nextpnr/fpga_interchange/arch.h

1097 lines
32 KiB
C
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
* Copyright (C) 2018-19 David Shah <david@symbioticeda.com>
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef NEXTPNR_H
#error Include "arch.h" via "nextpnr.h" only.
#endif
#include <boost/iostreams/device/mapped_file.hpp>
#include <iostream>
NEXTPNR_NAMESPACE_BEGIN
/**** Everything in this section must be kept in sync with chipdb.py ****/
template <typename T> struct RelPtr
{
int32_t offset;
// void set(const T *ptr) {
// offset = reinterpret_cast<const char*>(ptr) -
// reinterpret_cast<const char*>(this);
// }
const T *get() const
{
return reinterpret_cast<const T *>(reinterpret_cast<const char *>(this) + offset);
}
const T &operator[](size_t index) const { return get()[index]; }
const T &operator*() const { return *(get()); }
const T *operator->() const { return get(); }
};
// Flattened site indexing.
//
// To enable flat BelId.z spaces, every tile and sites within that tile are
// flattened.
//
// This has implications on BelId's, WireId's and PipId's.
// The flattened site space works as follows:
// - Objects that belong to the tile are first. BELs are always part of Sites,
// so no BEL objects are in this category.
// - All site alternative modes are exposed as a "full" site.
// - Each site appends it's BEL's, wires (site wires) and PIP's.
// - Sites add two types of pips. Sites will add pip data first for site
// pips, and then for site pin edges.
// 1. The first type is site pips, which connect site wires to other site
// wires.
// 2. The second type is site pin edges, which connect site wires to tile
// wires (or vise-versa).
NPNR_PACKED_STRUCT(struct BelInfoPOD {
int32_t name; // bel name (in site) constid
int32_t type; // Type name constid
int32_t num_bel_wires;
RelPtr<int32_t> ports; // port name constid
RelPtr<int32_t> types; // port name (IN/OUT/BIDIR)
RelPtr<int32_t> wires; // connected wire index in tile, or -1 if NA
int16_t site;
int16_t site_variant; // some sites have alternative types
int16_t is_routing;
int16_t padding;
});
NPNR_PACKED_STRUCT(struct BelPortPOD {
int32_t bel_index;
int32_t port;
});
NPNR_PACKED_STRUCT(struct TileWireInfoPOD {
int32_t name; // wire name constid
// Pip index inside tile
int32_t num_uphill;
RelPtr<int32_t> pips_uphill;
// Pip index inside tile
int32_t num_downhill;
RelPtr<int32_t> pips_downhill;
// Bel index inside tile
int32_t num_bel_pins;
RelPtr<BelPortPOD> bel_pins;
int16_t site; // site index in tile
int16_t site_variant; // site variant index in tile
});
NPNR_PACKED_STRUCT(struct PipInfoPOD {
int32_t src_index, dst_index;
int16_t site; // site index in tile
int16_t site_variant; // site variant index in tile
int16_t bel; // BEL this pip belongs to if site pip.
int16_t extra_data;
});
NPNR_PACKED_STRUCT(struct TileTypeInfoPOD {
int32_t name; // Tile type constid
int32_t number_sites;
int32_t num_bels;
RelPtr<BelInfoPOD> bel_data;
int32_t num_wires;
RelPtr<TileWireInfoPOD> wire_data;
int32_t num_pips;
RelPtr<PipInfoPOD> pip_data;
});
NPNR_PACKED_STRUCT(struct SiteInstInfoPOD {
RelPtr<char> name;
// Which site type is this site instance?
// constid
int32_t site_type;
});
NPNR_PACKED_STRUCT(struct TileInstInfoPOD {
// Name of this tile.
RelPtr<char> name;
// Index into root.tile_types.
int32_t type;
// This array is root.tile_types[type].number_sites long.
// Index into root.sites
RelPtr<int32_t> sites;
// Number of tile wires; excluding any site-internal wires
// which come after general wires and are not stored here
// as they will never be nodal
int32_t num_tile_wires;
// -1 if a tile-local wire; node index if nodal wire
RelPtr<int32_t> tile_wire_to_node;
});
NPNR_PACKED_STRUCT(struct TileWireRefPOD {
int32_t tile;
int32_t index;
});
NPNR_PACKED_STRUCT(struct NodeInfoPOD {
int32_t num_tile_wires;
RelPtr<TileWireRefPOD> tile_wires;
});
NPNR_PACKED_STRUCT(struct ChipInfoPOD {
RelPtr<char> name;
RelPtr<char> generator;
int32_t version;
int32_t width, height;
int32_t num_tile_types;
RelPtr<TileTypeInfoPOD> tile_types;
int32_t num_sites;
RelPtr<SiteInstInfoPOD> sites;
int32_t num_tiles;
RelPtr<TileInstInfoPOD> tiles;
int32_t num_nodes;
RelPtr<NodeInfoPOD> nodes;
});
/************************ End of chipdb section. ************************/
inline const TileTypeInfoPOD &tileInfo(const ChipInfoPOD *chip_info, int32_t tile)
{
return chip_info->tile_types[chip_info->tiles[tile].type];
}
struct BelIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
BelIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->num_tiles &&
cursor_index >= tileInfo(chip, cursor_tile).num_bels) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
BelIterator operator++(int)
{
BelIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const BelIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const BelIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
BelId operator*() const
{
BelId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct BelRange
{
BelIterator b, e;
BelIterator begin() const { return b; }
BelIterator end() const { return e; }
};
// -----------------------------------------------------------------------
// Iterate over TileWires for a wire (will be more than one if nodal)
struct TileWireIterator
{
const ChipInfoPOD *chip;
WireId baseWire;
int cursor = -1;
void operator++() { cursor++; }
bool operator!=(const TileWireIterator &other) const { return cursor != other.cursor; }
// Returns a *denormalised* identifier always pointing to a tile wire rather than a node
WireId operator*() const
{
if (baseWire.tile == -1) {
WireId tw;
const auto &node_wire = chip->nodes[baseWire.index].tile_wires[cursor];
tw.tile = node_wire.tile;
tw.index = node_wire.index;
return tw;
} else {
return baseWire;
}
}
};
struct TileWireRange
{
TileWireIterator b, e;
TileWireIterator begin() const { return b; }
TileWireIterator end() const { return e; }
};
inline WireId canonicalWireId(const ChipInfoPOD *chip_info, int32_t tile, int32_t wire)
{
WireId id;
if (wire >= chip_info->tiles[tile].num_tile_wires) {
// Cannot be a nodal wire
id.tile = tile;
id.index = wire;
} else {
int32_t node = chip_info->tiles[tile].tile_wire_to_node[wire];
if (node == -1) {
// Not a nodal wire
id.tile = tile;
id.index = wire;
} else {
// Is a nodal wire, set tile to -1
id.tile = -1;
id.index = node;
}
}
return id;
}
// -----------------------------------------------------------------------
struct WireIterator
{
const ChipInfoPOD *chip;
int cursor_index = 0;
int cursor_tile = -1;
WireIterator operator++()
{
// Iterate over nodes first, then tile wires that aren't nodes
do {
cursor_index++;
if (cursor_tile == -1 && cursor_index >= chip->num_nodes) {
cursor_tile = 0;
cursor_index = 0;
}
while (cursor_tile != -1 && cursor_tile < chip->num_tiles &&
cursor_index >= chip->tile_types[chip->tiles[cursor_tile].type].num_wires) {
cursor_index = 0;
cursor_tile++;
}
} while ((cursor_tile != -1 && cursor_tile < chip->num_tiles &&
cursor_index < chip->tiles[cursor_tile].num_tile_wires &&
chip->tiles[cursor_tile].tile_wire_to_node[cursor_index] != -1));
return *this;
}
WireIterator operator++(int)
{
WireIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const WireIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const WireIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
WireId operator*() const
{
WireId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct WireRange
{
WireIterator b, e;
WireIterator begin() const { return b; }
WireIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct AllPipIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
AllPipIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->num_tiles &&
cursor_index >= chip->tile_types[chip->tiles[cursor_tile].type].num_pips) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
AllPipIterator operator++(int)
{
AllPipIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const AllPipIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const AllPipIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
PipId operator*() const
{
PipId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct AllPipRange
{
AllPipIterator b, e;
AllPipIterator begin() const { return b; }
AllPipIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct UphillPipIterator
{
const ChipInfoPOD *chip;
TileWireIterator twi, twi_end;
int cursor = -1;
void operator++()
{
cursor++;
while (true) {
if (!(twi != twi_end))
break;
WireId w = *twi;
auto &tile = chip->tile_types[chip->tiles[w.tile].type];
if (cursor < tile.wire_data[w.index].num_uphill)
break;
++twi;
cursor = 0;
}
}
bool operator!=(const UphillPipIterator &other) const { return twi != other.twi || cursor != other.cursor; }
PipId operator*() const
{
PipId ret;
WireId w = *twi;
ret.tile = w.tile;
ret.index = chip->tile_types[chip->tiles[w.tile].type].wire_data[w.index].pips_uphill[cursor];
return ret;
}
};
struct UphillPipRange
{
UphillPipIterator b, e;
UphillPipIterator begin() const { return b; }
UphillPipIterator end() const { return e; }
};
struct DownhillPipIterator
{
const ChipInfoPOD *chip;
TileWireIterator twi, twi_end;
int cursor = -1;
void operator++()
{
cursor++;
while (true) {
if (!(twi != twi_end))
break;
WireId w = *twi;
auto &tile = chip->tile_types[chip->tiles[w.tile].type];
if (cursor < tile.wire_data[w.index].num_downhill)
break;
++twi;
cursor = 0;
}
}
bool operator!=(const DownhillPipIterator &other) const { return twi != other.twi || cursor != other.cursor; }
PipId operator*() const
{
PipId ret;
WireId w = *twi;
ret.tile = w.tile;
ret.index = chip->tile_types[chip->tiles[w.tile].type].wire_data[w.index].pips_downhill[cursor];
return ret;
}
};
struct DownhillPipRange
{
DownhillPipIterator b, e;
DownhillPipIterator begin() const { return b; }
DownhillPipIterator end() const { return e; }
};
struct BelPinIterator
{
const ChipInfoPOD *chip;
TileWireIterator twi, twi_end;
int cursor = -1;
void operator++()
{
cursor++;
while (true) {
if (!(twi != twi_end))
break;
WireId w = *twi;
auto &tile = tileInfo(chip, w.tile);
if (cursor < tile.wire_data[w.index].num_bel_pins)
break;
++twi;
cursor = 0;
}
}
bool operator!=(const BelPinIterator &other) const { return twi != other.twi || cursor != other.cursor; }
BelPin operator*() const
{
BelPin ret;
WireId w = *twi;
ret.bel.tile = w.tile;
ret.bel.index = tileInfo(chip, w.tile).wire_data[w.index].bel_pins[cursor].bel_index;
ret.pin.index = tileInfo(chip, w.tile).wire_data[w.index].bel_pins[cursor].port;
return ret;
}
};
struct BelPinRange
{
BelPinIterator b, e;
BelPinIterator begin() const { return b; }
BelPinIterator end() const { return e; }
};
struct ArchArgs
{
std::string chipdb;
};
struct Arch : BaseCtx
{
boost::iostreams::mapped_file_source blob_file;
const ChipInfoPOD *chip_info;
mutable std::unordered_map<std::string, int> tile_by_name;
mutable std::unordered_map<std::string, std::pair<int, int>> site_by_name;
std::unordered_map<WireId, NetInfo *> wire_to_net;
std::unordered_map<PipId, NetInfo *> pip_to_net;
std::unordered_map<WireId, std::pair<int, int>> driving_pip_loc;
std::unordered_map<WireId, NetInfo *> reserved_wires;
struct TileStatus
{
std::vector<CellInfo *> boundcells;
};
std::vector<TileStatus> tileStatus;
ArchArgs args;
Arch(ArchArgs args);
std::string getChipName() const;
IdString archId() const { return id(chip_info->name.get()); }
ArchArgs archArgs() const { return args; }
IdString archArgsToId(ArchArgs args) const;
// -------------------------------------------------
uint32_t getTileIndex(int x, int y) const {
return (y * chip_info->width + x);
}
uint32_t getTileIndex(Loc loc) const {
return getTileIndex(loc.x, loc.y);
}
template<typename TileIndex, typename CoordIndex> void getTileXY(TileIndex tile_index, CoordIndex *x, CoordIndex *y) const {
*x = tile_index % chip_info->width;
*y = tile_index / chip_info->width;
}
template<typename TileIndex> void getTileLoc(TileIndex tile_index, Loc * loc) const {
getTileXY(tile_index, &loc->x, &loc->y);
}
int getGridDimX() const { return chip_info->width; }
int getGridDimY() const { return chip_info->height; }
int getTileBelDimZ(int x, int y) const {
return chip_info->tile_types[chip_info->tiles[getTileIndex(x, y)].type].num_bels;
}
int getTilePipDimZ(int x, int y) const {
return chip_info->tile_types[chip_info->tiles[getTileIndex(x, y)].type].number_sites;
}
// -------------------------------------------------
void setup_byname() const;
BelId getBelByName(IdString name) const;
IdString getBelName(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
int site_index = locInfo(bel).bel_data[bel.index].site;
NPNR_ASSERT(site_index != -1);
const SiteInstInfoPOD &site = chip_info->sites[chip_info->tiles[bel.tile].sites[site_index]];
return id(std::string(site.name.get()) +
"/" + IdString(locInfo(bel).bel_data[bel.index].name).str(this));
}
uint32_t getBelChecksum(BelId bel) const { return bel.index; }
void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength)
{
NPNR_ASSERT(bel != BelId());
NPNR_ASSERT(tileStatus[bel.tile].boundcells[bel.index] == nullptr);
tileStatus[bel.tile].boundcells[bel.index] = cell;
cell->bel = bel;
cell->belStrength = strength;
refreshUiBel(bel);
}
void unbindBel(BelId bel)
{
NPNR_ASSERT(bel != BelId());
NPNR_ASSERT(tileStatus[bel.tile].boundcells[bel.index] != nullptr);
tileStatus[bel.tile].boundcells[bel.index]->bel = BelId();
tileStatus[bel.tile].boundcells[bel.index]->belStrength = STRENGTH_NONE;
tileStatus[bel.tile].boundcells[bel.index] = nullptr;
refreshUiBel(bel);
}
bool checkBelAvail(BelId bel) const
{
return tileStatus[bel.tile].boundcells[bel.index] == nullptr;
}
CellInfo *getBoundBelCell(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
return tileStatus[bel.tile].boundcells[bel.index];
}
CellInfo *getConflictingBelCell(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
return tileStatus[bel.tile].boundcells[bel.index];
}
BelRange getBels() const
{
BelRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no Bels in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
Loc getBelLocation(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
Loc loc;
getTileXY(bel.tile, &loc.x, &loc.y);
loc.z = bel.index;
return loc;
}
BelId getBelByLocation(Loc loc) const;
BelRange getBelsByTile(int x, int y) const;
bool getBelGlobalBuf(BelId bel) const
{
// TODO: This probably needs to be fixed!
return false;
}
bool getBelHidden(BelId bel) const { return locInfo(bel).bel_data[bel.index].is_routing; }
IdString getBelType(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
return IdString(locInfo(bel).bel_data[bel.index].type);
}
std::vector<std::pair<IdString, std::string>> getBelAttrs(BelId bel) const;
WireId getBelPinWire(BelId bel, IdString pin) const;
PortType getBelPinType(BelId bel, IdString pin) const;
std::vector<IdString> getBelPins(BelId bel) const;
bool isBelLocked(BelId bel) const;
// -------------------------------------------------
mutable std::unordered_map<IdString, WireId> wire_by_name_cache;
WireId getWireByName(IdString name) const;
const TileWireInfoPOD &wireInfo(WireId wire) const
{
if (wire.tile == -1) {
const TileWireRefPOD &wr = chip_info->nodes[wire.index].tile_wires[0];
return chip_info->tile_types[chip_info->tiles[wr.tile].type].wire_data[wr.index];
} else {
return locInfo(wire).wire_data[wire.index];
}
}
IdString getWireName(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
if (wire.tile != -1 && locInfo(wire).wire_data[wire.index].site != -1) {
int site_index = locInfo(wire).wire_data[wire.index].site;
const SiteInstInfoPOD &site = chip_info->sites[chip_info->tiles[wire.tile].sites[site_index]];
return id(site.name.get() +
std::string("/") + IdString(locInfo(wire).wire_data[wire.index].name).str(this));
} else {
return id(std::string(chip_info
->tiles[wire.tile == -1 ? chip_info->nodes[wire.index].tile_wires[0].tile
: wire.tile]
.name.get()) +
"/" + IdString(wireInfo(wire).name).c_str(this));
}
}
IdString getWireType(WireId wire) const;
std::vector<std::pair<IdString, std::string>> getWireAttrs(WireId wire) const;
uint32_t getWireChecksum(WireId wire) const { return wire.index; }
void bindWire(WireId wire, NetInfo *net, PlaceStrength strength)
{
NPNR_ASSERT(wire != WireId());
NPNR_ASSERT(wire_to_net[wire] == nullptr);
wire_to_net[wire] = net;
net->wires[wire].pip = PipId();
net->wires[wire].strength = strength;
refreshUiWire(wire);
}
void unbindWire(WireId wire)
{
NPNR_ASSERT(wire != WireId());
NPNR_ASSERT(wire_to_net[wire] != nullptr);
auto &net_wires = wire_to_net[wire]->wires;
auto it = net_wires.find(wire);
NPNR_ASSERT(it != net_wires.end());
auto pip = it->second.pip;
if (pip != PipId()) {
pip_to_net[pip] = nullptr;
}
net_wires.erase(it);
wire_to_net[wire] = nullptr;
refreshUiWire(wire);
}
bool checkWireAvail(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() || w2n->second == nullptr;
}
NetInfo *getReservedWireNet(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
auto w2n = reserved_wires.find(wire);
return w2n == reserved_wires.end() ? nullptr : w2n->second;
}
NetInfo *getBoundWireNet(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() ? nullptr : w2n->second;
}
WireId getConflictingWireWire(WireId wire) const { return wire; }
NetInfo *getConflictingWireNet(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() ? nullptr : w2n->second;
}
DelayInfo getWireDelay(WireId wire) const
{
DelayInfo delay;
delay.delay = 0;
return delay;
}
TileWireRange getTileWireRange(WireId wire) const
{
TileWireRange range;
range.b.chip = chip_info;
range.b.baseWire = wire;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.baseWire = wire;
if (wire.tile == -1)
range.e.cursor = chip_info->nodes[wire.index].num_tile_wires;
else
range.e.cursor = 1;
return range;
}
BelPinRange getWireBelPins(WireId wire) const
{
BelPinRange range;
NPNR_ASSERT(wire != WireId());
TileWireRange twr = getTileWireRange(wire);
range.b.chip = chip_info;
range.b.twi = twr.b;
range.b.twi_end = twr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.twi = twr.e;
range.e.twi_end = twr.e;
range.e.cursor = 0;
return range;
}
WireRange getWires() const
{
WireRange range;
range.b.chip = chip_info;
range.b.cursor_tile = -1;
range.b.cursor_index = 0;
range.e.chip = chip_info;
range.e.cursor_tile = chip_info->num_tiles;
range.e.cursor_index = 0;
return range;
}
// -------------------------------------------------
mutable std::unordered_map<IdString, PipId> pip_by_name_cache;
PipId getPipByName(IdString name) const;
void bindPip(PipId pip, NetInfo *net, PlaceStrength strength)
{
NPNR_ASSERT(pip != PipId());
NPNR_ASSERT(pip_to_net[pip] == nullptr);
WireId dst = canonicalWireId(chip_info, pip.tile, locInfo(pip).pip_data[pip.index].dst_index);
NPNR_ASSERT(wire_to_net[dst] == nullptr || wire_to_net[dst] == net);
pip_to_net[pip] = net;
std::pair<int, int> loc;
getTileXY(pip.tile, &loc.first, &loc.second);
driving_pip_loc[dst] = loc;
wire_to_net[dst] = net;
net->wires[dst].pip = pip;
net->wires[dst].strength = strength;
refreshUiPip(pip);
refreshUiWire(dst);
}
void unbindPip(PipId pip)
{
NPNR_ASSERT(pip != PipId());
NPNR_ASSERT(pip_to_net[pip] != nullptr);
WireId dst = canonicalWireId(chip_info, pip.tile, locInfo(pip).pip_data[pip.index].dst_index);
NPNR_ASSERT(wire_to_net[dst] != nullptr);
wire_to_net[dst] = nullptr;
pip_to_net[pip]->wires.erase(dst);
pip_to_net[pip] = nullptr;
refreshUiPip(pip);
refreshUiWire(dst);
}
bool checkPipAvail(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
return pip_to_net.find(pip) == pip_to_net.end() || pip_to_net.at(pip) == nullptr;
}
NetInfo *getBoundPipNet(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
auto p2n = pip_to_net.find(pip);
return p2n == pip_to_net.end() ? nullptr : p2n->second;
}
WireId getConflictingPipWire(PipId pip) const
{
return getPipDstWire(pip);
}
NetInfo *getConflictingPipNet(PipId pip) const
{
auto p2n = pip_to_net.find(pip);
return p2n == pip_to_net.end() ? nullptr : p2n->second;
}
AllPipRange getPips() const
{
AllPipRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no wries in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
Loc getPipLocation(PipId pip) const
{
Loc loc;
getTileLoc(pip.tile, &loc);
loc.z = 0;
return loc;
}
IdString getPipName(PipId pip) const;
IdString getPipType(PipId pip) const;
std::vector<std::pair<IdString, std::string>> getPipAttrs(PipId pip) const;
uint32_t getPipChecksum(PipId pip) const { return pip.index; }
WireId getPipSrcWire(PipId pip) const
{
return canonicalWireId(chip_info, pip.tile, locInfo(pip).pip_data[pip.index].src_index);
}
WireId getPipDstWire(PipId pip) const
{
return canonicalWireId(chip_info, pip.tile, locInfo(pip).pip_data[pip.index].dst_index);
}
DelayInfo getPipDelay(PipId pip) const
{
return DelayInfo();
}
DownhillPipRange getPipsDownhill(WireId wire) const
{
DownhillPipRange range;
NPNR_ASSERT(wire != WireId());
TileWireRange twr = getTileWireRange(wire);
range.b.chip = chip_info;
range.b.twi = twr.b;
range.b.twi_end = twr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.twi = twr.e;
range.e.twi_end = twr.e;
range.e.cursor = 0;
return range;
}
UphillPipRange getPipsUphill(WireId wire) const
{
UphillPipRange range;
NPNR_ASSERT(wire != WireId());
TileWireRange twr = getTileWireRange(wire);
range.b.chip = chip_info;
range.b.twi = twr.b;
range.b.twi_end = twr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.twi = twr.e;
range.e.twi_end = twr.e;
range.e.cursor = 0;
return range;
}
UphillPipRange getWireAliases(WireId wire) const
{
UphillPipRange range;
range.b.cursor = 0;
range.b.twi.cursor = 0;
range.e.cursor = 0;
range.e.twi.cursor = 0;
return range;
}
// -------------------------------------------------
GroupId getGroupByName(IdString name) const { return GroupId(); }
IdString getGroupName(GroupId group) const { return IdString(); }
std::vector<GroupId> getGroups() const { return {}; }
std::vector<BelId> getGroupBels(GroupId group) const { return {}; }
std::vector<WireId> getGroupWires(GroupId group) const { return {}; }
std::vector<PipId> getGroupPips(GroupId group) const { return {}; }
std::vector<GroupId> getGroupGroups(GroupId group) const { return {}; }
// -------------------------------------------------
delay_t estimateDelay(WireId src, WireId dst, bool debug = false) const;
delay_t predictDelay(const NetInfo *net_info, const PortRef &sink) const;
ArcBounds getRouteBoundingBox(WireId src, WireId dst) const;
delay_t getBoundingBoxCost(WireId src, WireId dst, int distance) const;
delay_t getDelayEpsilon() const { return 20; }
delay_t getRipupDelayPenalty() const { return 120; }
delay_t getWireRipupDelayPenalty(WireId wire) const;
float getDelayNS(delay_t v) const { return v * 0.001; }
DelayInfo getDelayFromNS(float ns) const
{
DelayInfo del;
del.delay = delay_t(ns * 1000);
return del;
}
uint32_t getDelayChecksum(delay_t v) const { return v; }
bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const;
// -------------------------------------------------
bool pack();
bool place();
bool route();
// -------------------------------------------------
std::vector<GraphicElement> getDecalGraphics(DecalId decal) const;
DecalXY getBelDecal(BelId bel) const;
DecalXY getWireDecal(WireId wire) const;
DecalXY getPipDecal(PipId pip) const;
DecalXY getGroupDecal(GroupId group) const;
// -------------------------------------------------
// Get the delay through a cell from one port to another, returning false
// if no path exists. This only considers combinational delays, as required by the Arch API
bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const;
// Get the port class, also setting clockInfoCount to the number of TimingClockingInfos associated with a port
TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const;
// Get the TimingClockingInfo of a port
TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const;
// -------------------------------------------------
// Whether or not a given cell can be placed at a given Bel
// This is not intended for Bel type checks, but finer-grained constraints
// such as conflicting set/reset signals, etc
bool isValidBelForCell(CellInfo *cell, BelId bel) const {
// FIXME: Implement this
return true;
}
// Return true whether all Bels at a given location are valid
bool isBelLocationValid(BelId bel) const {
// FIXME: Implement this
return true;
}
IdString getBelTileType(BelId bel) const { return IdString(locInfo(bel).name); }
std::unordered_map<WireId, Loc> sink_locs, source_locs;
// -------------------------------------------------
void assignArchInfo() {}
// -------------------------------------------------
static const std::string defaultPlacer;
static const std::vector<std::string> availablePlacers;
static const std::string defaultRouter;
static const std::vector<std::string> availableRouters;
// -------------------------------------------------
template <typename Id> const TileTypeInfoPOD &locInfo(Id &id) const
{
return chip_info->tile_types[chip_info->tiles[id.tile].type];
}
void writePhysicalNetlist(const std::string &filename) const {
}
};
NEXTPNR_NAMESPACE_END