelIterator b, e;
FilteredBelIterator operator++()
{
++b;
while (b != e) {
if (filter(*b)) {
break;
}
++b;
}
return *this;
}
bool operator!=(const FilteredBelIterator &other) const
{
NPNR_ASSERT(e == other.e);
return b != other.b;
}
bool operator==(const FilteredBelIterator &other) const
{
NPNR_ASSERT(e == other.e);
return b == other.b;
}
BelId operator*() const
{
BelId bel = *b;
NPNR_ASSERT(filter(bel));
return bel;
}
};
struct FilteredBelRange
{
FilteredBelRange(BelIterator bel_b, BelIterator bel_e, std::function<bool(BelId)> filter)
{
b.filter = filter;
b.b = bel_b;
b.e = bel_e;
if (b.b != b.e && !filter(*b.b)) {
++b;
}
e.b = bel_e;
e.e = bel_e;
if (b != e) {
NPNR_ASSERT(filter(*b.b));
}
}
FilteredBelIterator b, e;
FilteredBelIterator begin() const { return b; }
FilteredBelIterator end() const { return e; }
};
// -----------------------------------------------------------------------
// Iterate over TileWires for a wire (will be more than one if nodal)
struct TileWireIterator
{
const ChipInfoPOD *chip;
WireId baseWire;
int cursor = -1;
void operator++() { cursor++; }
bool operator==(const TileWireIterator &other) const { return cursor == other.cursor; }
bool operator!=(const TileWireIterator &other) const { return cursor != other.cursor; }
// Returns a *denormalised* identifier always pointing to a tile wire rather than a node
WireId operator*() const
{
if (baseWire.tile == -1) {
WireId tw;
const auto &node_wire = chip->nodes[baseWire.index].tile_wires[cursor];
tw.tile = node_wire.tile;
tw.index = node_wire.index;
return tw;
} else {
return baseWire;
}
}
};
struct TileWireRange
{
TileWireIterator b, e;
TileWireIterator begin() const { return b; }
TileWireIterator end() const { return e; }
};
inline WireId canonical_wire(const ChipInfoPOD *chip_info, int32_t tile, int32_t wire)
{
WireId id;
if (wire >= chip_info->tiles[tile].tile_wire_to_node.ssize()) {
// Cannot be a nodal wire
id.tile = tile;
id.index = wire;
} else {
int32_t node = chip_info->tiles[tile].tile_wire_to_node[wire];
if (node == -1) {
// Not a nodal wire
id.tile = tile;
id.index = wire;
} else {
// Is a nodal wire, set tile to -1
id.tile = -1;
id.index = node;
}
}
return id;
}
// -----------------------------------------------------------------------
struct WireIterator
{
const ChipInfoPOD *chip;
int cursor_index = 0;
int cursor_tile = -1;
WireIterator operator++()
{
// Iterate over nodes first, then tile wires that aren't nodes
do {
cursor_index++;
if (cursor_tile == -1 && cursor_index >= chip->nodes.ssize()) {
cursor_tile = 0;
cursor_index = 0;
}
while (cursor_tile != -1 && cursor_tile < chip->tiles.ssize() &&
cursor_index >= chip->tile_types[chip->tiles[cursor_tile].type].wire_data.ssize()) {
cursor_index = 0;
cursor_tile++;
}
} while ((cursor_tile != -1 && cursor_tile < chip->tiles.ssize() &&
cursor_index < chip->tiles[cursor_tile].tile_wire_to_node.ssize() &&
chip->tiles[cursor_tile].tile_wire_to_node[cursor_index] != -1));
return *this;
}
WireIterator operator++(int)
{
WireIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const WireIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const WireIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
WireId operator*() const
{
WireId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct WireRange
{
WireIterator b, e;
WireIterator begin() const { return b; }
WireIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct AllPipIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
AllPipIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->tiles.ssize() &&
cursor_index >= chip->tile_types[chip->tiles[cursor_tile].type].pip_data.ssize()) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
AllPipIterator operator++(int)
{
AllPipIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const AllPipIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const AllPipIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
PipId operator*() const
{
PipId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct AllPipRange
{
AllPipIterator b, e;
AllPipIterator begin() const { return b; }
AllPipIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct UphillPipIterator
{
const ChipInfoPOD *chip;
TileWireIterator twi, twi_end;
int cursor = -1;
void operator++()
{
cursor++;
while (true) {
if (!(twi != twi_end))
break;
WireId w = *twi;
auto &tile = chip->tile_types[chip->tiles[w.tile].type];
if (cursor < tile.wire_data[w.index].pips_uphill.ssize())
break;
++twi;
cursor = 0;
}
}
bool operator!=(const UphillPipIterator &other) const { return twi != other.twi || cursor != other.cursor; }
PipId operator*() const
{
PipId ret;
WireId w = *twi;
ret.tile = w.tile;
ret.index = chip->tile_types[chip->tiles[w.tile].type].wire_data[w.index].pips_uphill[cursor];
return ret;
}
};
struct UphillPipRange
{
UphillPipIterator b, e;
UphillPipIterator begin() const { return b; }
UphillPipIterator end() const { return e; }
};
struct DownhillPipIterator
{
const ChipInfoPOD *chip;
TileWireIterator twi, twi_end;
int cursor = -1;
void operator++()
{
cursor++;
while (true) {
if (!(twi != twi_end))
break;
WireId w = *twi;
auto &tile = chip->tile_types[chip->tiles[w.tile].type];
if (cursor < tile.wire_data[w.index].pips_downhill.ssize())
break;
++twi;
cursor = 0;
}
}
bool operator!=(const DownhillPipIterator &other) const { return twi != other.twi || cursor != other.cursor; }
PipId operator*() const
{
PipId ret;
WireId w = *twi;
ret.tile = w.tile;
ret.index = chip->tile_types[chip->tiles[w.tile].type].wire_data[w.index].pips_downhill[cursor];
return ret;
}
};
struct DownhillPipRange
{
DownhillPipIterator b, e;
DownhillPipIterator begin() const { return b; }
DownhillPipIterator end() const { return e; }
};
struct BelPinIterator
{
const ChipInfoPOD *chip;
TileWireIterator twi, twi_end;
int cursor = -1;
void operator++()
{
cursor++;
while (twi != twi_end) {
WireId w = *twi;
auto &tile = tile_info(chip, w.tile);
if (cursor < tile.wire_data[w.index].bel_pins.ssize())
break;
++twi;
cursor = 0;
}
}
bool operator!=(const BelPinIterator &other) const { return twi != other.twi || cursor != other.cursor; }
BelPin operator*() const
{
BelPin ret;
WireId w = *twi;
ret.bel.tile = w.tile;
ret.bel.index = tile_info(chip, w.tile).wire_data[w.index].bel_pins[cursor].bel_index;
ret.pin.index = tile_info(chip, w.tile).wire_data[w.index].bel_pins[cursor].port;
return ret;
}
};
struct BelPinRange
{
BelPinIterator b, e;
BelPinIterator begin() const { return b; }
BelPinIterator end() const { return e; }
};
struct IdStringIterator : std::iterator<std::forward_iterator_tag,
/*T=*/IdString,
/*Distance=*/ptrdiff_t,
/*pointer=*/IdString *,
/*reference=*/IdString>
{
const int32_t *cursor;
void operator++() { cursor += 1; }
bool operator!=(const IdStringIterator &other) const { return cursor != other.cursor; }
bool operator==(const IdStringIterator &other) const { return cursor == other.cursor; }
IdString operator*() const { return IdString(*cursor); }
};
struct IdStringRange
{
IdStringIterator b, e;
IdStringIterator begin() const { return b; }
IdStringIterator end() const { return e; }
};
struct BelBucketIterator
{
IdStringIterator cursor;
void operator++() { ++cursor; }
bool operator!=(const BelBucketIterator &other) const { return cursor != other.cursor; }
bool operator==(const BelBucketIterator &other) const { return cursor == other.cursor; }
BelBucketId operator*() const
{
BelBucketId bucket;
bucket.name = IdString(*cursor);
return bucket;
}
};
struct BelBucketRange
{
BelBucketIterator b, e;
BelBucketIterator begin() const { return b; }
BelBucketIterator end() const { return e; }
};
struct ArchArgs
{
std::string chipdb;
std::string package;
};
struct ArchRanges
{
using ArchArgsT = ArchArgs;
// Bels
using AllBelsRangeT = BelRange;
using TileBelsRangeT = BelRange;
using BelAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
using BelPinsRangeT = IdStringRange;
using CellBelPinRangeT = const std::vector<IdString> &;
// Wires
using AllWiresRangeT = WireRange;
using DownhillPipRangeT = DownhillPipRange;
using UphillPipRangeT = UphillPipRange;
using WireBelPinRangeT = BelPinRange;
using WireAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
// Pips
using AllPipsRangeT = AllPipRange;
using PipAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
// Groups
using AllGroupsRangeT = std::vector<GroupId>;
using GroupBelsRangeT = std::vector<BelId>;
using GroupWiresRangeT = std::vector<WireId>;
using GroupPipsRangeT = std::vector<PipId>;
using GroupGroupsRangeT = std::vector<GroupId>;
// Decals
using DecalGfxRangeT = std::vector<GraphicElement>;
// Placement validity
using CellTypeRangeT = const IdStringRange;
using BelBucketRangeT = const BelBucketRange;
using BucketBelRangeT = FilteredBelRange;
};
static constexpr size_t kMaxState = 8;
struct TileStatus
{
std::vector<ExclusiveStateGroup<kMaxState>> tags;
std::vector<CellInfo *> boundcells;
std::vector<SiteRouter> sites;
};
struct Arch : ArchAPI<ArchRanges>
{
boost::iostreams::mapped_file_source blob_file;
const ChipInfoPOD *chip_info;
int32_t package_index;
mutable std::unordered_map<IdString, int> tile_by_name;
mutable std::unordered_map<IdString, std::pair<int, int>> site_by_name;
std::unordered_map<WireId, NetInfo *> wire_to_net;
std::unordered_map<PipId, NetInfo *> pip_to_net;
DedicatedInterconnect dedicated_interconnect;
std::unordered_map<int32_t, TileStatus> tileStatus;
ArchArgs args;
Arch(ArchArgs args);
void init();
std::string getChipName() const override;
IdString archId() const override { return id(chip_info->name.get()); }
ArchArgs archArgs() const override { return args; }
IdString archArgsToId(ArchArgs args) const override;
// -------------------------------------------------
uint32_t get_tile_index(int x, int y) const { return (y * chip_info->width + x); }
uint32_t get_tile_index(Loc loc) const { return get_tile_index(loc.x, loc.y); }
template <typename TileIndex, typename CoordIndex>
void get_tile_x_y(TileIndex tile_index, CoordIndex *x, CoordIndex *y) const
{
*x = tile_index % chip_info->width;
*y = tile_index / chip_info->width;
}
template <typename TileIndex> void get_tile_loc(TileIndex tile_index, Loc *loc) const
{
get_tile_x_y(tile_index, &loc->x, &loc->y);
}
int getGridDimX() const override { return chip_info->width; }
int getGridDimY() const override { return chip_info->height; }
int getTileBelDimZ(int x, int y) const override
{
return chip_info->tile_types[chip_info->tiles[get_tile_index(x, y)].type].bel_data.size();
}
int getTilePipDimZ(int x, int y) const override
{
return chip_info->tile_types[chip_info->tiles[get_tile_index(x, y)].type].site_types.size();
}
char getNameDelimiter() const override { return '/'; }
std::string get_part() const;
// -------------------------------------------------
void setup_byname() const;
BelId getBelByName(IdStringList name) const override;
IdStringList getBelName(BelId bel) const override
{
NPNR_ASSERT(bel != BelId());
const SiteInstInfoPOD &site = get_site_inst(bel);
std::array<IdString, 2> ids{id(site.name.get()), IdString(bel_info(chip_info, bel).name)};
return IdStringList(ids);
}
uint32_t getBelChecksum(BelId bel) const override { return bel.index; }
void map_cell_pins(CellInfo *cell, int32_t mapping, bool bind_constants);
void map_port_pins(BelId bel, CellInfo *cell) const;
TileStatus &get_tile_status(int32_t tile)
{
auto result = tileStatus.emplace(tile, TileStatus());
if (result.second) {
auto &tile_type = chip_info->tile_types[chip_info->tiles[tile].type];
result.first->second.boundcells.resize(tile_type.bel_data.size());
result.first->second.tags.resize(default_tags.size());
result.first->second.sites.reserve(tile_type.site_types.size());
for (size_t i = 0; i < tile_type.site_types.size(); ++i) {
result.first->second.sites.push_back(SiteRouter(i));
}
}
return result.first->second;
}
const SiteRouter &get_site_status(const TileStatus &tile_status, const BelInfoPOD &bel_data) const
{
return tile_status.sites.at(bel_data.site);
}
SiteRouter &get_site_status(TileStatus &tile_status, const BelInfoPOD &bel_data)
{
return tile_status.sites.at(bel_data.site);
}
BelId get_vcc_bel() const
{
auto &constants = *chip_info->constants;
BelId bel;
bel.tile = constants.vcc_bel_tile;
bel.index = constants.vcc_bel_index;
return bel;
}
BelId get_gnd_bel() const
{
auto &constants = *chip_info->constants;
BelId bel;
bel.tile = constants.gnd_bel_tile;
bel.index = constants.gnd_bel_index;
return bel;
}
void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) override
{
NPNR_ASSERT(bel != BelId());
TileStatus &tile_status = get_tile_status(bel.tile);
NPNR_ASSERT(tile_status.boundcells[bel.index] == nullptr);
const auto &bel_data = bel_info(chip_info, bel);
NPNR_ASSERT(bel_data.category == BEL_CATEGORY_LOGIC);
if (io_port_types.count(cell->type) == 0) {
int32_t mapping = bel_info(chip_info, bel).pin_map[get_cell_type_index(cell->type)];
if (mapping < 0) {
report_invalid_bel(bel, cell);
}
NPNR_ASSERT(mapping >= 0);
if (cell->cell_mapping != mapping) {
map_cell_pins(cell, mapping, /*bind_constants=*/false);
}
constraints.bindBel(tile_status.tags.data(), get_cell_constraints(bel, cell->type));
} else {
map_port_pins(bel, cell);
// FIXME: Probably need to actually constraint io port cell/bel,
// but the current BBA emission doesn't support that. This only
// really matters if the placer can choose IO port locations.
}
get_site_status(tile_status, bel_data).bindBel(cell);
tile_status.boundcells[bel.index] = cell;
cell->bel = bel;
cell->belStrength = strength;
refreshUiBel(bel);
}
void unbindBel(BelId bel) override
{
NPNR_ASSERT(bel != BelId());
TileStatus &tile_status = get_tile_status(bel.tile);
NPNR_ASSERT(tile_status.boundcells[bel.index] != nullptr);
CellInfo *cell = tile_status.boundcells[bel.index];
tile_status.boundcells[bel.index] = nullptr;
cell->bel = BelId();
cell->belStrength = STRENGTH_NONE;
// FIXME: Probably need to actually constraint io port cell/bel,
// but the current BBA emission doesn't support that. This only
// really matters if the placer can choose IO port locations.
if (io_port_types.count(cell->type) == 0) {
constraints.unbindBel(tile_status.tags.data(), get_cell_constraints(bel, cell->type));
}
const auto &bel_data = bel_info(chip_info, bel);
get_site_status(tile_status, bel_data).unbindBel(cell);
refreshUiBel(bel);
}
bool checkBelAvail(BelId bel) const override
{
// FIXME: This could consult the constraint system to see if this BEL
// is blocked (e.g. site type is wrong).
return getBoundBelCell(bel) == nullptr;
}
CellInfo *getBoundBelCell(BelId bel) const override
{
NPNR_ASSERT(bel != BelId());
auto iter = tileStatus.find(bel.tile);
if (iter == tileStatus.end()) {
return nullptr;
} else {
return iter->second.boundcells[bel.index];
}
}
CellInfo *getConflictingBelCell(BelId bel) const override
{
NPNR_ASSERT(bel != BelId());
// FIXME: This could consult the constraint system to see why this BEL
// is blocked.
return getBoundBelCell(bel);
}
BelRange getBels() const override
{
BelRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no Bels in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
Loc getBelLocation(BelId bel) const override
{
NPNR_ASSERT(bel != BelId());
Loc loc;
get_tile_x_y(bel.tile, &loc.x, &loc.y);
loc.z = bel.index;
return loc;
}
BelId getBelByLocation(Loc loc) const override;
BelRange getBelsByTile(int x, int y) const override;
bool getBelGlobalBuf(BelId bel) const override
{
// FIXME: This probably needs to be fixed!
return false;
}
bool getBelHidden(BelId bel) const override { return bel_info(chip_info, bel).category != BEL_CATEGORY_LOGIC; }
IdString getBelType(BelId bel) const override
{
NPNR_ASSERT(bel != BelId());
return IdString(bel_info(chip_info, bel).type);
}
std::vector<std::pair<IdString, std::string>> getBelAttrs(BelId bel) const override;
int get_bel_pin_index(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
int num_bel_wires = bel_info(chip_info, bel).num_bel_wires;
const int32_t *ports = bel_info(chip_info, bel).ports.get();
for (int i = 0; i < num_bel_wires; i++) {
if (ports[i] == pin.index) {
return i;
}
}
return -1;
}
WireId getBelPinWire(BelId bel, IdString pin) const override;
PortType getBelPinType(BelId bel, IdString pin) const override;
IdStringRange getBelPins(BelId bel) const override
{
NPNR_ASSERT(bel != BelId());
int num_bel_wires = bel_info(chip_info, bel).num_bel_wires;
const int32_t *ports = bel_info(chip_info, bel).ports.get();
IdStringRange str_range;
str_range.b.cursor = &ports[0];
str_range.e.cursor = &ports[num_bel_wires];
return str_range;
}
const std::vector<IdString> &getBelPinsForCellPin(const CellInfo *cell_info, IdString pin) const override;
// -------------------------------------------------
WireId getWireByName(IdStringList name) const override;
const TileWireInfoPOD &wire_info(WireId wire) const
{
if (wire.tile == -1) {
const TileWireRefPOD &wr = chip_info->nodes[wire.index].tile_wires[0];
return chip_info->tile_types[chip_info->tiles[wr.tile].type].wire_data[wr.index];
} else {
return loc_info(chip_info, wire).wire_data[wire.index];
}
}
IdStringList getWireName(WireId wire) const override
{
NPNR_ASSERT(wire != WireId());
if (wire.tile != -1) {
const auto &tile_type = loc_info(chip_info, wire);
if (tile_type.wire_data[wire.index].site != -1) {
const SiteInstInfoPOD &site = get_site_inst(wire);
std::array<IdString, 2> ids{id(site.name.get()), IdString(tile_type.wire_data[wire.index].name)};
return IdStringList(ids);
}
}
int32_t tile = wire.tile == -1 ? chip_info->nodes[wire.index].tile_wires[0].tile : wire.tile;
IdString tile_name = id(chip_info->tiles[tile].name.get());
std::array<IdString, 2> ids{tile_name, IdString(wire_info(wire).name)};
return IdStringList(ids);
}
IdString getWireType(WireId wire) const override;
std::vector<std::pair<IdString, std::string>> getWireAttrs(WireId wire) const override;
uint32_t getWireChecksum(WireId wire) const override { return wire.index; }
void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) override
{
NPNR_ASSERT(wire != WireId());
NPNR_ASSERT(wire_to_net[wire] == nullptr);
wire_to_net[wire] = net;
net->wires[wire].pip = PipId();
net->wires[wire].strength = strength;
refreshUiWire(wire);
}
void unbindWire(WireId wire) override
{
NPNR_ASSERT(wire != WireId());
NPNR_ASSERT(wire_to_net[wire] != nullptr);
auto &net_wires = wire_to_net[wire]->wires;
auto it = net_wires.find(wire);
NPNR_ASSERT(it != net_wires.end());
auto pip = it->second.pip;
if (pip != PipId()) {
pip_to_net[pip] = nullptr;
}
net_wires.erase(it);
wire_to_net[wire] = nullptr;
refreshUiWire(wire);
}
bool checkWireAvail(WireId wire) const override
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() || w2n->second == nullptr;
}
NetInfo *getBoundWireNet(WireId wire) const override
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() ? nullptr : w2n->second;
}
WireId getConflictingWireWire(WireId wire) const override { return wire; }
NetInfo *getConflictingWireNet(WireId wire) const override
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() ? nullptr : w2n->second;
}
DelayQuad getWireDelay(WireId wire) const override { return DelayQuad(0); }
TileWireRange get_tile_wire_range(WireId wire) const
{
TileWireRange range;
range.b.chip = chip_info;
range.b.baseWire = wire;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.baseWire = wire;
if (wire.tile == -1) {
range.e.cursor = chip_info->nodes[wire.index].tile_wires.size();
} else {
range.e.cursor = 1;
}
return range;
}
BelPinRange getWireBelPins(WireId wire) const override
{
BelPinRange range;
NPNR_ASSERT(wire != WireId());
TileWireRange twr = get_tile_wire_range(wire);
range.b.chip = chip_info;
range.b.twi = twr.b;
range.b.twi_end = twr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.twi = twr.e;
range.e.twi_end = twr.e;
range.e.cursor = 0;
return range;
}
WireRange getWires() const override
{
WireRange range;
range.b.chip = chip_info;
range.b.cursor_tile = -1;
range.b.cursor_index = 0;
range.e.chip = chip_info;
range.e.cursor_tile = chip_info->tiles.size();
range.e.cursor_index = 0;
return range;
}
// -------------------------------------------------
PipId getPipByName(IdStringList name) const override;
IdStringList getPipName(PipId pip) const override;
IdString getPipType(PipId pip) const override;
std::vector<std::pair<IdString, std::string>> getPipAttrs(PipId pip) const override;
void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) override
{
NPNR_ASSERT(pip != PipId());
NPNR_ASSERT(pip_to_net[pip] == nullptr);
WireId dst = getPipDstWire(pip);
NPNR_ASSERT(wire_to_net[dst] == nullptr || wire_to_net[dst] == net);
pip_to_net[pip] = net;
wire_to_net[dst] = net;
net->wires[dst].pip = pip;
net->wires[dst].strength = strength;
refreshUiPip(pip);
refreshUiWire(dst);
}
void unbindPip(PipId pip) override
{
NPNR_ASSERT(pip != PipId());
NPNR_ASSERT(pip_to_net[pip] != nullptr);
WireId dst = getPipDstWire(pip);
NPNR_ASSERT(wire_to_net[dst] != nullptr);
wire_to_net[dst] = nullptr;
pip_to_net[pip]->wires.erase(dst);
pip_to_net[pip] = nullptr;
refreshUiPip(pip);
refreshUiWire(dst);
}
bool checkPipAvail(PipId pip) const override
{
NPNR_ASSERT(pip != PipId());
return pip_to_net.find(pip) == pip_to_net.end() || pip_to_net.at(pip) == nullptr;
}
NetInfo *getBoundPipNet(PipId pip) const override
{
NPNR_ASSERT(pip != PipId());
auto p2n = pip_to_net.find(pip);
return p2n == pip_to_net.end() ? nullptr : p2n->second;
}
WireId getConflictingPipWire(PipId pip) const override { return getPipDstWire(pip); }
NetInfo *getConflictingPipNet(PipId pip) const override
{
auto p2n = pip_to_net.find(pip);
return p2n == pip_to_net.end() ? nullptr : p2n->second;
}
AllPipRange getPips() const override
{
AllPipRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no wries in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
Loc getPipLocation(PipId pip) const override
{
Loc loc;
get_tile_loc(pip.tile, &loc);
loc.z = 0;
return loc;
}
uint32_t getPipChecksum(PipId pip) const override { return pip.index; }
WireId getPipSrcWire(PipId pip) const override
{
return canonical_wire(chip_info, pip.tile, loc_info(chip_info, pip).pip_data[pip.index].src_index);
}
WireId getPipDstWire(PipId pip) const override
{
return canonical_wire(chip_info, pip.tile, loc_info(chip_info, pip).pip_data[pip.index].dst_index);
}
DelayQuad getPipDelay(PipId pip) const override { return DelayQuad(0); }
DownhillPipRange getPipsDownhill(WireId wire) const override
{
DownhillPipRange range;
NPNR_ASSERT(wire != WireId());
TileWireRange twr = get_tile_wire_range(wire);
range.b.chip = chip_info;
range.b.twi = twr.b;
range.b.twi_end = twr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.twi = twr.e;
range.e.twi_end = twr.e;
range.e.cursor = 0;
return range;
}
UphillPipRange getPipsUphill(WireId wire) const override
{
UphillPipRange range;
NPNR_ASSERT(wire != WireId());
TileWireRange twr = get_tile_wire_range(wire);
range.b.chip = chip_info;
range.b.twi = twr.b;
range.b.twi_end = twr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.twi = twr.e;
range.e.twi_end = twr.e;
range.e.cursor = 0;
return range;
}
// -------------------------------------------------
// FIXME: Use groups to get access to sites.
GroupId getGroupByName(IdStringList name) const override { return GroupId(); }
IdStringList getGroupName(GroupId group) const override { return IdStringList(); }
std::vector<GroupId> getGroups() const override { return {}; }
std::vector<BelId> getGroupBels(GroupId group) const override { return {}; }
std::vector<WireId> getGroupWires(GroupId group) const override { return {}; }
std::vector<PipId> getGroupPips(GroupId group) const override { return {}; }
std::vector<GroupId> getGroupGroups(GroupId group) const override { return {}; }
// -------------------------------------------------
delay_t estimateDelay(WireId src, WireId dst) const override;
delay_t predictDelay(const NetInfo *net_info, const PortRef &sink) const override;
ArcBounds getRouteBoundingBox(WireId src, WireId dst) const override;
delay_t getDelayEpsilon() const override { return 20; }
delay_t getRipupDelayPenalty() const override { return 120; }
float getDelayNS(delay_t v) const override { return v * 0.001; }
delay_t getDelayFromNS(float ns) const override { return delay_t(ns * 1000); }
uint32_t getDelayChecksum(delay_t v) const override { return v; }
bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const override;
// -------------------------------------------------
void place_iobufs(WireId pad_wire, NetInfo *net, const std::unordered_set<CellInfo *> &tightly_attached_bels,
std::unordered_set<CellInfo *> *placed_cells);
void pack_ports();
void decode_lut_cells();
bool pack() override;
bool place() override;
bool route() override;
// -------------------------------------------------
std::vector<GraphicElement> getDecalGraphics(DecalId decal) const override;
DecalXY getBelDecal(BelId bel) const override;
DecalXY getWireDecal(WireId wire) const override;
DecalXY getPipDecal(PipId pip) const override;
DecalXY getGroupDecal(GroupId group) const override;
// -------------------------------------------------
// Get the delay through a cell from one port to another, returning false
// if no path exists. This only considers combinational delays, as required by the Arch API
bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const override;
// Get the port class, also setting clockInfoCount to the number of TimingClockingInfos associated with a port
TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const override;
// Get the TimingClockingInfo of a port
TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const override;
// -------------------------------------------------
const BelBucketRange getBelBuckets() const override
{
BelBucketRange bel_bucket_range;
bel_bucket_range.b.cursor.cursor = chip_info->bel_buckets.begin();
bel_bucket_range.e.cursor.cursor = chip_info->bel_buckets.end();
return bel_bucket_range;
}
BelBucketId getBelBucketForBel(BelId bel) const override
{
BelBucketId bel_bucket;
bel_bucket.name = IdString(bel_info(chip_info, bel).bel_bucket);
return bel_bucket;
}
const IdStringRange getCellTypes() const override
{
const CellMapPOD &cell_map = *chip_info->cell_map;
IdStringRange id_range;
id_range.b.cursor = cell_map.cell_names.begin();
id_range.e.cursor = cell_map.cell_names.end();
return id_range;
}
IdString getBelBucketName(BelBucketId bucket) const override { return bucket.name; }
BelBucketId getBelBucketByName(IdString name) const override
{
for (BelBucketId bel_bucket : getBelBuckets()) {
if (bel_bucket.name == name) {
return bel_bucket;
}
}
NPNR_ASSERT_FALSE("Failed to find BEL bucket for name.");
return BelBucketId();
}
size_t get_cell_type_index(IdString cell_type) const;
BelBucketId getBelBucketForCellType(IdString cell_type) const override
{
if (io_port_types.count(cell_type)) {
BelBucketId bucket;
bucket.name = id("IOPORTS");
return bucket;
}
BelBucketId bucket;
const CellMapPOD &cell_map = *chip_info->cell_map;
bucket.name = IdString(cell_map.cell_bel_buckets[get_cell_type_index(cell_type)]);
return bucket;
}
FilteredBelRange getBelsInBucket(BelBucketId bucket) const override
{
BelRange range = getBels();
FilteredBelRange filtered_range(range.begin(), range.end(),
[this, bucket](BelId bel) { return getBelBucketForBel(bel) == bucket; });
return filtered_range;
}
bool isValidBelForCellType(IdString cell_type, BelId bel) const override
{
if (io_port_types.count(cell_type)) {
return pads.count(bel) > 0;
}
const auto &bel_data = bel_info(chip_info, bel);
if (bel_data.category != BEL_CATEGORY_LOGIC) {
return false;
}
auto cell_type_index = get_cell_type_index(cell_type);
return bel_data.pin_map[cell_type_index] != -1;
}
bool is_cell_valid_constraints(const CellInfo *cell, const TileStatus &tile_status, bool explain) const
{
if (io_port_types.count(cell->type)) {
return true;
}
BelId bel = cell->bel;
NPNR_ASSERT(bel != BelId());
return constraints.isValidBelForCellType(getCtx(), get_constraint_prototype(bel), tile_status.tags.data(),
get_cell_constraints(bel, cell->type),
id(chip_info->tiles[bel.tile].name.get()), cell->name, bel, explain);
}
// Return true whether all Bels at a given location are valid
bool isBelLocationValid(BelId bel) const override
{
auto iter = tileStatus.find(bel.tile);
if (iter == tileStatus.end()) {
return true;
}
const TileStatus &tile_status = iter->second;
const CellInfo *cell = tile_status.boundcells[bel.index];
if (cell == nullptr) {
return true;
} else {
if (!dedicated_interconnect.isBelLocationValid(bel, cell)) {
return false;
}
if (io_port_types.count(cell->type)) {
// FIXME: Probably need to actually constraint io port cell/bel,
// but the current BBA emission doesn't support that. This only
// really matters if the placer can choose IO port locations.
return true;
}
if (!is_cell_valid_constraints(cell, tile_status, explain_constraints)) {
return false;
}
auto &bel_data = bel_info(chip_info, bel);
return get_site_status(tile_status, bel_data).checkSiteRouting(getCtx(), tile_status);
}
}
IdString get_bel_tiletype(BelId bel) const { return IdString(loc_info(chip_info, bel).name); }
std::unordered_map<WireId, Loc> sink_locs, source_locs;
// -------------------------------------------------
void assignArchInfo() override {}
// -------------------------------------------------
static const std::string defaultPlacer;
static const std::vector<std::string> availablePlacers;
static const std::string defaultRouter;
static const std::vector<std::string> availableRouters;
// -------------------------------------------------
void read_logical_netlist(const std::string &filename);
void write_physical_netlist(const std::string &filename) const;
void parse_xdc(const std::string &filename);
std::unordered_set<IdString> io_port_types;
std::unordered_set<BelId> pads;
bool is_site_port(PipId pip) const
{
const PipInfoPOD &pip_data = pip_info(chip_info, pip);
if (pip_data.site == -1) {
return false;
}
BelId bel;
bel.tile = pip.tile;
bel.index = pip_data.bel;
const BelInfoPOD &bel_data = bel_info(chip_info, bel);
return bel_data.category == BEL_CATEGORY_SITE_PORT;
}
// Is the driver and all users of this net located within the same site?
//
// Returns false if any element of the net is not placed.
bool is_net_within_site(const NetInfo &net) const;
using ArchConstraints = Constraints<kMaxState>;
ArchConstraints constraints;
std::vector<ArchConstraints::TagState> default_tags;
bool explain_constraints;
struct StateRange
{
const int32_t *b;
const int32_t *e;
const int32_t *begin() const { return b; }
const int32_t *end() const { return e; }
};
struct Constraint : ArchConstraints::Constraint<StateRange>
{
const CellConstraintPOD *constraint;
Constraint(const CellConstraintPOD *constraint) : constraint(constraint) {}
size_t tag() const override { return constraint->tag; }
ArchConstraints::ConstraintType constraint_type() const override
{
return Constraints<kMaxState>::ConstraintType(constraint->constraint_type);
}
ArchConstraints::ConstraintStateType state() const override
{
NPNR_ASSERT(constraint_type() == Constraints<kMaxState>::CONSTRAINT_TAG_IMPLIES);
NPNR_ASSERT(constraint->states.size() == 1);
return constraint->states[0];
}
StateRange states() const override
{
StateRange range;
range.b = constraint->states.get();
range.e = range.b + constraint->states.size();
return range;
}
};
struct ConstraintIterator
{
const CellConstraintPOD *constraint;
ConstraintIterator() {}
ConstraintIterator operator++()
{
++constraint;
return *this;
}
bool operator!=(const ConstraintIterator &other) const { return constraint != other.constraint; }
bool operator==(const ConstraintIterator &other) const { return constraint == other.constraint; }
Constraint operator*() const { return Constraint(constraint); }
};
struct ConstraintRange
{
ConstraintIterator b, e;
ConstraintIterator begin() const { return b; }
ConstraintIterator end() const { return e; }
};
uint32_t get_constraint_prototype(BelId bel) const { return chip_info->tiles[bel.tile].type; }
ConstraintRange get_cell_constraints(BelId bel, IdString cell_type) const
{
const auto &bel_data = bel_info(chip_info, bel);
NPNR_ASSERT(bel_data.category == BEL_CATEGORY_LOGIC);
int32_t mapping = bel_data.pin_map[get_cell_type_index(cell_type)];
NPNR_ASSERT(mapping >= 0);
auto &cell_bel_map = chip_info->cell_map->cell_bel_map[mapping];
ConstraintRange range;
range.b.constraint = cell_bel_map.constraints.get();
range.e.constraint = range.b.constraint + cell_bel_map.constraints.size();
return range;
}
const char *get_site_name(int32_t tile, size_t site) const
{
return site_inst_info(chip_info, tile, site).name.get();
}
const char *get_site_name(BelId bel) const
{
auto &bel_data = bel_info(chip_info, bel);
return get_site_name(bel.tile, bel_data.site);
}
const SiteInstInfoPOD &get_site_inst(BelId bel) const
{
auto &bel_data = bel_info(chip_info, bel);
return site_inst_info(chip_info, bel.tile, bel_data.site);
}
const SiteInstInfoPOD &get_site_inst(WireId wire) const
{
auto &wire_data = wire_info(wire);
NPNR_ASSERT(wire_data.site != -1);
return site_inst_info(chip_info, wire.tile, wire_data.site);
}
const SiteInstInfoPOD &get_site_inst(PipId pip) const
{
auto &pip_data = pip_info(chip_info, pip);
return site_inst_info(chip_info, pip.tile, pip_data.site);
}
// Is this bel synthetic (e.g. added during import process)?
//
// This is generally used for constant networks, but can also be used for
// static partitions.
bool is_bel_synthetic(BelId bel) const
{
const BelInfoPOD &bel_data = bel_info(chip_info, bel);
return bel_data.synthetic != 0;
}
// Is this pip synthetic (e.g. added during import process)?
//
// This is generally used for constant networks, but can also be used for
// static partitions.
bool is_pip_synthetic(PipId pip) const
{
auto &pip_data = pip_info(chip_info, pip);
if (pip_data.site == -1) {
return pip_data.extra_data == -1;
} else {
BelId bel;
bel.tile = pip.tile;
bel.index = pip_data.bel;
return is_bel_synthetic(bel);
}
}
void merge_constant_nets();
void report_invalid_bel(BelId bel, CellInfo *cell) const;
std::vector<IdString> no_pins;
IdString gnd_cell_pin;
IdString vcc_cell_pin;
std::vector<std::vector<LutElement>> lut_elements;
std::unordered_map<IdString, const LutCellPOD *> lut_cells;
std::regex raw_bin_constant;
std::regex verilog_bin_constant;
std::regex verilog_hex_constant;
void read_lut_equation(nextpnr::DynamicBitarray<> *equation, const Property &equation_parameter) const;
bool route_vcc_to_unused_lut_pins();
};
NEXTPNR_NAMESPACE_END