nextpnr/fpga_interchange/arch.cc

492 lines
15 KiB
C++
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
* Copyright (C) 2018-19 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <algorithm>
#include <boost/algorithm/string.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <cmath>
#include <cstring>
#include <queue>
#include "log.h"
#include "nextpnr.h"
#include "placer1.h"
#include "placer_heap.h"
#include "router1.h"
#include "router2.h"
#include "timing.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
static std::pair<std::string, std::string> split_identifier_name(const std::string &name)
{
size_t first_slash = name.find('/');
NPNR_ASSERT(first_slash != std::string::npos);
return std::make_pair(name.substr(0, first_slash), name.substr(first_slash + 1));
};
static std::pair<std::string, std::string> split_identifier_name_dot(const std::string &name)
{
size_t first_dot = name.find('.');
NPNR_ASSERT(first_dot != std::string::npos);
return std::make_pair(name.substr(0, first_dot), name.substr(first_dot + 1));
};
// -----------------------------------------------------------------------
void IdString::initialize_arch(const BaseCtx *ctx)
{
#define X(t) initialize_add(ctx, #t, ID_##t);
#include "constids.inc"
#undef X
}
// -----------------------------------------------------------------------
static const ChipInfoPOD *get_chip_info(const RelPtr<ChipInfoPOD> *ptr) { return ptr->get(); }
Arch::Arch(ArchArgs args) : args(args)
{
try {
blob_file.open(args.chipdb);
if (args.chipdb.empty() || !blob_file.is_open())
log_error("Unable to read chipdb %s\n", args.chipdb.c_str());
const char *blob = reinterpret_cast<const char *>(blob_file.data());
chip_info = get_chip_info(reinterpret_cast<const RelPtr<ChipInfoPOD> *>(blob));
} catch (...) {
log_error("Unable to read chipdb %s\n", args.chipdb.c_str());
}
tileStatus.resize(chip_info->num_tiles);
for (int i = 0; i < chip_info->num_tiles; i++) {
tileStatus[i].boundcells.resize(chip_info->tile_types[chip_info->tiles[i].type].num_bels);
}
}
// -----------------------------------------------------------------------
std::string Arch::getChipName() const { return chip_info->name.get(); }
// -----------------------------------------------------------------------
IdString Arch::archArgsToId(ArchArgs args) const { return IdString(); }
// -----------------------------------------------------------------------
void Arch::setup_byname() const
{
if (tile_by_name.empty()) {
for (int i = 0; i < chip_info->num_tiles; i++) {
tile_by_name[chip_info->tiles[i].name.get()] = i;
}
}
if (site_by_name.empty()) {
for (int i = 0; i < chip_info->num_tiles; i++) {
auto &tile = chip_info->tiles[i];
auto &tile_type = chip_info->tile_types[tile.type];
for (int j = 0; j < tile_type.number_sites; j++) {
auto &site = chip_info->sites[tile.sites[j]];
site_by_name[site.name.get()] = std::make_pair(i, j);
}
}
}
}
BelId Arch::getBelByName(IdString name) const
{
BelId ret;
setup_byname();
auto split = split_identifier_name(name.str(this));
int tile, site;
std::tie(tile, site) = site_by_name.at(split.first);
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
IdString belname = id(split.second);
for (int i = 0; i < tile_info.num_bels; i++) {
if (tile_info.bel_data[i].site == site && tile_info.bel_data[i].name == belname.index) {
ret.tile = tile;
ret.index = i;
break;
}
}
return ret;
}
BelRange Arch::getBelsByTile(int x, int y) const
{
BelRange br;
br.b.cursor_tile = getTileIndex(x, y);
br.e.cursor_tile = br.b.cursor_tile;
br.b.cursor_index = 0;
br.e.cursor_index = chip_info->tile_types[chip_info->tiles[br.b.cursor_tile].type].num_bels;
br.b.chip = chip_info;
br.e.chip = chip_info;
if (br.e.cursor_index == -1)
++br.e.cursor_index;
else
++br.e;
return br;
}
WireId Arch::getBelPinWire(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
int num_bel_wires = locInfo(bel).bel_data[bel.index].num_bel_wires;
const int32_t *ports = locInfo(bel).bel_data[bel.index].ports.get();
for (int i = 0; i < num_bel_wires; i++) {
if (ports[i] == pin.index) {
const int32_t *wires = locInfo(bel).bel_data[bel.index].wires.get();
int32_t wire_index = wires[i];
return canonicalWireId(chip_info, bel.tile, wire_index);
}
}
// Port could not be found!
return WireId();
}
PortType Arch::getBelPinType(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
int num_bel_wires = locInfo(bel).bel_data[bel.index].num_bel_wires;
const int32_t *ports = locInfo(bel).bel_data[bel.index].ports.get();
for (int i = 0; i < num_bel_wires; i++) {
if (ports[i] == pin.index) {
const int32_t *types = locInfo(bel).bel_data[bel.index].types.get();
return PortType(types[i]);
}
}
return PORT_INOUT;
}
// -----------------------------------------------------------------------
WireId Arch::getWireByName(IdString name) const
{
if (wire_by_name_cache.count(name))
return wire_by_name_cache.at(name);
WireId ret;
setup_byname();
const std::string &s = name.str(this);
auto sp = split_identifier_name(s);
auto iter = site_by_name.find(sp.first);
if (iter != site_by_name.end()) {
int tile;
int site;
std::tie(tile, site) = iter->second;
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
IdString wirename = id(sp.second);
for (int i = 0; i < tile_info.num_wires; i++) {
if (tile_info.wire_data[i].site == site && tile_info.wire_data[i].name == wirename.index) {
ret.tile = tile;
ret.index = i;
break;
}
}
} else {
int tile = tile_by_name.at(sp.first);
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
IdString wirename = id(sp.second);
for (int i = 0; i < tile_info.num_wires; i++) {
if (tile_info.wire_data[i].site == -1 && tile_info.wire_data[i].name == wirename.index) {
int32_t node = chip_info->tiles[tile].tile_wire_to_node[i];
if (node == -1) {
// Not a nodal wire
ret.tile = tile;
ret.index = i;
} else {
// Is a nodal wire, set tile to -1
ret.tile = -1;
ret.index = node;
}
break;
}
}
}
wire_by_name_cache[name] = ret;
return ret;
}
IdString Arch::getWireType(WireId wire) const { return id(""); }
std::vector<std::pair<IdString, std::string>> Arch::getWireAttrs(WireId wire) const
{
return {};
}
// -----------------------------------------------------------------------
PipId Arch::getPipByName(IdString name) const
{
if (pip_by_name_cache.count(name))
return pip_by_name_cache.at(name);
PipId ret;
setup_byname();
const std::string &s = name.str(this);
auto sp = split_identifier_name(s.substr(8));
auto iter = site_by_name.find(sp.first);
if (iter != site_by_name.end()) {
int tile;
int site;
std::tie(tile, site) = iter->second;
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
auto sp3 = split_identifier_name(sp.second);
IdString belname = id(sp3.first);
IdString pinname = id(sp3.second);
for (int i = 0; i < tile_info.num_pips; i++) {
if (tile_info.pip_data[i].site == site && tile_info.pip_data[i].bel == belname.index &&
tile_info.pip_data[i].extra_data == pinname.index) {
ret.tile = tile;
ret.index = i;
break;
}
}
} else {
int tile = tile_by_name.at(sp.first);
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
auto spn = split_identifier_name_dot(sp.second);
int fromwire = std::stoi(spn.first), towire = std::stoi(spn.second);
for (int i = 0; i < tile_info.num_pips; i++) {
if (tile_info.pip_data[i].src_index == fromwire &&
tile_info.pip_data[i].dst_index == towire) {
ret.tile = tile;
ret.index = i;
break;
}
}
}
pip_by_name_cache[name] = ret;
return ret;
}
IdString Arch::getPipName(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
if (locInfo(pip).pip_data[pip.index].site != -1) {
auto site_index = chip_info->tiles[pip.tile].sites[locInfo(pip).pip_data[pip.index].site];
auto &site = chip_info->sites[site_index];
return id(site.name.get() + std::string("/") + IdString(locInfo(pip).pip_data[pip.index].bel).str(this) + "/" +
IdString(locInfo(pip).wire_data[locInfo(pip).pip_data[pip.index].src_index].name).str(this));
} else {
return id(std::string(chip_info->tiles[pip.tile].name.get()) + "/" +
std::to_string(locInfo(pip).pip_data[pip.index].src_index) + "." +
std::to_string(locInfo(pip).pip_data[pip.index].dst_index));
}
}
IdString Arch::getPipType(PipId pip) const { return id("PIP"); }
std::vector<std::pair<IdString, std::string>> Arch::getPipAttrs(PipId pip) const { return {}; }
// -----------------------------------------------------------------------
std::vector<IdString> Arch::getBelPins(BelId bel) const
{
std::vector<IdString> ret;
NPNR_ASSERT(bel != BelId());
// FIXME: The std::vector here can be replaced by a int32_t -> IdString
// range wrapper.
int num_bel_wires = locInfo(bel).bel_data[bel.index].num_bel_wires;
const int32_t *ports = locInfo(bel).bel_data[bel.index].ports.get();
for (int i = 0; i < num_bel_wires; i++) {
ret.push_back(IdString(ports[i]));
}
return ret;
}
BelId Arch::getBelByLocation(Loc loc) const
{
BelId bi;
if (loc.x >= chip_info->width || loc.y >= chip_info->height)
return BelId();
bi.tile = getTileIndex(loc);
auto &li = locInfo(bi);
if(loc.z >= li.num_bels) {
return BelId();
} else {
bi.index = loc.z;
return bi;
}
}
std::vector<std::pair<IdString, std::string>> Arch::getBelAttrs(BelId bel) const { return {}; }
// -----------------------------------------------------------------------
delay_t Arch::estimateDelay(WireId src, WireId dst, bool debug) const
{
// FIXME: Implement when adding timing-driven place and route.
return 0;
}
ArcBounds Arch::getRouteBoundingBox(WireId src, WireId dst) const
{
int dst_tile = dst.tile == -1 ? chip_info->nodes[dst.index].tile_wires[0].tile : dst.tile;
int src_tile = src.tile == -1 ? chip_info->nodes[src.index].tile_wires[0].tile : src.tile;
int x0, x1, y0, y1;
x0 = src_tile % chip_info->width;
x1 = x0;
y0 = src_tile / chip_info->width;
y1 = y0;
auto expand = [&](int x, int y) {
x0 = std::min(x0, x);
x1 = std::max(x1, x);
y0 = std::min(y0, y);
y1 = std::max(y1, y);
};
expand(dst_tile % chip_info->width, dst_tile / chip_info->width);
if (source_locs.count(src))
expand(source_locs.at(src).x, source_locs.at(src).y);
if (sink_locs.count(dst)) {
expand(sink_locs.at(dst).x, sink_locs.at(dst).y);
}
return {x0, y0, x1, y1};
}
delay_t Arch::getBoundingBoxCost(WireId src, WireId dst, int distance) const
{
// FIXME: Implement when adding timing-driven place and route.
return 0;
}
delay_t Arch::getWireRipupDelayPenalty(WireId wire) const
{
return getRipupDelayPenalty();
}
delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
{
// FIXME: Implement when adding timing-driven place and route.
return 0;
}
bool Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const { return false; }
// -----------------------------------------------------------------------
bool Arch::pack()
{
// FIXME: Implement this
return false;
}
bool Arch::place()
{
// FIXME: Implement this
return false;
}
bool Arch::route()
{
// FIXME: Implement this
return false;
}
// -----------------------------------------------------------------------
std::vector<GraphicElement> Arch::getDecalGraphics(DecalId decal) const
{
return {};
}
DecalXY Arch::getBelDecal(BelId bel) const
{
DecalXY decalxy;
return decalxy;
}
DecalXY Arch::getWireDecal(WireId wire) const
{
DecalXY decalxy;
return decalxy;
}
DecalXY Arch::getPipDecal(PipId pip) const { return {}; };
DecalXY Arch::getGroupDecal(GroupId pip) const { return {}; };
// -----------------------------------------------------------------------
bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const
{
// FIXME: Implement when adding timing-driven place and route.
return false;
}
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const
{
// FIXME: Implement when adding timing-driven place and route.
return TMG_IGNORE;
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const
{
// FIXME: Implement when adding timing-driven place and route.
TimingClockingInfo info;
return info;
}
#ifdef WITH_HEAP
const std::string Arch::defaultPlacer = "heap";
#else
const std::string Arch::defaultPlacer = "sa";
#endif
const std::vector<std::string> Arch::availablePlacers = {"sa",
#ifdef WITH_HEAP
"heap"
#endif
};
const std::string Arch::defaultRouter = "router2";
const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
NEXTPNR_NAMESPACE_END