nextpnr/common/placer1.cc

529 lines
19 KiB
C++
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Simulated annealing implementation based on arachne-pnr
* Copyright (C) 2015-2018 Cotton Seed
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "placer1.h"
#include <algorithm>
2018-08-10 00:39:10 +08:00
#include <boost/lexical_cast.hpp>
#include <cmath>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <ostream>
#include <queue>
#include <set>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include "log.h"
#include "place_common.h"
#include "timing.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
class SAPlacer
{
public:
SAPlacer(Context *ctx, Placer1Cfg cfg) : ctx(ctx), cfg(cfg)
{
int num_bel_types = 0;
for (auto bel : ctx->getBels()) {
Loc loc = ctx->getBelLocation(bel);
IdString type = ctx->getBelType(bel);
int type_idx;
if (bel_types.find(type) == bel_types.end()) {
type_idx = num_bel_types++;
bel_types[type] = type_idx;
} else {
type_idx = bel_types.at(type);
}
if (int(fast_bels.size()) < type_idx + 1)
fast_bels.resize(type_idx + 1);
if (int(fast_bels.at(type_idx).size()) < (loc.x + 1))
fast_bels.at(type_idx).resize(loc.x + 1);
if (int(fast_bels.at(type_idx).at(loc.x).size()) < (loc.y + 1))
fast_bels.at(type_idx).at(loc.x).resize(loc.y + 1);
max_x = std::max(max_x, loc.x);
max_y = std::max(max_y, loc.y);
fast_bels.at(type_idx).at(loc.x).at(loc.y).push_back(bel);
}
diameter = std::max(max_x, max_y) + 1;
2018-08-10 10:10:50 +08:00
2018-08-10 12:03:07 +08:00
costs.resize(ctx->nets.size());
2018-08-10 10:10:50 +08:00
old_udata.reserve(ctx->nets.size());
decltype(NetInfo::udata) n = 0;
for (auto &net : ctx->nets) {
old_udata.emplace_back(net.second->udata);
net.second->udata = n++;
}
}
~SAPlacer()
{
2018-08-10 10:10:50 +08:00
for (auto &net : ctx->nets)
net.second->udata = old_udata[net.second->udata];
}
bool place()
{
log_break();
ctx->lock();
size_t placed_cells = 0;
// Initial constraints placer
for (auto &cell_entry : ctx->cells) {
CellInfo *cell = cell_entry.second.get();
auto loc = cell->attrs.find(ctx->id("BEL"));
if (loc != cell->attrs.end()) {
std::string loc_name = loc->second;
BelId bel = ctx->getBelByName(ctx->id(loc_name));
if (bel == BelId()) {
log_error("No Bel named \'%s\' located for "
"this chip (processing BEL attribute on \'%s\')\n",
loc_name.c_str(), cell->name.c_str(ctx));
}
IdString bel_type = ctx->getBelType(bel);
if (bel_type != cell->type) {
log_error("Bel \'%s\' of type \'%s\' does not match cell "
"\'%s\' of type \'%s\'\n",
2018-08-10 00:39:10 +08:00
loc_name.c_str(), bel_type.c_str(ctx), cell->name.c_str(ctx), cell->type.c_str(ctx));
}
if (!ctx->isValidBelForCell(cell, bel)) {
log_error("Bel \'%s\' of type \'%s\' is not valid for cell "
"\'%s\' of type \'%s\'\n",
2018-08-10 00:39:10 +08:00
loc_name.c_str(), bel_type.c_str(ctx), cell->name.c_str(ctx), cell->type.c_str(ctx));
}
auto bound_cell = ctx->getBoundBelCell(bel);
if (bound_cell) {
log_error("Cell \'%s\' cannot be bound to bel \'%s\' since it is already bound to cell \'%s\'\n",
cell->name.c_str(ctx), loc_name.c_str(), bound_cell->name.c_str(ctx));
}
ctx->bindBel(bel, cell, STRENGTH_USER);
locked_bels.insert(bel);
placed_cells++;
}
}
int constr_placed_cells = placed_cells;
log_info("Placed %d cells based on constraints.\n", int(placed_cells));
ctx->yield();
// Sort to-place cells for deterministic initial placement
std::vector<CellInfo *> autoplaced;
for (auto &cell : ctx->cells) {
2018-06-26 03:33:48 +08:00
CellInfo *ci = cell.second.get();
if (ci->bel == BelId()) {
2018-06-26 03:33:48 +08:00
autoplaced.push_back(cell.second.get());
}
}
std::sort(autoplaced.begin(), autoplaced.end(), [](CellInfo *a, CellInfo *b) { return a->name < b->name; });
ctx->shuffle(autoplaced);
// Place cells randomly initially
log_info("Creating initial placement for remaining %d cells.\n", int(autoplaced.size()));
for (auto cell : autoplaced) {
place_initial(cell);
placed_cells++;
if ((placed_cells - constr_placed_cells) % 500 == 0)
log_info(" initial placement placed %d/%d cells\n", int(placed_cells - constr_placed_cells),
int(autoplaced.size()));
}
if ((placed_cells - constr_placed_cells) % 500 != 0)
log_info(" initial placement placed %d/%d cells\n", int(placed_cells - constr_placed_cells),
int(autoplaced.size()));
if (ctx->slack_redist_iter > 0)
assign_budget(ctx);
ctx->yield();
log_info("Running simulated annealing placer.\n");
// Calculate metric after initial placement
curr_metric = 0;
curr_tns = 0;
for (auto &net : ctx->nets) {
wirelen_t wl = get_net_metric(ctx, net.second.get(), MetricType::COST, curr_tns);
costs[net.second->udata] = CostChange{wl, -1};
curr_metric += wl;
}
int n_no_progress = 0;
wirelen_t min_metric = curr_metric;
double avg_metric = curr_metric;
temp = 10000;
// Main simulated annealing loop
for (int iter = 1;; iter++) {
n_move = n_accept = 0;
improved = false;
if (iter % 5 == 0 || iter == 1)
log_info(" at iteration #%d: temp = %f, cost = "
"%.0f, est tns = %.02fns\n",
iter, temp, double(curr_metric), curr_tns);
for (int m = 0; m < 15; ++m) {
// Loop through all automatically placed cells
for (auto cell : autoplaced) {
// Find another random Bel for this cell
BelId try_bel = random_bel_for_cell(cell);
// If valid, try and swap to a new position and see if
// the new position is valid/worthwhile
if (try_bel != BelId() && try_bel != cell->bel)
try_swap_position(cell, try_bel);
}
}
if (curr_metric < min_metric) {
min_metric = curr_metric;
improved = true;
}
// Heuristic to improve placement on the 8k
if (improved)
n_no_progress = 0;
else
n_no_progress++;
if (temp <= 1e-3 && n_no_progress >= 5) {
if (iter % 5 != 0)
log_info(" at iteration #%d: temp = %f, cost = %f\n", iter, temp, double(curr_metric));
break;
}
double Raccept = double(n_accept) / double(n_move);
int M = std::max(max_x, max_y) + 1;
double upper = 0.6, lower = 0.4;
if (curr_metric < 0.95 * avg_metric) {
avg_metric = 0.8 * avg_metric + 0.2 * curr_metric;
} else {
if (Raccept >= 0.8) {
temp *= 0.7;
} else if (Raccept > upper) {
if (diameter < M)
diameter++;
else
temp *= 0.9;
} else if (Raccept > lower) {
temp *= 0.95;
} else {
// Raccept < 0.3
if (diameter > 1)
diameter--;
else
temp *= 0.8;
}
}
// Once cooled below legalise threshold, run legalisation and start requiring
// legal moves only
2018-11-14 07:52:06 +08:00
if (temp < legalise_temp && require_legal) {
if (legalise_relative_constraints(ctx)) {
// Only increase temperature if something was moved
autoplaced.clear();
for (auto cell : sorted(ctx->cells)) {
if (cell.second->belStrength < STRENGTH_STRONG)
autoplaced.push_back(cell.second);
}
temp = post_legalise_temp;
diameter *= post_legalise_dia_scale;
ctx->shuffle(autoplaced);
}
require_legal = false;
// Legalisation is a big change so force a slack redistribution here
if (ctx->slack_redist_iter > 0)
assign_budget(ctx, true /* quiet */);
2018-08-01 13:05:07 +08:00
} else if (ctx->slack_redist_iter > 0 && iter % ctx->slack_redist_iter == 0) {
assign_budget(ctx, true /* quiet */);
}
// Recalculate total metric entirely to avoid rounding errors
// accumulating over time
curr_metric = 0;
curr_tns = 0;
for (auto &net : ctx->nets) {
wirelen_t wl = get_net_metric(ctx, net.second.get(), MetricType::COST, curr_tns);
costs[net.second->udata] = CostChange{wl, -1};
curr_metric += wl;
}
2018-07-21 01:34:59 +08:00
// Let the UI show visualization updates.
ctx->yield();
}
// Final post-pacement validitiy check
ctx->yield();
for (auto bel : ctx->getBels()) {
CellInfo *cell = ctx->getBoundBelCell(bel);
if (!ctx->isBelLocationValid(bel)) {
std::string cell_text = "no cell";
if (cell != nullptr)
cell_text = std::string("cell '") + ctx->nameOf(cell) + "'";
if (ctx->force) {
log_warning("post-placement validity check failed for Bel '%s' "
"(%s)\n",
ctx->getBelName(bel).c_str(ctx), cell_text.c_str());
} else {
log_error("post-placement validity check failed for Bel '%s' "
"(%s)\n",
ctx->getBelName(bel).c_str(ctx), cell_text.c_str());
}
}
}
for (auto cell : sorted(ctx->cells))
if (get_constraints_distance(ctx, cell.second) != 0)
log_error("constraint satisfaction check failed for cell '%s' at Bel '%s'\n", cell.first.c_str(ctx),
ctx->getBelName(cell.second->bel).c_str(ctx));
2018-08-04 13:39:25 +08:00
timing_analysis(ctx);
ctx->unlock();
return true;
}
private:
// Initial random placement
void place_initial(CellInfo *cell)
{
bool all_placed = false;
int iters = 25;
while (!all_placed) {
BelId best_bel = BelId();
uint64_t best_score = std::numeric_limits<uint64_t>::max(),
best_ripup_score = std::numeric_limits<uint64_t>::max();
CellInfo *ripup_target = nullptr;
BelId ripup_bel = BelId();
if (cell->bel != BelId()) {
ctx->unbindBel(cell->bel);
}
IdString targetType = cell->type;
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) == targetType && ctx->isValidBelForCell(cell, bel)) {
if (ctx->checkBelAvail(bel)) {
uint64_t score = ctx->rng64();
if (score <= best_score) {
best_score = score;
best_bel = bel;
}
} else {
uint64_t score = ctx->rng64();
if (score <= best_ripup_score) {
best_ripup_score = score;
ripup_target = ctx->getBoundBelCell(bel);
ripup_bel = bel;
}
}
}
}
if (best_bel == BelId()) {
if (iters == 0 || ripup_bel == BelId())
log_error("failed to place cell '%s' of type '%s'\n", cell->name.c_str(ctx), cell->type.c_str(ctx));
--iters;
ctx->unbindBel(ripup_target->bel);
best_bel = ripup_bel;
} else {
all_placed = true;
}
ctx->bindBel(best_bel, cell, STRENGTH_WEAK);
// Back annotate location
cell->attrs[ctx->id("BEL")] = ctx->getBelName(cell->bel).str(ctx);
cell = ripup_target;
}
}
// Attempt a SA position swap, return true on success or false on failure
bool try_swap_position(CellInfo *cell, BelId newBel)
{
static std::vector<NetInfo *> updates;
2018-08-10 10:10:50 +08:00
updates.clear();
BelId oldBel = cell->bel;
CellInfo *other_cell = ctx->getBoundBelCell(newBel);
if (other_cell != nullptr && other_cell->belStrength > STRENGTH_WEAK) {
return false;
}
int old_dist = get_constraints_distance(ctx, cell);
int new_dist;
if (other_cell != nullptr)
old_dist += get_constraints_distance(ctx, other_cell);
wirelen_t new_metric = 0, delta;
ctx->unbindBel(oldBel);
if (other_cell != nullptr) {
ctx->unbindBel(newBel);
}
2018-08-10 10:10:50 +08:00
for (const auto &port : cell->ports) {
if (port.second.net != nullptr) {
auto &cost = costs[port.second.net->udata];
if (cost.new_cost == 0)
continue;
cost.new_cost = 0;
2018-08-10 10:10:50 +08:00
updates.emplace_back(port.second.net);
}
}
if (other_cell != nullptr) {
for (const auto &port : other_cell->ports)
2018-08-10 10:10:50 +08:00
if (port.second.net != nullptr) {
auto &cost = costs[port.second.net->udata];
if (cost.new_cost == 0)
continue;
cost.new_cost = 0;
2018-08-10 10:10:50 +08:00
updates.emplace_back(port.second.net);
}
}
ctx->bindBel(newBel, cell, STRENGTH_WEAK);
if (other_cell != nullptr) {
ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK);
}
if (!ctx->isBelLocationValid(newBel) || ((other_cell != nullptr && !ctx->isBelLocationValid(oldBel)))) {
ctx->unbindBel(newBel);
if (other_cell != nullptr)
ctx->unbindBel(oldBel);
goto swap_fail;
}
new_metric = curr_metric;
// Recalculate metrics for all nets touched by the peturbation
2018-08-10 10:10:50 +08:00
for (const auto &net : updates) {
auto &c = costs[net->udata];
new_metric -= c.curr_cost;
float temp_tns = 0;
wirelen_t net_new_wl = get_net_metric(ctx, net, MetricType::COST, temp_tns);
new_metric += net_new_wl;
c.new_cost = net_new_wl;
}
new_dist = get_constraints_distance(ctx, cell);
if (other_cell != nullptr)
new_dist += get_constraints_distance(ctx, other_cell);
delta = new_metric - curr_metric;
delta += (cfg.constraintWeight / temp) * (new_dist - old_dist);
n_move++;
// SA acceptance criterea
if (delta < 0 || (temp > 1e-6 && (ctx->rng() / float(0x3fffffff)) <= std::exp(-delta / temp))) {
n_accept++;
} else {
if (other_cell != nullptr)
ctx->unbindBel(oldBel);
ctx->unbindBel(newBel);
goto swap_fail;
}
curr_metric = new_metric;
2018-08-10 10:10:50 +08:00
for (const auto &net : updates) {
auto &c = costs[net->udata];
c = CostChange{c.new_cost, -1};
2018-08-10 10:10:50 +08:00
}
return true;
swap_fail:
ctx->bindBel(oldBel, cell, STRENGTH_WEAK);
if (other_cell != nullptr) {
ctx->bindBel(newBel, other_cell, STRENGTH_WEAK);
}
2018-08-10 10:10:50 +08:00
for (const auto &net : updates)
costs[net->udata].new_cost = -1;
return false;
}
// Find a random Bel of the correct type for a cell, within the specified
// diameter
BelId random_bel_for_cell(CellInfo *cell)
{
IdString targetType = cell->type;
Loc curr_loc = ctx->getBelLocation(cell->bel);
while (true) {
int nx = ctx->rng(2 * diameter + 1) + std::max(curr_loc.x - diameter, 0);
int ny = ctx->rng(2 * diameter + 1) + std::max(curr_loc.y - diameter, 0);
int beltype_idx = bel_types.at(targetType);
if (nx >= int(fast_bels.at(beltype_idx).size()))
continue;
if (ny >= int(fast_bels.at(beltype_idx).at(nx).size()))
continue;
const auto &fb = fast_bels.at(beltype_idx).at(nx).at(ny);
if (fb.size() == 0)
continue;
BelId bel = fb.at(ctx->rng(int(fb.size())));
if (locked_bels.find(bel) != locked_bels.end())
continue;
return bel;
}
}
Context *ctx;
wirelen_t curr_metric = std::numeric_limits<wirelen_t>::max();
float curr_tns = 0;
float temp = 1000;
bool improved = false;
int n_move, n_accept;
int diameter = 35, max_x = 1, max_y = 1;
std::unordered_map<IdString, int> bel_types;
std::vector<std::vector<std::vector<std::vector<BelId>>>> fast_bels;
std::unordered_set<BelId> locked_bels;
2018-11-14 07:52:06 +08:00
bool require_legal = true;
const float legalise_temp = 1;
const float post_legalise_temp = 10;
const float post_legalise_dia_scale = 1.5;
Placer1Cfg cfg;
2018-08-10 10:10:50 +08:00
struct CostChange
{
wirelen_t curr_cost;
wirelen_t new_cost;
};
std::vector<CostChange> costs;
2018-08-10 10:10:50 +08:00
std::vector<decltype(NetInfo::udata)> old_udata;
};
2018-08-10 00:39:10 +08:00
Placer1Cfg::Placer1Cfg(Context *ctx) : Settings(ctx) { constraintWeight = get<float>("placer1/constraintWeight", 10); }
bool placer1(Context *ctx, Placer1Cfg cfg)
{
try {
SAPlacer placer(ctx, cfg);
placer.place();
log_info("Checksum: 0x%08x\n", ctx->checksum());
#ifndef NDEBUG
ctx->lock();
ctx->check();
ctx->unlock();
#endif
return true;
} catch (log_execution_error_exception) {
#ifndef NDEBUG
ctx->check();
#endif
return false;
}
}
NEXTPNR_NAMESPACE_END