nextpnr/himbaechel/uarch/gowin/pack.cc

3523 lines
148 KiB
C++
Raw Normal View History

#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#define HIMBAECHEL_CONSTIDS "uarch/gowin/constids.inc"
#include "himbaechel_constids.h"
#include "himbaechel_helpers.h"
#include "gowin.h"
#include "gowin_utils.h"
#include "pack.h"
2023-11-11 22:37:20 +08:00
#include <cinttypes>
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct GowinPacker
{
Context *ctx;
HimbaechelHelpers h;
GowinUtils gwu;
GowinPacker(Context *ctx) : ctx(ctx)
{
h.init(ctx);
gwu.init(ctx);
}
// ===================================
// IO
// ===================================
// create IOB connections for gowin_pack
// can be called repeatedly when switching inputs, disabled outputs do not change
void make_iob_nets(CellInfo &iob)
{
for (const auto &port : iob.ports) {
const NetInfo *net = iob.getPort(port.first);
std::string connected_net = "NET";
if (net != nullptr) {
if (ctx->verbose) {
log_info("%s: %s - %s\n", ctx->nameOf(&iob), port.first.c_str(ctx), ctx->nameOf(net));
}
if (net->name == ctx->id("$PACKER_VCC")) {
connected_net = "VCC";
} else if (net->name == ctx->id("$PACKER_GND")) {
connected_net = "GND";
}
iob.setParam(ctx->idf("NET_%s", port.first.c_str(ctx)), connected_net);
}
}
}
void config_simple_io(CellInfo &ci)
{
if (ci.type.in(id_TBUF, id_IOBUF)) {
return;
}
log_info("simple:%s\n", ctx->nameOf(&ci));
ci.addInput(id_OEN);
if (ci.type == id_OBUF) {
ci.connectPort(id_OEN, ctx->nets.at(ctx->id("$PACKER_GND")).get());
} else {
NPNR_ASSERT(ci.type == id_IBUF);
ci.connectPort(id_OEN, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
}
}
void config_bottom_row(CellInfo &ci, Loc loc, uint8_t cnd = Bottom_io_POD::NORMAL)
{
if (!gwu.has_bottom_io_cnds()) {
return;
}
if (!ci.type.in(id_OBUF, id_TBUF, id_IOBUF)) {
return;
}
if (loc.z != BelZ::IOBA_Z) {
return;
}
auto connect_io_wire = [&](IdString port, IdString net_name) {
// XXX it is very convenient that nothing terrible happens in case
// of absence/presence of a port
ci.disconnectPort(port);
ci.addInput(port);
if (net_name == id_VSS) {
ci.connectPort(port, ctx->nets.at(ctx->id("$PACKER_GND")).get());
} else {
NPNR_ASSERT(net_name == id_VCC);
ci.connectPort(port, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
}
};
IdString wire_a_net = gwu.get_bottom_io_wire_a_net(cnd);
connect_io_wire(id_BOTTOM_IO_PORT_A, wire_a_net);
IdString wire_b_net = gwu.get_bottom_io_wire_b_net(cnd);
connect_io_wire(id_BOTTOM_IO_PORT_B, wire_b_net);
}
// Attributes of deleted cells are copied
void trim_nextpnr_iobs(void)
{
// Trim nextpnr IOBs - assume IO buffer insertion has been done in synthesis
const pool<CellTypePort> top_ports{
CellTypePort(id_IBUF, id_I),
CellTypePort(id_OBUF, id_O),
CellTypePort(id_TBUF, id_O),
CellTypePort(id_IOBUF, id_IO),
};
std::vector<IdString> to_remove;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (!ci.type.in(ctx->id("$nextpnr_ibuf"), ctx->id("$nextpnr_obuf"), ctx->id("$nextpnr_iobuf")))
continue;
NetInfo *i = ci.getPort(id_I);
if (i && i->driver.cell) {
if (!top_ports.count(CellTypePort(i->driver)))
log_error("Top-level port '%s' driven by illegal port %s.%s\n", ctx->nameOf(&ci),
ctx->nameOf(i->driver.cell), ctx->nameOf(i->driver.port));
for (const auto &attr : ci.attrs) {
i->driver.cell->setAttr(attr.first, attr.second);
}
}
NetInfo *o = ci.getPort(id_O);
if (o) {
for (auto &usr : o->users) {
if (!top_ports.count(CellTypePort(usr)))
log_error("Top-level port '%s' driving illegal port %s.%s\n", ctx->nameOf(&ci),
ctx->nameOf(usr.cell), ctx->nameOf(usr.port));
for (const auto &attr : ci.attrs) {
usr.cell->setAttr(attr.first, attr.second);
}
// network/port attributes that can be set in the
// restriction file and that need to be transferred to real
// networks before nextpnr buffers are removed.
NetInfo *dst_net = usr.cell->getPort(id_O);
if (dst_net != nullptr) {
for (const auto &attr : o->attrs) {
if (!attr.first.in(id_CLOCK)) {
continue;
}
dst_net->attrs[attr.first] = attr.second;
}
}
}
}
NetInfo *io = ci.getPort(id_IO);
if (io && io->driver.cell) {
if (!top_ports.count(CellTypePort(io->driver)))
log_error("Top-level port '%s' driven by illegal port %s.%s\n", ctx->nameOf(&ci),
ctx->nameOf(io->driver.cell), ctx->nameOf(io->driver.port));
for (const auto &attr : ci.attrs) {
io->driver.cell->setAttr(attr.first, attr.second);
}
}
ci.disconnectPort(id_I);
ci.disconnectPort(id_O);
ci.disconnectPort(id_IO);
to_remove.push_back(ci.name);
}
for (IdString cell_name : to_remove)
ctx->cells.erase(cell_name);
}
BelId bind_io(CellInfo &ci)
{
BelId bel = ctx->getBelByNameStr(ci.attrs.at(id_BEL).as_string());
if (bel == BelId()) {
log_error("No bel named %s\n", ci.attrs.at(id_BEL).as_string().c_str());
}
if (!ctx->checkBelAvail(bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci), ctx->nameOfBel(bel),
ctx->nameOf(ctx->getBoundBelCell(bel)));
}
ci.unsetAttr(id_BEL);
ctx->bindBel(bel, &ci, PlaceStrength::STRENGTH_LOCKED);
return bel;
}
void pack_iobs(void)
{
log_info("Pack IOBs...\n");
trim_nextpnr_iobs();
for (auto &cell : ctx->cells) {
CellInfo &ci = *cell.second;
if (!ci.type.in(id_IBUF, id_OBUF, id_TBUF, id_IOBUF))
continue;
if (ci.attrs.count(id_BEL) == 0) {
log_error("Unconstrained IO:%s\n", ctx->nameOf(&ci));
}
BelId io_bel = bind_io(ci);
Loc io_loc = ctx->getBelLocation(io_bel);
if (io_loc.y == ctx->getGridDimY() - 1) {
config_bottom_row(ci, io_loc);
}
if (gwu.is_simple_io_bel(io_bel)) {
config_simple_io(ci);
}
make_iob_nets(ci);
}
}
// ===================================
// Differential IO
// ===================================
static bool is_iob(const Context *ctx, CellInfo *cell)
{
return (cell->type.in(id_IBUF, id_OBUF, id_TBUF, id_IOBUF));
}
std::pair<CellInfo *, CellInfo *> get_pn_cells(const CellInfo &ci)
{
CellInfo *p, *n;
switch (ci.type.hash()) {
case ID_ELVDS_TBUF: /* fall-through */
case ID_TLVDS_TBUF: /* fall-through */
case ID_ELVDS_OBUF: /* fall-through */
case ID_TLVDS_OBUF:
p = net_only_drives(ctx, ci.ports.at(id_O).net, is_iob, id_I, true);
n = net_only_drives(ctx, ci.ports.at(id_OB).net, is_iob, id_I, true);
break;
case ID_ELVDS_IBUF: /* fall-through */
case ID_TLVDS_IBUF:
p = net_driven_by(ctx, ci.ports.at(id_I).net, is_iob, id_O);
n = net_driven_by(ctx, ci.ports.at(id_IB).net, is_iob, id_O);
break;
case ID_ELVDS_IOBUF: /* fall-through */
case ID_TLVDS_IOBUF:
p = net_only_drives(ctx, ci.ports.at(id_IO).net, is_iob, id_I);
n = net_only_drives(ctx, ci.ports.at(id_IOB).net, is_iob, id_I);
break;
default:
log_error("Bad diff IO '%s' type '%s'\n", ctx->nameOf(&ci), ci.type.c_str(ctx));
}
return std::make_pair(p, n);
}
void mark_iobs_as_diff(CellInfo &ci, std::pair<CellInfo *, CellInfo *> &pn_cells)
{
pn_cells.first->setParam(id_DIFF, std::string("P"));
pn_cells.first->setParam(id_DIFF_TYPE, ci.type.str(ctx));
pn_cells.second->setParam(id_DIFF, std::string("N"));
pn_cells.second->setParam(id_DIFF_TYPE, ci.type.str(ctx));
}
void switch_diff_ports(CellInfo &ci, std::pair<CellInfo *, CellInfo *> &pn_cells,
std::vector<IdString> &nets_to_remove)
{
CellInfo *iob_p = pn_cells.first;
CellInfo *iob_n = pn_cells.second;
if (ci.type.in(id_TLVDS_TBUF, id_TLVDS_OBUF, id_ELVDS_TBUF, id_ELVDS_OBUF)) {
nets_to_remove.push_back(ci.getPort(id_O)->name);
ci.disconnectPort(id_O);
nets_to_remove.push_back(ci.getPort(id_OB)->name);
ci.disconnectPort(id_OB);
nets_to_remove.push_back(iob_n->getPort(id_I)->name);
iob_n->disconnectPort(id_I);
if (ci.type.in(id_TLVDS_TBUF, id_ELVDS_TBUF)) {
NetInfo *oen_net = iob_n->getPort(id_OEN);
if (oen_net != nullptr) {
nets_to_remove.push_back(oen_net->name);
}
iob_n->disconnectPort(id_OEN);
iob_p->disconnectPort(id_OEN);
ci.movePortTo(id_OEN, iob_p, id_OEN);
}
iob_p->disconnectPort(id_I);
ci.movePortTo(id_I, iob_p, id_I);
return;
}
if (ci.type.in(id_TLVDS_IBUF, id_ELVDS_IBUF)) {
nets_to_remove.push_back(ci.getPort(id_I)->name);
ci.disconnectPort(id_I);
nets_to_remove.push_back(ci.getPort(id_IB)->name);
ci.disconnectPort(id_IB);
iob_n->disconnectPort(id_O);
iob_p->disconnectPort(id_O);
ci.movePortTo(id_O, iob_p, id_O);
return;
}
if (ci.type.in(id_TLVDS_IOBUF, id_ELVDS_IOBUF)) {
nets_to_remove.push_back(ci.getPort(id_IO)->name);
ci.disconnectPort(id_IO);
nets_to_remove.push_back(ci.getPort(id_IOB)->name);
ci.disconnectPort(id_IOB);
nets_to_remove.push_back(iob_n->getPort(id_I)->name);
iob_n->disconnectPort(id_I);
iob_n->disconnectPort(id_OEN);
iob_p->disconnectPort(id_OEN);
ci.movePortTo(id_OEN, iob_p, id_OEN);
iob_p->disconnectPort(id_I);
ci.movePortTo(id_I, iob_p, id_I);
iob_p->disconnectPort(id_O);
ci.movePortTo(id_O, iob_p, id_O);
return;
}
}
void pack_diff_iobs(void)
{
log_info("Pack diff IOBs...\n");
std::vector<IdString> cells_to_remove, nets_to_remove;
for (auto &cell : ctx->cells) {
CellInfo &ci = *cell.second;
if (!is_diffio(&ci)) {
continue;
}
if (!gwu.is_diff_io_supported(ci.type)) {
log_error("%s is not supported\n", ci.type.c_str(ctx));
}
cells_to_remove.push_back(ci.name);
auto pn_cells = get_pn_cells(ci);
NPNR_ASSERT(pn_cells.first != nullptr && pn_cells.second != nullptr);
mark_iobs_as_diff(ci, pn_cells);
switch_diff_ports(ci, pn_cells, nets_to_remove);
}
for (auto cell : cells_to_remove) {
ctx->cells.erase(cell);
}
for (auto net : nets_to_remove) {
ctx->nets.erase(net);
}
}
// ===================================
// IO logic
// ===================================
// the functions of these two inputs are yet to be discovered, so we set as observed
// in the exemplary images
void set_daaj_nets(CellInfo &ci, BelId bel)
{
std::vector<IdString> pins = ctx->getBelPins(bel);
if (std::find(pins.begin(), pins.end(), id_DAADJ0) != pins.end()) {
ci.addInput(id_DAADJ0);
ci.connectPort(id_DAADJ0, ctx->nets.at(ctx->id("$PACKER_GND")).get());
}
if (std::find(pins.begin(), pins.end(), id_DAADJ1) != pins.end()) {
ci.addInput(id_DAADJ1);
ci.connectPort(id_DAADJ1, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
}
}
BelId get_iologico_bel(CellInfo *iob)
{
NPNR_ASSERT(iob->bel != BelId());
Loc loc = ctx->getBelLocation(iob->bel);
loc.z = loc.z - BelZ::IOBA_Z + BelZ::IOLOGICA_Z;
return ctx->getBelByLocation(loc);
}
BelId get_iologici_bel(CellInfo *iob)
{
NPNR_ASSERT(iob->bel != BelId());
Loc loc = ctx->getBelLocation(iob->bel);
loc.z = loc.z - BelZ::IOBA_Z + BelZ::IOLOGICA_Z + 2;
return ctx->getBelByLocation(loc);
}
void check_iologic_placement(CellInfo &ci, Loc iob_loc, int diff /* 1 - diff */)
{
if (ci.type.in(id_ODDR, id_ODDRC, id_IDDR, id_IDDRC, id_OSER4, id_IOLOGICI_EMPTY) || diff) {
return;
}
BelId l_bel = ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::IOBA_Z + 1 - (iob_loc.z - BelZ::IOBA_Z)));
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
}
// While we require an exact match of the type, in the future the criteria
// may be relaxed and there will be a comparison of the control networks
// used.
bool are_iologic_compatible(CellInfo *ci_0, CellInfo *ci_1)
{
switch (ci_0->type.hash()) {
case ID_ODDR:
return ci_1->type == id_IDDR;
case ID_ODDRC:
return ci_1->type == id_IDDRC;
case ID_IDDR:
return ci_1->type == id_ODDR;
case ID_IDDRC:
return ci_1->type == id_ODDRC;
default:
return false;
}
return false;
}
void pack_bi_output_iol(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
// These primitives have an additional pin to control the tri-state iob - Q1.
IdString out_port = id_Q0;
IdString tx_port = id_Q1;
CellInfo *out_iob = net_only_drives(ctx, ci.ports.at(out_port).net, is_iob, id_I, true);
NPNR_ASSERT(out_iob != nullptr && out_iob->bel != BelId());
BelId iob_bel = out_iob->bel;
BelId l_bel = get_iologico_bel(out_iob);
// check compatible Input and Output iologic if any
BelId in_l_bel = get_iologici_bel(out_iob);
if (in_l_bel != BelId() && !ctx->checkBelAvail(in_l_bel)) {
CellInfo *in_iologic_ci = ctx->getBoundBelCell(in_l_bel);
if (!are_iologic_compatible(&ci, in_iologic_ci)) {
log_error("IOLOGIC %s at %s cannot coexist with %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel),
ctx->nameOf(in_iologic_ci));
}
}
if (l_bel == BelId()) {
log_error("Can't place IOLOGIC %s at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
// mark IOB as used by IOLOGIC
out_iob->setParam(id_IOLOGIC_IOB, 1);
check_iologic_placement(ci, ctx->getBelLocation(iob_bel), out_iob->params.count(id_DIFF_TYPE));
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
ctx->bindBel(l_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
std::string out_mode;
switch (ci.type.hash()) {
case ID_ODDR:
case ID_ODDRC:
out_mode = "ODDRX1";
break;
case ID_OSER4:
out_mode = "ODDRX2";
break;
case ID_OSER8:
out_mode = "ODDRX4";
break;
}
ci.setParam(ctx->id("OUTMODE"), out_mode);
// disconnect Q output: it is wired internally
nets_to_remove.push_back(ci.getPort(out_port)->name);
out_iob->disconnectPort(id_I);
ci.disconnectPort(out_port);
set_daaj_nets(ci, iob_bel);
Loc io_loc = ctx->getBelLocation(iob_bel);
if (io_loc.y == ctx->getGridDimY() - 1) {
config_bottom_row(*out_iob, io_loc, Bottom_io_POD::DDR);
}
// if Q1 is connected then disconnect it too
if (gwu.port_used(&ci, tx_port)) {
NPNR_ASSERT(out_iob == net_only_drives(ctx, ci.ports.at(tx_port).net, is_iob, id_OEN, true));
nets_to_remove.push_back(ci.getPort(tx_port)->name);
out_iob->disconnectPort(id_OEN);
ci.disconnectPort(tx_port);
}
make_iob_nets(*out_iob);
}
void pack_single_output_iol(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
IdString out_port = id_Q;
CellInfo *out_iob = net_only_drives(ctx, ci.ports.at(out_port).net, is_iob, id_I, true);
NPNR_ASSERT(out_iob != nullptr && out_iob->bel != BelId());
BelId iob_bel = out_iob->bel;
BelId l_bel = get_iologico_bel(out_iob);
if (l_bel == BelId()) {
log_error("Can't place IOLOGIC %s at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
// mark IOB as used by IOLOGIC
out_iob->setParam(id_IOLOGIC_IOB, 1);
check_iologic_placement(ci, ctx->getBelLocation(iob_bel), out_iob->params.count(id_DIFF_TYPE));
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
ctx->bindBel(l_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
std::string out_mode;
switch (ci.type.hash()) {
case ID_OVIDEO:
out_mode = "VIDEORX";
break;
case ID_OSER10:
out_mode = "ODDRX5";
break;
}
ci.setParam(ctx->id("OUTMODE"), out_mode);
// disconnect Q output: it is wired internally
nets_to_remove.push_back(ci.getPort(out_port)->name);
out_iob->disconnectPort(id_I);
ci.disconnectPort(out_port);
set_daaj_nets(ci, iob_bel);
Loc io_loc = ctx->getBelLocation(iob_bel);
if (io_loc.y == ctx->getGridDimY() - 1) {
config_bottom_row(*out_iob, io_loc, Bottom_io_POD::DDR);
}
make_iob_nets(*out_iob);
}
BelId get_aux_iologic_bel(const CellInfo &ci)
{
return ctx->getBelByLocation(gwu.get_pair_iologic_bel(ctx->getBelLocation(ci.bel)));
}
bool is_diff_io(BelId bel) { return ctx->getBoundBelCell(bel)->params.count(id_DIFF_TYPE) != 0; }
CellInfo *create_aux_iologic_cell(CellInfo &ci, IdString mode, bool io16 = false, int idx = 0)
{
if (ci.type.in(id_ODDR, id_ODDRC, id_OSER4, id_IDDR, id_IDDRC, id_IDES4, id_IOLOGICI_EMPTY)) {
return nullptr;
}
IdString aux_name = gwu.create_aux_name(ci.name, idx);
BelId bel = get_aux_iologic_bel(ci);
BelId io_bel = gwu.get_io_bel_from_iologic(bel);
if (!ctx->checkBelAvail(io_bel)) {
if (!is_diff_io(io_bel)) {
log_error("Can't place %s at %s because of a conflict with another IO %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(bel), ctx->nameOf(ctx->getBoundBelCell(io_bel)));
}
}
ctx->createCell(aux_name, id_IOLOGIC_DUMMY);
CellInfo *aux = ctx->cells.at(aux_name).get();
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
if (io16) {
aux->setParam(mode, Property("DDRENABLE16"));
} else {
aux->setParam(mode, Property("DDRENABLE"));
}
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
aux->setAttr(ctx->id("MAIN_CELL"), Property(ci.name.str(ctx)));
ctx->bindBel(bel, aux, PlaceStrength::STRENGTH_LOCKED);
return aux;
}
void reconnect_ides_outs(CellInfo *ci)
{
IdString dest_ports[] = {id_Q9, id_Q8, id_Q7, id_Q6, id_Q5, id_Q4, id_Q3, id_Q2};
switch (ci->type.hash()) {
case ID_IDDR: /* fall-through*/
case ID_IDDRC:
ci->renamePort(id_Q1, id_Q9);
ci->renamePort(id_Q0, id_Q8);
break;
case ID_IDES4:
for (int i = 0; i < 4; ++i) {
ci->renamePort(ctx->idf("Q%d", 3 - i), dest_ports[i]);
}
break;
case ID_IVIDEO:
for (int i = 0; i < 7; ++i) {
ci->renamePort(ctx->idf("Q%d", 6 - i), dest_ports[i]);
}
break;
case ID_IDES8:
for (int i = 0; i < 8; ++i) {
ci->renamePort(ctx->idf("Q%d", 7 - i), dest_ports[i]);
}
break;
default:
break;
}
}
void pack_ides_iol(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
IdString in_port = id_D;
CellInfo *in_iob = net_driven_by(ctx, ci.ports.at(in_port).net, is_iob, id_O);
NPNR_ASSERT(in_iob != nullptr && in_iob->bel != BelId());
BelId iob_bel = in_iob->bel;
BelId l_bel = get_iologici_bel(in_iob);
if (l_bel == BelId()) {
log_error("Can't place IOLOGIC %s at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
// mark IOB as used by IOLOGIC
in_iob->setParam(id_IOLOGIC_IOB, 1);
check_iologic_placement(ci, ctx->getBelLocation(iob_bel), in_iob->params.count(id_DIFF_TYPE));
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
ctx->bindBel(l_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
std::string in_mode;
switch (ci.type.hash()) {
case ID_IOLOGICI_EMPTY:
in_mode = "EMPTY";
break;
case ID_IDDR:
case ID_IDDRC:
in_mode = "IDDRX1";
break;
case ID_IDES4:
in_mode = "IDDRX2";
break;
case ID_IDES8:
in_mode = "IDDRX4";
break;
case ID_IDES10:
in_mode = "IDDRX5";
break;
case ID_IVIDEO:
in_mode = "VIDEORX";
break;
}
ci.setParam(ctx->id("INMODE"), in_mode);
if (ci.type == id_IOLOGICI_EMPTY) {
return;
}
// disconnect D input: it is wired internally
nets_to_remove.push_back(ci.getPort(in_port)->name);
in_iob->disconnectPort(id_O);
ci.disconnectPort(in_port);
set_daaj_nets(ci, iob_bel);
reconnect_ides_outs(&ci);
make_iob_nets(*in_iob);
}
void pack_iem()
{
log_info("Pack Input Edge Monitors...\n");
std::vector<IdString> cells_to_remove;
std::vector<std::unique_ptr<CellInfo>> new_cells;
for (auto &cell : ctx->cells) {
CellInfo &ci = *cell.second;
if (ci.type != id_IEM) {
continue;
}
if (ctx->debug) {
log_info("pack %s of type %s.\n", ctx->nameOf(&ci), ci.type.c_str(ctx));
}
// IEM is part of IOLOGIC but functions independently of the
// presence/absence of other IOLOGIC components. Therefore, we use
// the existing cell whenever possible.
const NetInfo *d_net = ci.ports.at(id_D).net;
CellInfo *in_iob = net_driven_by(ctx, d_net, is_iob, id_O);
NPNR_ASSERT(in_iob != nullptr && in_iob->bel != BelId());
BelId iob_bel = in_iob->bel;
BelId l_bel = get_iologici_bel(in_iob);
if (l_bel == BelId()) {
log_error("Can't place IOLOGIC %s at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
CellInfo *iologic = nullptr;
for (auto &usr : d_net->users) {
if (is_iologici(usr.cell)) {
if (ctx->debug) {
log_info(" found IOLOGIC cell %s of type %s, use it.\n", ctx->nameOf(usr.cell),
usr.cell->type.c_str(ctx));
}
iologic = usr.cell;
if (iologic->ports.count(id_CLK)) {
NPNR_ASSERT(iologic->ports.at(id_CLK).net == ci.ports.at(id_CLK).net);
} else {
if (iologic->ports.count(id_PCLK)) {
NPNR_ASSERT(iologic->ports.at(id_PCLK).net == ci.ports.at(id_CLK).net);
}
iologic->addInput(ctx->id("CLK"));
}
if (iologic->ports.count(id_RESET)) {
NPNR_ASSERT(iologic->ports.at(id_RESET).net == ci.ports.at(id_RESET).net);
} else {
iologic->addInput(ctx->id("RESET"));
}
break;
}
}
if (iologic == nullptr) {
IdString iologic_name = gwu.create_aux_name(ci.name);
if (ctx->debug) {
log_info(" create IOLOGIC cell %s.\n", iologic_name.c_str(ctx));
}
auto iologic_cell = gwu.create_cell(iologic_name, id_IOLOGICI_EMPTY);
new_cells.push_back(std::move(iologic_cell));
iologic = new_cells.back().get();
ci.copyPortTo(id_D, iologic, id_D);
ci.copyPortTo(id_CLK, iologic, id_CLK);
ci.copyPortTo(id_RESET, iologic, id_RESET);
}
ci.movePortTo(id_MCLK, iologic, id_MCLK);
ci.movePortTo(id_LAG, iologic, id_LAG);
ci.movePortTo(id_LEAD, iologic, id_LEAD);
ci.disconnectPort(id_D);
ci.disconnectPort(id_CLK);
ci.disconnectPort(id_RESET);
// WINSIZE attribute defines routing to ports WINSIZE0/1
iologic->addInput(id_WINSIZE0);
iologic->addInput(id_WINSIZE1);
if (ci.params.count(id_WINSIZE) == 0) {
ci.setParam(id_WINSIZE, Property("SMALL"));
}
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
IdString winsize = ctx->id(ci.params.at(id_WINSIZE).as_string());
switch (winsize.hash()) {
case ID_SMALL:
iologic->connectPort(id_WINSIZE0, vss_net);
iologic->connectPort(id_WINSIZE1, vss_net);
break;
case ID_MIDSMALL:
iologic->connectPort(id_WINSIZE0, vcc_net);
iologic->connectPort(id_WINSIZE1, vss_net);
break;
case ID_MIDLARGE:
iologic->connectPort(id_WINSIZE0, vss_net);
iologic->connectPort(id_WINSIZE1, vcc_net);
break;
case ID_LARGE:
iologic->connectPort(id_WINSIZE0, vcc_net);
iologic->connectPort(id_WINSIZE1, vcc_net);
break;
default:
log_error("%s has incorrect WINSIZE:%s\n", ctx->nameOf(&ci), ci.params.at(id_WINSIZE).c_str());
}
if (ci.params.count(id_GSREN) != 0) {
if (iologic->params.count(id_GSREN) == 0) {
iologic->setParam(id_GSREN, ci.params.at(id_GSREN));
} else {
if (ci.params.at(id_GSREN) != iologic->params.at(id_GSREN)) {
log_error("GSREN parameter values of %s and %s do not match.\n", ctx->nameOf(&ci),
ctx->nameOf(iologic));
}
}
}
if (ci.params.count(id_LSREN) != 0) {
if (iologic->params.count(id_LSREN) == 0) {
iologic->setParam(id_LSREN, ci.params.at(id_LSREN));
} else {
if (ci.params.at(id_LSREN) != iologic->params.at(id_LSREN)) {
log_error("LSREN parameter values of %s and %s do not match.\n", ctx->nameOf(&ci),
ctx->nameOf(iologic));
}
}
}
cells_to_remove.push_back(ci.name);
}
for (auto cell : cells_to_remove) {
ctx->cells.erase(cell);
}
for (auto &ncell : new_cells) {
ctx->cells[ncell->name] = std::move(ncell);
}
}
void pack_iologic()
{
log_info("Pack IO logic...\n");
std::vector<IdString> nets_to_remove;
for (auto &cell : ctx->cells) {
CellInfo &ci = *cell.second;
if (!(is_iologici(&ci) || is_iologico(&ci))) {
continue;
}
if (ctx->debug) {
log_info("pack %s of type %s.\n", ctx->nameOf(&ci), ci.type.c_str(ctx));
}
if (ci.type.in(id_ODDR, id_ODDRC, id_OSER4, id_OSER8)) {
pack_bi_output_iol(ci, nets_to_remove);
create_aux_iologic_cell(ci, ctx->id("OUTMODE"));
continue;
}
if (ci.type.in(id_OVIDEO, id_OSER10)) {
pack_single_output_iol(ci, nets_to_remove);
create_aux_iologic_cell(ci, ctx->id("OUTMODE"));
continue;
}
if (ci.type.in(id_IDDR, id_IDDRC, id_IDES4, id_IDES8, id_IDES10, id_IVIDEO, id_IOLOGICI_EMPTY)) {
pack_ides_iol(ci, nets_to_remove);
create_aux_iologic_cell(ci, ctx->id("INMODE"));
continue;
}
}
for (auto net : nets_to_remove) {
ctx->nets.erase(net);
}
}
// ===================================
// IDES16 / OSER16
// ===================================
void check_io16_placement(CellInfo &ci, Loc main_loc, Loc aux_off, int diff /* 1 - diff */)
{
if (main_loc.z != BelZ::IOBA_Z) {
log_error("Can't place %s at %s because OSER16/IDES16 must be placed at A pin\n", ctx->nameOf(&ci),
ctx->nameOfBel(ctx->getBelByLocation(main_loc)));
}
int mod[][3] = {{0, 0, 1}, {1, 1, 0}, {1, 1, 1}};
for (int i = diff; i < 3; ++i) {
Loc aux_loc(main_loc.x + mod[i][0] * aux_off.x, main_loc.y + mod[i][1] * aux_off.y, main_loc.z + mod[i][2]);
BelId l_bel = ctx->getBelByLocation(aux_loc);
if (!ctx->checkBelAvail(l_bel)) {
log_error("Can't place %s at %s because it's already taken by %s\n", ctx->nameOf(&ci),
ctx->nameOfBel(l_bel), ctx->nameOf(ctx->getBoundBelCell(l_bel)));
}
}
}
void pack_oser16(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
IdString out_port = id_Q;
CellInfo *out_iob = net_only_drives(ctx, ci.ports.at(out_port).net, is_iob, id_I, true);
NPNR_ASSERT(out_iob != nullptr && out_iob->bel != BelId());
// mark IOB as used by IOLOGIC
out_iob->setParam(id_IOLOGIC_IOB, 1);
BelId iob_bel = out_iob->bel;
Loc iob_loc = ctx->getBelLocation(iob_bel);
Loc aux_offset = gwu.get_tile_io16_offs(iob_loc.x, iob_loc.y);
if (aux_offset.x == 0 && aux_offset.y == 0) {
log_error("OSER16 %s can not be placed at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
check_io16_placement(ci, iob_loc, aux_offset, out_iob->params.count(id_DIFF_TYPE));
BelId main_bel = ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::OSER16_Z));
ctx->bindBel(main_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
// disconnect Q output: it is wired internally
nets_to_remove.push_back(ci.getPort(out_port)->name);
out_iob->disconnectPort(id_I);
ci.disconnectPort(out_port);
// to simplify packaging, the parts of the OSER16 are presented as IOLOGIC cells
// and one of these aux cells is declared as main
IdString main_name = gwu.create_aux_name(ci.name);
IdString aux_name = gwu.create_aux_name(ci.name, 1);
ctx->createCell(aux_name, id_IOLOGIC_DUMMY);
CellInfo *aux = ctx->cells.at(aux_name).get();
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("OUTMODE"), Property("ODDRX8"));
aux->setParam(ctx->id("UPDATE"), Property("SAME"));
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
ctx->bindBel(ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::IOLOGICA_Z)), aux,
PlaceStrength::STRENGTH_LOCKED);
// make aux cell in the first cell
aux = create_aux_iologic_cell(*aux, ctx->id("OUTMODE"), true, 2);
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("UPDATE"), Property("SAME"));
// make cell in the next location
ctx->createCell(main_name, id_IOLOGIC);
aux = ctx->cells.at(main_name).get();
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("OUTMODE"), Property("DDRENABLE16"));
aux->setParam(ctx->id("UPDATE"), Property("SAME"));
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
ci.movePortTo(id_FCLK, aux, id_FCLK);
ci.movePortTo(id_D12, aux, id_D0);
ci.movePortTo(id_D13, aux, id_D1);
ci.movePortTo(id_D14, aux, id_D2);
ci.movePortTo(id_D15, aux, id_D3);
Loc next_io16(iob_loc.x + aux_offset.x, iob_loc.y + aux_offset.y, BelZ::IOLOGICA_Z);
ctx->bindBel(ctx->getBelByLocation(next_io16), aux, PlaceStrength::STRENGTH_LOCKED);
Loc io_loc = ctx->getBelLocation(iob_bel);
if (io_loc.y == ctx->getGridDimY() - 1) {
config_bottom_row(*out_iob, io_loc, Bottom_io_POD::DDR);
}
make_iob_nets(*out_iob);
}
void pack_ides16(CellInfo &ci, std::vector<IdString> &nets_to_remove)
{
IdString in_port = id_D;
CellInfo *in_iob = net_driven_by(ctx, ci.ports.at(in_port).net, is_iob, id_O);
NPNR_ASSERT(in_iob != nullptr && in_iob->bel != BelId());
// mark IOB as used by IOLOGIC
in_iob->setParam(id_IOLOGIC_IOB, 1);
BelId iob_bel = in_iob->bel;
Loc iob_loc = ctx->getBelLocation(iob_bel);
Loc aux_offset = gwu.get_tile_io16_offs(iob_loc.x, iob_loc.y);
if (aux_offset.x == 0 && aux_offset.y == 0) {
log_error("IDES16 %s can not be placed at %s\n", ctx->nameOf(&ci), ctx->nameOfBel(iob_bel));
}
check_io16_placement(ci, iob_loc, aux_offset, in_iob->params.count(id_DIFF_TYPE));
BelId main_bel = ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::IDES16_Z));
ctx->bindBel(main_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
// disconnect Q output: it is wired internally
nets_to_remove.push_back(ci.getPort(in_port)->name);
in_iob->disconnectPort(id_O);
ci.disconnectPort(in_port);
// to simplify packaging, the parts of the IDES16 are presented as IOLOGIC cells
// and one of these aux cells is declared as main
IdString main_name = gwu.create_aux_name(ci.name);
IdString aux_name = gwu.create_aux_name(ci.name, 1);
ctx->createCell(aux_name, id_IOLOGIC_DUMMY);
CellInfo *aux = ctx->cells.at(aux_name).get();
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("INMODE"), Property("IDDRX8"));
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
ctx->bindBel(ctx->getBelByLocation(Loc(iob_loc.x, iob_loc.y, BelZ::IOLOGICA_Z)), aux,
PlaceStrength::STRENGTH_LOCKED);
// make aux cell in the first cell
aux = create_aux_iologic_cell(*aux, ctx->id("INMODE"), true, 2);
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
ci.copyPortTo(id_CALIB, aux, id_CALIB);
// make cell in the next location
ctx->createCell(main_name, id_IOLOGIC);
aux = ctx->cells.at(main_name).get();
aux->setAttr(ctx->id("MAIN_CELL"), Property(main_name.str(ctx)));
aux->setParam(ctx->id("INMODE"), Property("DDRENABLE16"));
aux->setAttr(ctx->id("IOLOGIC_TYPE"), Property("DUMMY"));
ci.copyPortTo(id_PCLK, aux, id_PCLK);
ci.copyPortTo(id_RESET, aux, id_RESET);
ci.copyPortTo(id_CALIB, aux, id_CALIB);
ci.movePortTo(id_FCLK, aux, id_FCLK);
ci.movePortTo(id_Q0, aux, id_Q6);
ci.movePortTo(id_Q1, aux, id_Q7);
ci.movePortTo(id_Q2, aux, id_Q8);
ci.movePortTo(id_Q3, aux, id_Q9);
Loc next_io16(iob_loc.x + aux_offset.x, iob_loc.y + aux_offset.y, BelZ::IOLOGICA_Z);
ctx->bindBel(ctx->getBelByLocation(next_io16), aux, PlaceStrength::STRENGTH_LOCKED);
make_iob_nets(*in_iob);
}
void pack_io16(void)
{
std::vector<IdString> nets_to_remove;
log_info("Pack DESER16 logic...\n");
for (auto &cell : ctx->cells) {
CellInfo &ci = *cell.second;
if (ci.type == id_OSER16) {
if (ctx->debug) {
log_info("pack %s of type %s.\n", ctx->nameOf(&ci), ci.type.c_str(ctx));
}
pack_oser16(ci, nets_to_remove);
continue;
}
if (ci.type == id_IDES16) {
if (ctx->debug) {
log_info("pack %s of type %s.\n", ctx->nameOf(&ci), ci.type.c_str(ctx));
}
pack_ides16(ci, nets_to_remove);
continue;
}
}
for (auto net : nets_to_remove) {
ctx->nets.erase(net);
}
}
// ===================================
// Constant nets
// ===================================
void handle_constants(void)
{
log_info("Create constant nets...\n");
const dict<IdString, Property> vcc_params;
const dict<IdString, Property> gnd_params;
h.replace_constants(CellTypePort(id_GOWIN_VCC, id_V), CellTypePort(id_GOWIN_GND, id_G), vcc_params, gnd_params);
// disconnect the constant LUT inputs
log_info("Modify LUTs...\n");
for (IdString netname : {ctx->id("$PACKER_GND"), ctx->id("$PACKER_VCC")}) {
auto net = ctx->nets.find(netname);
if (net == ctx->nets.end()) {
continue;
}
NetInfo *constnet = net->second.get();
for (auto user : constnet->users) {
CellInfo *uc = user.cell;
if (is_lut(uc) && (user.port.str(ctx).at(0) == 'I')) {
if (ctx->debug) {
log_info("%s user %s/%s\n", ctx->nameOf(constnet), ctx->nameOf(uc), user.port.c_str(ctx));
}
auto it_param = uc->params.find(id_INIT);
if (it_param == uc->params.end())
log_error("No initialization for lut found.\n");
int64_t uc_init = it_param->second.intval;
int64_t mask = 0;
uint8_t amt = 0;
if (user.port == id_I0) {
mask = 0x5555;
amt = 1;
} else if (user.port == id_I1) {
mask = 0x3333;
amt = 2;
} else if (user.port == id_I2) {
mask = 0x0F0F;
amt = 4;
} else if (user.port == id_I3) {
mask = 0x00FF;
amt = 8;
} else {
log_error("Port number invalid.\n");
}
if ((constnet->name == ctx->id("$PACKER_GND"))) {
uc_init = (uc_init & mask) | ((uc_init & mask) << amt);
} else {
uc_init = (uc_init & (mask << amt)) | ((uc_init & (mask << amt)) >> amt);
}
size_t uc_init_len = it_param->second.to_string().length();
uc_init &= (1LL << uc_init_len) - 1;
if (ctx->verbose && it_param->second.intval != uc_init)
2023-11-11 22:37:20 +08:00
log_info("%s lut config modified from 0x%" PRIX64 " to 0x%" PRIX64 "\n", ctx->nameOf(uc),
it_param->second.intval, uc_init);
it_param->second = Property(uc_init, uc_init_len);
uc->disconnectPort(user.port);
}
}
}
}
// ===================================
// Wideluts
// ===================================
void pack_wideluts(void)
{
log_info("Pack wide LUTs...\n");
// children's offsets
struct _children
{
IdString port;
int dx, dz;
} mux_inputs[4][2] = {{{id_I0, 1, -7}, {id_I1, 0, -7}},
{{id_I0, 0, 4}, {id_I1, 0, -4}},
{{id_I0, 0, 2}, {id_I1, 0, -2}},
{{id_I0, 0, -BelZ::MUX20_Z}, {id_I1, 0, 2 - BelZ::MUX20_Z}}};
typedef std::function<void(CellInfo &, CellInfo *, int, int)> recurse_func_t;
recurse_func_t make_cluster = [&, this](CellInfo &ci_root, CellInfo *ci_cursor, int dx, int dz) {
_children *inputs;
if (is_lut(ci_cursor)) {
return;
}
switch (ci_cursor->type.hash()) {
case ID_MUX2_LUT8:
inputs = mux_inputs[0];
break;
case ID_MUX2_LUT7:
inputs = mux_inputs[1];
break;
case ID_MUX2_LUT6:
inputs = mux_inputs[2];
break;
case ID_MUX2_LUT5:
inputs = mux_inputs[3];
break;
default:
log_error("Bad MUX2 node:%s\n", ctx->nameOf(ci_cursor));
}
for (int i = 0; i < 2; ++i) {
// input src
NetInfo *in = ci_cursor->getPort(inputs[i].port);
NPNR_ASSERT(in && in->driver.cell && in->driver.cell->cluster == ClusterId());
int child_dx = dx + inputs[i].dx;
int child_dz = dz + inputs[i].dz;
ci_root.constr_children.push_back(in->driver.cell);
in->driver.cell->cluster = ci_root.name;
in->driver.cell->constr_abs_z = false;
in->driver.cell->constr_x = child_dx;
in->driver.cell->constr_y = 0;
in->driver.cell->constr_z = child_dz;
make_cluster(ci_root, in->driver.cell, child_dx, child_dz);
}
};
// look for MUX2
// MUX2_LUT8 create right away, collect others
std::vector<IdString> muxes[3];
int packed[4] = {0, 0, 0, 0};
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.cluster != ClusterId()) {
continue;
}
if (ci.type == id_MUX2_LUT8) {
ci.cluster = ci.name;
ci.constr_abs_z = false;
make_cluster(ci, &ci, 0, 0);
++packed[0];
continue;
}
if (ci.type.in(id_MUX2_LUT7, id_MUX2_LUT6, id_MUX2_LUT5)) {
switch (ci.type.hash()) {
case ID_MUX2_LUT7:
muxes[0].push_back(cell.first);
break;
case ID_MUX2_LUT6:
muxes[1].push_back(cell.first);
break;
default: // ID_MUX2_LUT5
muxes[2].push_back(cell.first);
break;
}
}
}
// create others
for (int i = 0; i < 3; ++i) {
for (IdString cell_name : muxes[i]) {
auto &ci = *ctx->cells.at(cell_name);
if (ci.cluster != ClusterId()) {
continue;
}
ci.cluster = ci.name;
ci.constr_abs_z = false;
make_cluster(ci, &ci, 0, 0);
++packed[i + 1];
}
}
log_info("Packed MUX2_LUT8:%d, MUX2_LU7:%d, MUX2_LUT6:%d, MUX2_LUT5:%d\n", packed[0], packed[1], packed[2],
packed[3]);
}
// ===================================
// ALU
// ===================================
// create ALU CIN block
std::unique_ptr<CellInfo> alu_add_cin_block(Context *ctx, CellInfo *head, NetInfo *cin_net)
{
std::string name = head->name.str(ctx) + "_HEAD_ALULC";
IdString name_id = ctx->id(name);
NetInfo *cout_net = ctx->createNet(name_id);
head->disconnectPort(id_CIN);
head->connectPort(id_CIN, cout_net);
auto cin_ci = std::make_unique<CellInfo>(ctx, name_id, id_ALU);
cin_ci->addOutput(id_COUT);
cin_ci->connectPort(id_COUT, cout_net);
if (cin_net->name == ctx->id("$PACKER_GND")) {
cin_ci->setParam(id_ALU_MODE, std::string("C2L"));
cin_ci->addInput(id_I2);
cin_ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
return cin_ci;
}
if (cin_net->name == ctx->id("$PACKER_VCC")) {
cin_ci->setParam(id_ALU_MODE, std::string("ONE2C"));
cin_ci->addInput(id_I2);
cin_ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
return cin_ci;
}
// CIN from logic
cin_ci->addInput(id_I0);
cin_ci->connectPort(id_I0, ctx->nets.at(ctx->id("$PACKER_GND")).get());
cin_ci->addInput(id_I1);
cin_ci->addInput(id_I3);
cin_ci->connectPort(id_I1, cin_net);
cin_ci->connectPort(id_I3, cin_net);
cin_ci->addInput(id_I2);
cin_ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
cin_ci->setParam(id_ALU_MODE, std::string("0")); // ADD
return cin_ci;
}
// create ALU COUT block
std::unique_ptr<CellInfo> alu_add_cout_block(Context *ctx, CellInfo *tail, NetInfo *cout_net)
{
std::string name = tail->name.str(ctx) + "_TAIL_ALULC";
IdString name_id = ctx->id(name);
NetInfo *cin_net = ctx->createNet(name_id);
tail->disconnectPort(id_COUT);
tail->connectPort(id_COUT, cin_net);
auto cout_ci = std::make_unique<CellInfo>(ctx, name_id, id_ALU);
cout_ci->addOutput(id_COUT); // may be needed for the ALU filler
cout_ci->addInput(id_CIN);
cout_ci->connectPort(id_CIN, cin_net);
cout_ci->addOutput(id_SUM);
cout_ci->connectPort(id_SUM, cout_net);
cout_ci->addInput(id_I2);
cout_ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
cout_ci->setParam(id_ALU_MODE, std::string("C2L"));
return cout_ci;
}
// create ALU filler block
std::unique_ptr<CellInfo> alu_add_dummy_block(Context *ctx, CellInfo *tail)
{
std::string name = tail->name.str(ctx) + "_DUMMY_ALULC";
IdString name_id = ctx->id(name);
auto dummy_ci = std::make_unique<CellInfo>(ctx, name_id, id_ALU);
dummy_ci->setParam(id_ALU_MODE, std::string("C2L"));
return dummy_ci;
}
// create ALU chain
void pack_alus(void)
{
const CellTypePort cell_alu_cout = CellTypePort(id_ALU, id_COUT);
const CellTypePort cell_alu_cin = CellTypePort(id_ALU, id_CIN);
std::vector<std::unique_ptr<CellInfo>> new_cells;
log_info("Pack ALUs...\n");
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (ci->cluster != ClusterId()) {
continue;
}
if (is_alu(ci)) {
// The ALU head is when the input carry is not a dedicated wire from the previous ALU
NetInfo *cin_net = ci->getPort(id_CIN);
if (!cin_net || !cin_net->driver.cell) {
log_error("CIN disconnected at ALU:%s\n", ctx->nameOf(ci));
}
if (CellTypePort(cin_net->driver) != cell_alu_cout || cin_net->users.entries() > 1) {
if (ctx->debug) {
log_info("ALU head found %s. CIN net is %s\n", ctx->nameOf(ci), ctx->nameOf(cin_net));
}
// always prepend first ALU with carry generator block
// three cases: CIN == 0, CIN == 1 and CIN == ?
new_cells.push_back(std::move(alu_add_cin_block(ctx, ci, cin_net)));
CellInfo *cin_block_ci = new_cells.back().get();
// CIN block is the cluster root and is always placed in ALU0
// This is a possible place for further optimization
cin_block_ci->cluster = cin_block_ci->name;
cin_block_ci->constr_z = BelZ::ALU0_Z;
cin_block_ci->constr_abs_z = true;
int alu_chain_len = 1;
while (true) {
// add to cluster
if (ctx->debug) {
log_info("Add ALU to the chain (len:%d): %s\n", alu_chain_len, ctx->nameOf(ci));
}
cin_block_ci->constr_children.push_back(ci);
NPNR_ASSERT(ci->cluster == ClusterId());
ci->cluster = cin_block_ci->name;
ci->constr_abs_z = false;
ci->constr_x = alu_chain_len / 6;
ci->constr_y = 0;
ci->constr_z = alu_chain_len % 6;
// XXX mode 0 - ADD
if (ci->params.at(id_ALU_MODE).as_int64() == 0) {
ci->renamePort(id_I3, id_I2);
ci->renamePort(id_I0, id_I3);
ci->renamePort(id_I2, id_I0);
}
// XXX I2 is pin C which must be set to 1 for all ALU modes except MUL
// we use only mode 2 ADDSUB so create and connect this pin
ci->addInput(id_I2);
ci->connectPort(id_I2, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
++alu_chain_len;
// check for the chain end
NetInfo *cout_net = ci->getPort(id_COUT);
if (!cout_net || cout_net->users.empty()) {
break;
}
if (CellTypePort(*cout_net->users.begin()) != cell_alu_cin || cout_net->users.entries() > 1) {
new_cells.push_back(std::move(alu_add_cout_block(ctx, ci, cout_net)));
CellInfo *cout_block_ci = new_cells.back().get();
cin_block_ci->constr_children.push_back(cout_block_ci);
NPNR_ASSERT(cout_block_ci->cluster == ClusterId());
cout_block_ci->cluster = cin_block_ci->name;
cout_block_ci->constr_abs_z = false;
cout_block_ci->constr_x = alu_chain_len / 6;
cout_block_ci->constr_y = 0;
cout_block_ci->constr_z = alu_chain_len % 6;
if (ctx->debug) {
log_info("Add ALU carry out to the chain (len:%d): %s COUT-net: %s\n", alu_chain_len,
ctx->nameOf(cout_block_ci), ctx->nameOf(cout_net));
}
++alu_chain_len;
break;
}
ci = (*cout_net->users.begin()).cell;
}
// ALUs are always paired
if (alu_chain_len & 1) {
// create dummy cell
new_cells.push_back(std::move(alu_add_dummy_block(ctx, ci)));
CellInfo *dummy_block_ci = new_cells.back().get();
cin_block_ci->constr_children.push_back(dummy_block_ci);
NPNR_ASSERT(dummy_block_ci->cluster == ClusterId());
dummy_block_ci->cluster = cin_block_ci->name;
dummy_block_ci->constr_abs_z = false;
dummy_block_ci->constr_x = alu_chain_len / 6;
dummy_block_ci->constr_y = 0;
dummy_block_ci->constr_z = alu_chain_len % 6;
if (ctx->debug) {
log_info("Add ALU dummy cell to the chain (len:%d): %s\n", alu_chain_len,
ctx->nameOf(dummy_block_ci));
}
}
}
}
}
for (auto &ncell : new_cells) {
ctx->cells[ncell->name] = std::move(ncell);
}
}
// ===================================
// glue LUT and FF
// ===================================
void constrain_lutffs(void)
{
// Constrain directly connected LUTs and FFs together to use dedicated resources
const pool<CellTypePort> lut_outs{{id_LUT1, id_F}, {id_LUT2, id_F}, {id_LUT3, id_F}, {id_LUT4, id_F}};
const pool<CellTypePort> dff_ins{{id_DFF, id_D}, {id_DFFE, id_D}, {id_DFFN, id_D}, {id_DFFNE, id_D},
{id_DFFS, id_D}, {id_DFFSE, id_D}, {id_DFFNS, id_D}, {id_DFFNSE, id_D},
{id_DFFR, id_D}, {id_DFFRE, id_D}, {id_DFFNR, id_D}, {id_DFFNRE, id_D},
{id_DFFP, id_D}, {id_DFFPE, id_D}, {id_DFFNP, id_D}, {id_DFFNPE, id_D},
{id_DFFC, id_D}, {id_DFFCE, id_D}, {id_DFFNC, id_D}, {id_DFFNCE, id_D}};
int lutffs = h.constrain_cell_pairs(lut_outs, dff_ins, 1, 1);
log_info("Constrained %d LUTFF pairs.\n", lutffs);
}
// ===================================
// SSRAM cluster
// ===================================
std::unique_ptr<CellInfo> ssram_make_lut(Context *ctx, CellInfo *ci, int index)
{
IdString name_id = ctx->idf("%s_LUT%d", ci->name.c_str(ctx), index);
auto lut_ci = std::make_unique<CellInfo>(ctx, name_id, id_LUT4);
if (index) {
for (IdString port : {id_I0, id_I1, id_I2, id_I3}) {
lut_ci->addInput(port);
}
}
IdString init_name = ctx->idf("INIT_%d", index);
if (ci->params.count(init_name)) {
lut_ci->setParam(id_INIT, ci->params.at(init_name));
} else {
lut_ci->setParam(id_INIT, std::string("1111111111111111"));
}
return lut_ci;
}
void pack_ram16sdp4(void)
{
std::vector<std::unique_ptr<CellInfo>> new_cells;
log_info("Pack RAMs...\n");
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (ci->cluster != ClusterId()) {
continue;
}
if (is_ssram(ci)) {
// make cluster root
ci->cluster = ci->name;
ci->constr_abs_z = true;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = BelZ::RAMW_Z;
ci->addInput(id_CE);
ci->connectPort(id_CE, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
// RAD networks
NetInfo *rad[4];
for (int i = 0; i < 4; ++i) {
rad[i] = ci->getPort(ctx->idf("RAD[%d]", i));
}
// active LUTs
int luts_num = 4;
if (ci->type == id_RAM16SDP1) {
luts_num = 1;
} else {
if (ci->type == id_RAM16SDP2) {
luts_num = 2;
}
}
// make actual storage cells
for (int i = 0; i < 4; ++i) {
new_cells.push_back(std::move(ssram_make_lut(ctx, ci, i)));
CellInfo *lut_ci = new_cells.back().get();
ci->constr_children.push_back(lut_ci);
lut_ci->cluster = ci->name;
lut_ci->constr_abs_z = true;
lut_ci->constr_x = 0;
lut_ci->constr_y = 0;
lut_ci->constr_z = i * 2;
// inputs
// LUT0 is already connected when generating the base
if (i && i < luts_num) {
for (int j = 0; j < 4; ++j) {
lut_ci->connectPort(ctx->idf("I%d", j), rad[j]);
}
}
}
}
}
for (auto &ncell : new_cells) {
ctx->cells[ncell->name] = std::move(ncell);
}
}
// ===================================
// Block RAM
// ===================================
void bsram_rename_ports(CellInfo *ci, int bit_width, char const *from, char const *to, int offset = 0)
{
int num = (bit_width == 9 || bit_width == 18 || bit_width == 36) ? 36 : 32;
for (int i = 0, j = offset; i < num; ++i, ++j) {
if (((i + 1) % 9) == 0 && (bit_width == 16 || bit_width == 32)) {
++j;
}
ci->renamePort(ctx->idf(from, i), ctx->idf(to, offset ? j % 36 : j));
}
}
// We solve the BLKSEL problems that are observed on some chips by
// connecting the BLKSEL ports to constant networks so that this BSRAM will
// be selected, the actual selection is made by manipulating the Clock
// Enable pin using a LUT-based decoder.
void bsram_fix_blksel(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
// is BSRAM enabled
NetInfo *ce_net = ci->getPort(id_CE);
if (ce_net == nullptr || ce_net->name == ctx->id("$PACKER_GND")) {
return;
}
// port name, BLK_SEL parameter for this port
std::vector<std::pair<IdString, int>> dyn_blksel;
int blk_sel_parameter = ci->params.at(id_BLK_SEL).as_int64();
for (int i = 0; i < 3; ++i) {
IdString pin_name = ctx->idf("BLKSEL[%d]", i);
NetInfo *net = ci->getPort(pin_name);
if (net == nullptr || net->name == ctx->id("$PACKER_GND") || net->name == ctx->id("$PACKER_VCC")) {
continue;
}
dyn_blksel.push_back(std::make_pair(pin_name, (blk_sel_parameter >> i) & 1));
}
if (dyn_blksel.empty()) {
return;
}
if (ctx->verbose) {
log_info(" apply the BSRAM BLKSEL fix\n");
}
// Make a decoder
auto lut_cell = gwu.create_cell(gwu.create_aux_name(ci->name, 0, "_blksel_lut$"), id_LUT4);
CellInfo *lut = lut_cell.get();
lut->addInput(id_I3);
ci->movePortTo(id_CE, lut, id_I3);
lut->addOutput(id_F);
ci->connectPorts(id_CE, lut, id_F);
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
// Connected CE to I3 to make it easy to calculate the decoder
int init = 0x100; // CE == 0 --> F = 0
// CE == 1 --> F = decoder result
int idx = 0;
for (auto &port : dyn_blksel) {
IdString lut_input_name = ctx->idf("I%d", idx);
ci->movePortTo(port.first, lut, lut_input_name);
if (port.second) {
init <<= (1 << idx);
ci->connectPort(port.first, vcc_net);
} else {
ci->connectPort(port.first, vss_net);
}
++idx;
}
lut->setParam(id_INIT, init);
new_cells.push_back(std::move(lut_cell));
}
// Some chips cannot, for some reason, use internal BSRAM registers to
// implement READ_MODE=1'b1 (pipeline) with a word width other than 32 or
// 36 bits.
// We work around this by adding an external DFF and using BSRAM
// as READ_MODE=1'b0 (bypass).
void bsram_fix_outreg(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
int bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
if (bit_width == 32 || bit_width == 36) {
return;
}
int read_mode = ci->params.at(id_READ_MODE).as_int64();
if (read_mode == 0) {
return;
}
NetInfo *ce_net = ci->getPort(id_CE);
NetInfo *oce_net = ci->getPort(id_OCE);
if (ce_net == nullptr || oce_net == nullptr) {
return;
}
if (ce_net->name == ctx->id("$PACKER_GND") || oce_net->name == ctx->id("$PACKER_GND")) {
return;
}
if (ctx->verbose) {
log_info(" apply the BSRAM OUTREG fix\n");
}
ci->setParam(id_READ_MODE, 0);
ci->disconnectPort(id_OCE);
ci->connectPort(id_OCE, ce_net);
NetInfo *reset_net = ci->getPort(id_RESET);
bool sync_reset = ci->params.at(id_RESET_MODE).as_string() == std::string("SYNC");
IdString dff_type = sync_reset ? id_DFFRE : id_DFFCE;
IdString reset_port = sync_reset ? id_RESET : id_CLEAR;
for (int i = 0; i < bit_width; ++i) {
IdString do_name = ctx->idf("DO[%d]", i);
const NetInfo *net = ci->getPort(do_name);
if (net != nullptr) {
if (net->users.empty()) {
ci->disconnectPort(do_name);
continue;
}
// create DFF
auto cache_dff_cell = gwu.create_cell(gwu.create_aux_name(ci->name, i, "_cache_dff$"), dff_type);
CellInfo *cache_dff = cache_dff_cell.get();
cache_dff->addInput(id_CE);
cache_dff->connectPort(id_CE, oce_net);
cache_dff->addInput(reset_port);
cache_dff->connectPort(reset_port, reset_net);
ci->copyPortTo(id_CLK, cache_dff, id_CLK);
cache_dff->addOutput(id_Q);
ci->movePortTo(do_name, cache_dff, id_Q);
cache_dff->addInput(id_D);
ci->connectPorts(do_name, cache_dff, id_D);
new_cells.push_back(std::move(cache_dff_cell));
}
}
}
// Analysis of the images generated by the IDE showed that some components
// are being added at the input and output of the BSRAM. Two LUTs are
// added on the WRE and CE inputs (strangely, OCE is not affected), a pair
// of LUT-DFFs on each DO output, and one or two flipflops of different
// types in the auxiliary network.
// The semantics of these additions are unclear, but we can replicate this behavior.
// Fix BSRAM in single port mode.
void bsram_fix_sp(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
int bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
if (ctx->verbose) {
log_info(" apply the SP fix\n");
}
// create WRE LUT
auto wre_lut_cell = gwu.create_cell(gwu.create_aux_name(ci->name, 0, "_wre_lut$"), id_LUT4);
CellInfo *wre_lut = wre_lut_cell.get();
wre_lut->setParam(id_INIT, 0x8888);
ci->movePortTo(id_CE, wre_lut, id_I0);
ci->movePortTo(id_WRE, wre_lut, id_I1);
wre_lut->addOutput(id_F);
ci->connectPorts(id_WRE, wre_lut, id_F);
// create CE LUT
auto ce_lut_cell = gwu.create_cell(gwu.create_aux_name(ci->name, 0, "_ce_lut$"), id_LUT4);
CellInfo *ce_lut = ce_lut_cell.get();
ce_lut->setParam(id_INIT, 0xeeee);
wre_lut->copyPortTo(id_I0, ce_lut, id_I0);
wre_lut->copyPortTo(id_I1, ce_lut, id_I1);
ce_lut->addOutput(id_F);
ci->connectPorts(id_CE, ce_lut, id_F);
// create ce reg
int write_mode = ci->params.at(id_WRITE_MODE).as_int64();
IdString dff_type = write_mode ? id_DFF : id_DFFR;
auto ce_pre_dff_cell = gwu.create_cell(gwu.create_aux_name(ci->name, 0, "_ce_pre_dff$"), dff_type);
CellInfo *ce_pre_dff = ce_pre_dff_cell.get();
ce_pre_dff->addInput(id_D);
ce_lut->copyPortTo(id_I0, ce_pre_dff, id_D);
ci->copyPortTo(id_CLK, ce_pre_dff, id_CLK);
if (dff_type == id_DFFR) {
wre_lut->copyPortTo(id_I1, ce_pre_dff, id_RESET);
}
ce_pre_dff->addOutput(id_Q);
// new ce src with Q pin (used by output pins, not by BSRAM itself)
CellInfo *new_ce_net_src = ce_pre_dff;
// add delay register in pipeline mode
int read_mode = ci->params.at(id_READ_MODE).as_int64();
if (read_mode) {
auto ce_pipe_dff_cell = gwu.create_cell(gwu.create_aux_name(ci->name, 0, "_ce_pipe_dff$"), id_DFF);
new_cells.push_back(std::move(ce_pipe_dff_cell));
CellInfo *ce_pipe_dff = new_cells.back().get();
ce_pipe_dff->addInput(id_D);
new_ce_net_src->connectPorts(id_Q, ce_pipe_dff, id_D);
ci->copyPortTo(id_CLK, ce_pipe_dff, id_CLK);
ce_pipe_dff->addOutput(id_Q);
new_ce_net_src = ce_pipe_dff;
}
// used outputs of the BSRAM convert to cached
for (int i = 0; i < bit_width; ++i) {
IdString do_name = ctx->idf("DO[%d]", i);
const NetInfo *net = ci->getPort(do_name);
if (net != nullptr) {
if (net->users.empty()) {
ci->disconnectPort(do_name);
continue;
}
// create cache lut
auto cache_lut_cell = gwu.create_cell(gwu.create_aux_name(ci->name, i, "_cache_lut$"), id_LUT4);
CellInfo *cache_lut = cache_lut_cell.get();
cache_lut->setParam(id_INIT, 0xcaca);
cache_lut->addInput(id_I0);
cache_lut->addInput(id_I1);
cache_lut->addInput(id_I2);
ci->movePortTo(do_name, cache_lut, id_F);
ci->connectPorts(do_name, cache_lut, id_I1);
new_ce_net_src->connectPorts(id_Q, cache_lut, id_I2);
// create cache DFF
auto cache_dff_cell = gwu.create_cell(gwu.create_aux_name(ci->name, i, "_cache_dff$"), id_DFFE);
CellInfo *cache_dff = cache_dff_cell.get();
cache_dff->addInput(id_CE);
cache_dff->addInput(id_D);
ci->copyPortTo(id_CLK, cache_dff, id_CLK);
new_ce_net_src->connectPorts(id_Q, cache_dff, id_CE);
cache_lut->copyPortTo(id_I1, cache_dff, id_D);
cache_dff->addOutput(id_Q);
cache_dff->connectPorts(id_Q, cache_lut, id_I0);
new_cells.push_back(std::move(cache_lut_cell));
new_cells.push_back(std::move(cache_dff_cell));
}
}
new_cells.push_back(std::move(wre_lut_cell));
new_cells.push_back(std::move(ce_lut_cell));
new_cells.push_back(std::move(ce_pre_dff_cell));
}
void pack_ROM(CellInfo *ci)
{
int default_bw = 32;
// XXX use block 111
ci->setParam(ctx->id("BLK_SEL"), Property(7, 32));
if (ci->type == id_pROM) {
ci->setAttr(id_BSRAM_SUBTYPE, Property(""));
} else {
ci->setAttr(id_BSRAM_SUBTYPE, Property("X9"));
default_bw = 36;
}
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
for (int i = 0; i < 3; ++i) {
IdString port = ctx->idf("BLKSEL%d", i);
ci->addInput(port);
ci->connectPort(port, vcc_net);
port = ctx->idf("BLKSELB%d", i);
ci->addInput(port);
ci->connectPort(port, vcc_net);
}
ci->addInput(id_WRE);
ci->connectPort(id_WRE, vss_net);
ci->addInput(id_WREB);
ci->connectPort(id_WREB, vss_net);
if (!ci->params.count(id_BIT_WIDTH)) {
ci->setParam(id_BIT_WIDTH, Property(default_bw, 32));
}
int bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
if (bit_width == 32 || bit_width == 36) {
ci->copyPortTo(id_CLK, ci, id_CLKB);
ci->copyPortTo(id_CE, ci, id_CEB);
ci->copyPortTo(id_OCE, ci, id_OCEB);
ci->copyPortTo(id_RESET, ci, id_RESETB);
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("AD[%d]", i), ctx->idf("ADA%d", i));
ci->copyPortTo(ctx->idf("ADA%d", i), ci, ctx->idf("ADB%d", i));
}
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d");
} else {
// use port B
ci->renamePort(id_CLK, id_CLKB);
ci->renamePort(id_OCE, id_OCEB);
ci->renamePort(id_CE, id_CEB);
ci->renamePort(id_RESET, id_RESETB);
ci->addInput(id_CEA);
ci->connectPort(id_CEA, vss_net);
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("AD[%d]", i), ctx->idf("ADB%d", i));
}
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d", 18);
}
}
void pack_SDPB(CellInfo *ci)
{
int default_bw = 32;
if (ci->type == id_SDPB) {
ci->setAttr(id_BSRAM_SUBTYPE, Property(""));
} else {
ci->setAttr(id_BSRAM_SUBTYPE, Property("X9"));
default_bw = 36;
}
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("ADA[%d]", i), ctx->idf("ADA%d", i));
ci->renamePort(ctx->idf("ADB[%d]", i), ctx->idf("ADB%d", i));
}
for (int i = 0; i < 3; ++i) {
ci->renamePort(ctx->idf("BLKSELA[%d]", i), ctx->idf("BLKSELA%d", i));
ci->renamePort(ctx->idf("BLKSELB[%d]", i), ctx->idf("BLKSELB%d", i));
}
ci->copyPortTo(id_OCE, ci, id_OCEB);
// Port A
ci->addInput(id_WRE);
ci->connectPort(id_WRE, vcc_net);
if (!ci->params.count(id_BIT_WIDTH_0)) {
ci->setParam(id_BIT_WIDTH_0, Property(default_bw, 32));
}
int bit_width = ci->params.at(id_BIT_WIDTH_0).as_int64();
bsram_rename_ports(ci, bit_width, "DI[%d]", "DI%d");
// Port B
ci->addInput(id_WREB);
if (!ci->params.count(id_BIT_WIDTH_1)) {
ci->setParam(id_BIT_WIDTH_1, Property(default_bw, 32));
}
bit_width = ci->params.at(id_BIT_WIDTH_1).as_int64();
if (bit_width == 32 || bit_width == 36) {
ci->connectPort(id_WREB, vcc_net);
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d");
} else {
ci->connectPort(id_WREB, vss_net);
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d", 18);
}
}
void pack_DPB(CellInfo *ci)
{
int default_bw = 16;
if (ci->type == id_DPB) {
ci->setAttr(id_BSRAM_SUBTYPE, Property(""));
} else {
ci->setAttr(id_BSRAM_SUBTYPE, Property("X9"));
default_bw = 18;
}
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("ADA[%d]", i), ctx->idf("ADA%d", i));
ci->renamePort(ctx->idf("ADB[%d]", i), ctx->idf("ADB%d", i));
}
for (int i = 0; i < 3; ++i) {
ci->renamePort(ctx->idf("BLKSELA[%d]", i), ctx->idf("BLKSELA%d", i));
ci->renamePort(ctx->idf("BLKSELB[%d]", i), ctx->idf("BLKSELB%d", i));
}
if (!ci->params.count(id_BIT_WIDTH_0)) {
ci->setParam(id_BIT_WIDTH_0, Property(default_bw, 32));
}
int bit_width = ci->params.at(id_BIT_WIDTH_0).as_int64();
bsram_rename_ports(ci, bit_width, "DIA[%d]", "DIA%d");
bsram_rename_ports(ci, bit_width, "DOA[%d]", "DOA%d");
if (!ci->params.count(id_BIT_WIDTH_1)) {
ci->setParam(id_BIT_WIDTH_1, Property(default_bw, 32));
}
bit_width = ci->params.at(id_BIT_WIDTH_1).as_int64();
bsram_rename_ports(ci, bit_width, "DIB[%d]", "DIB%d");
bsram_rename_ports(ci, bit_width, "DOB[%d]", "DOB%d");
}
void divide_sp(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
int bw = ci->params.at(id_BIT_WIDTH).as_int64();
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
IdString cell_type = id_SP;
IdString name = ctx->idf("%s_AUX", ctx->nameOf(ci));
auto sp_cell = gwu.create_cell(name, cell_type);
CellInfo *sp = sp_cell.get();
ci->copyPortTo(id_CLK, sp, id_CLK);
ci->copyPortTo(id_OCE, sp, id_OCE);
ci->copyPortTo(id_CE, sp, id_CE);
ci->copyPortTo(id_RESET, sp, id_RESET);
ci->copyPortTo(id_WRE, sp, id_WRE);
// XXX Separate "byte enable" port
ci->movePortTo(ctx->id("AD[2]"), sp, ctx->id("AD0"));
ci->movePortTo(ctx->id("AD[3]"), sp, ctx->id("AD1"));
ci->connectPort(ctx->id("AD[2]"), vss_net);
ci->connectPort(ctx->id("AD[3]"), vss_net);
sp->addInput(ctx->id("AD2"));
sp->connectPort(ctx->id("AD2"), vss_net);
sp->addInput(ctx->id("AD3"));
sp->connectPort(ctx->id("AD3"), vss_net);
ci->disconnectPort(ctx->id("AD[4]"));
ci->connectPort(ctx->id("AD[4]"), vss_net);
sp->addInput(ctx->id("AD4"));
sp->connectPort(ctx->id("AD4"), vcc_net);
ci->copyPortBusTo(id_AD, 5, true, sp, id_AD, 5, false, 14 - 5 + 1);
sp->params = ci->params;
sp->setAttr(id_BSRAM_SUBTYPE, ci->attrs.at(id_BSRAM_SUBTYPE));
if (bw == 32) {
ci->setParam(id_BIT_WIDTH, Property(16, 32));
sp->setParam(id_BIT_WIDTH, Property(16, 32));
ci->movePortBusTo(id_DI, 16, true, sp, id_DI, 0, false, 16);
ci->movePortBusTo(id_DO, 16, true, sp, id_DO, 0, false, 16);
} else {
ci->setParam(id_BIT_WIDTH, Property(18, 32));
sp->setParam(id_BIT_WIDTH, Property(18, 32));
ci->movePortBusTo(id_DI, 18, true, sp, id_DI, 0, false, 18);
ci->movePortBusTo(id_DO, 18, true, sp, id_DO, 0, false, 18);
}
ci->copyPortBusTo(ctx->id("BLKSEL"), 0, true, sp, ctx->id("BLKSEL"), 0, false, 3);
new_cells.push_back(std::move(sp_cell));
}
void pack_SP(CellInfo *ci, std::vector<std::unique_ptr<CellInfo>> &new_cells)
{
int default_bw = 32;
if (ci->type == id_SP) {
ci->setAttr(id_BSRAM_SUBTYPE, Property(""));
} else {
ci->setAttr(id_BSRAM_SUBTYPE, Property("X9"));
default_bw = 36;
}
if (!ci->params.count(id_BIT_WIDTH)) {
ci->setParam(id_BIT_WIDTH, Property(default_bw, 32));
}
int bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
// XXX strange WRE<->CE relations
// Gowin IDE adds two LUTs to the WRE and CE signals. The logic is
// unclear, but without them effects occur. Perhaps this is a
// correction of some BSRAM defects.
if (gwu.need_SP_fix()) {
bsram_fix_sp(ci, new_cells);
}
// Some chips have faulty output registers
if (gwu.need_BSRAM_OUTREG_fix()) {
bsram_fix_outreg(ci, new_cells);
}
// Some chips have problems with BLKSEL ports
if (gwu.need_BLKSEL_fix()) {
bsram_fix_blksel(ci, new_cells);
}
// XXX UG285-1.3.6_E Gowin BSRAM & SSRAM User Guide:
// For GW1N-9/GW1NR-9/GW1NS-4 series, 32/36-bit SP/SPX9 is divided into two
// SP/SPX9s, which occupy two BSRAMs.
// So divide it here
if ((bit_width == 32 || bit_width == 36) && !gwu.has_SP32()) {
divide_sp(ci, new_cells);
bit_width = ci->params.at(id_BIT_WIDTH).as_int64();
}
NetInfo *vcc_net = ctx->nets.at(ctx->id("$PACKER_VCC")).get();
for (int i = 0; i < 3; ++i) {
ci->renamePort(ctx->idf("BLKSEL[%d]", i), ctx->idf("BLKSEL%d", i));
if (bit_width == 32 || bit_width == 36) {
ci->copyPortTo(ctx->idf("BLKSEL%d", i), ci, ctx->idf("BLKSELB%d", i));
}
}
for (int i = 0; i < 14; ++i) {
ci->renamePort(ctx->idf("AD[%d]", i), ctx->idf("AD%d", i));
if (bit_width == 32 || bit_width == 36) {
ci->copyPortTo(ctx->idf("AD%d", i), ci, ctx->idf("ADB%d", i));
}
}
if (bit_width == 32 || bit_width == 36) {
ci->copyPortTo(id_CLK, ci, id_CLKB);
ci->copyPortTo(id_OCE, ci, id_OCEB);
ci->copyPortTo(id_CE, ci, id_CEB);
ci->copyPortTo(id_RESET, ci, id_RESETB);
ci->copyPortTo(id_WRE, ci, id_WREB);
ci->disconnectPort(ctx->id("ADB4"));
ci->connectPort(ctx->id("ADB4"), vcc_net);
}
bsram_rename_ports(ci, bit_width, "DI[%d]", "DI%d");
bsram_rename_ports(ci, bit_width, "DO[%d]", "DO%d");
}
void pack_bsram(void)
{
std::vector<std::unique_ptr<CellInfo>> new_cells;
log_info("Pack BSRAMs...\n");
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (is_bsram(ci)) {
if (ctx->verbose) {
log_info(" pack %s\n", ci->type.c_str(ctx));
}
switch (ci->type.hash()) {
case ID_pROMX9: /* fallthrough */
case ID_pROM:
pack_ROM(ci);
ci->type = id_ROM;
break;
case ID_SDPX9B: /* fallthrough */
case ID_SDPB:
pack_SDPB(ci);
ci->type = id_SDP;
break;
case ID_DPX9B: /* fallthrough */
case ID_DPB:
pack_DPB(ci);
ci->type = id_DP;
break;
case ID_SPX9: /* fallthrough */
case ID_SP:
pack_SP(ci, new_cells);
ci->type = id_SP;
break;
default:
log_error("Unsupported BSRAM type '%s'\n", ci->type.c_str(ctx));
}
}
}
for (auto &cell : new_cells) {
ctx->cells[cell->name] = std::move(cell);
}
}
// ===================================
// DSP
// ===================================
void pass_net_type(CellInfo *ci, IdString port)
{
const NetInfo *net = ci->getPort(port);
std::string connected_net = "NET";
if (net != nullptr) {
if (net->name == ctx->id("$PACKER_VCC")) {
connected_net = "VCC";
} else if (net->name == ctx->id("$PACKER_GND")) {
connected_net = "GND";
}
ci->setAttr(ctx->idf("NET_%s", port.c_str(ctx)), connected_net);
} else {
ci->setAttr(ctx->idf("NET_%s", port.c_str(ctx)), std::string(""));
}
}
void pack_dsp(void)
{
std::vector<std::unique_ptr<CellInfo>> new_cells;
log_info("Pack DSP...\n");
std::vector<CellInfo *> dsp_heads;
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (is_dsp(ci)) {
if (ctx->verbose) {
log_info(" pack %s %s\n", ci->type.c_str(ctx), ctx->nameOf(ci));
}
switch (ci->type.hash()) {
case ID_PADD9: {
pass_net_type(ci, id_ASEL);
for (int i = 0; i < 9; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 9; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// ADD_SUB wire
IdString add_sub_net = ctx->id("$PACKER_GND");
if (ci->params.count(ctx->id("ADD_SUB"))) {
if (ci->params.at(ctx->id("ADD_SUB")).as_int64() == 1) {
add_sub_net = ctx->id("$PACKER_VCC");
}
}
ci->addInput(ctx->id("ADDSUB"));
ci->connectPort(ctx->id("ADDSUB"), ctx->nets.at(add_sub_net).get());
// PADD does not have outputs to the outside of the DSP -
// it is always connected to the inputs of the multiplier;
// to emulate a separate PADD primitive, we use
// multiplication by input C, equal to 1. We can switch the
// multiplier to multiplication mode by C in gowin_pack,
// but we will have to generate the value 1 at input C
// here.
ci->addInput(ctx->id("C0"));
ci->connectPort(ctx->id("C0"), ctx->nets.at(ctx->id("$PACKER_VCC")).get());
for (int i = 1; i < 9; ++i) {
ci->addInput(ctx->idf("C%d", i));
ci->connectPort(ctx->idf("C%d", i), ctx->nets.at(ctx->id("$PACKER_GND")).get());
}
// mark mult9x9 as used by making cluster
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_y = 0;
IdString mult_name = gwu.create_aux_name(ci->name);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = gwu.get_dsp_mult_from_padd(0);
// DSP head?
if (gwu.dsp_bus_src(ci, "SI", 9) == nullptr && gwu.dsp_bus_dst(ci, "SBO", 9) == nullptr) {
for (int i = 0; i < 9; ++i) {
ci->disconnectPort(ctx->idf("SI[%d]", i));
ci->disconnectPort(ctx->idf("SBO[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_PADD18: {
pass_net_type(ci, id_ASEL);
for (int i = 0; i < 18; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 18; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// ADD_SUB wire
IdString add_sub_net = ctx->id("$PACKER_GND");
if (ci->params.count(ctx->id("ADD_SUB"))) {
if (ci->params.at(ctx->id("ADD_SUB")).as_int64() == 1) {
add_sub_net = ctx->id("$PACKER_VCC");
}
}
ci->addInput(ctx->id("ADDSUB"));
ci->connectPort(ctx->id("ADDSUB"), ctx->nets.at(add_sub_net).get());
// XXX form C as 1
ci->addInput(ctx->id("C0"));
ci->connectPort(ctx->id("C0"), ctx->nets.at(ctx->id("$PACKER_VCC")).get());
for (int i = 1; i < 18; ++i) {
ci->addInput(ctx->idf("C%d", i));
ci->connectPort(ctx->idf("C%d", i), ctx->nets.at(ctx->id("$PACKER_GND")).get());
}
//
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = gwu.create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::PADD18_0_0_Z + i;
IdString mult_name = gwu.create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::PADD18_0_0_Z + i;
}
// DSP head?
if (gwu.dsp_bus_src(ci, "SI", 18) == nullptr && gwu.dsp_bus_dst(ci, "SBO", 18) == nullptr) {
for (int i = 0; i < 18; ++i) {
ci->disconnectPort(ctx->idf("SI[%d]", i));
ci->disconnectPort(ctx->idf("SBO[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULT9X9: {
pass_net_type(ci, id_ASEL);
pass_net_type(ci, id_BSEL);
for (int i = 0; i < 9; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 18; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9 as a child
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
IdString padd_name = gwu.create_aux_name(ci->name);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULT9X9_0_0_Z;
// DSP head?
if (gwu.dsp_bus_src(ci, "SIA", 9) == nullptr && gwu.dsp_bus_src(ci, "SIB", 9) == nullptr) {
for (int i = 0; i < 9; ++i) {
ci->disconnectPort(ctx->idf("SIA[%d]", i));
ci->disconnectPort(ctx->idf("SIB[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULT18X18: {
pass_net_type(ci, id_ASEL);
pass_net_type(ci, id_BSEL);
for (int i = 0; i < 18; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 36; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = gwu.create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULT18X18_0_0_Z + i;
IdString mult_name = gwu.create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::MULT18X18_0_0_Z + i;
}
// DSP head?
if (gwu.dsp_bus_src(ci, "SIA", 18) == nullptr && gwu.dsp_bus_src(ci, "SIB", 18) == nullptr) {
for (int i = 0; i < 18; ++i) {
ci->disconnectPort(ctx->idf("SIA[%d]", i));
ci->disconnectPort(ctx->idf("SIB[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_ALU54D: {
pass_net_type(ci, id_ACCLOAD);
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
// ACCLOAD - It looks like these wires are always connected to each other.
ci->cell_bel_pins.at(id_ACCLOAD).clear();
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ACCLOAD0);
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ACCLOAD1);
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 4; ++i) {
IdString padd_name = gwu.create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::ALU54D_0_Z + 4 * (i / 2) + (i % 2);
IdString mult_name = gwu.create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::ALU54D_0_Z + 4 * (i / 2) + (i % 2);
}
// DSP head?
if (gwu.dsp_bus_src(ci, "CASI", 55) == nullptr) {
for (int i = 0; i < 55; ++i) {
ci->disconnectPort(ctx->idf("CASI[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULTALU18X18: {
// Ports C and D conflict so we need to know the operating mode here.
if (ci->params.count(id_MULTALU18X18_MODE) == 0) {
ci->setParam(id_MULTALU18X18_MODE, 0);
}
int multalu18x18_mode = ci->params.at(id_MULTALU18X18_MODE).as_int64();
NPNR_ASSERT_MSG(multalu18x18_mode >= 0 && multalu18x18_mode <= 2,
"MULTALU18X18_MODE is not in {0, 1, 2}");
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
for (int i = 0; i < 54; ++i) {
if (i < 18) {
if (multalu18x18_mode != 2) {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d1", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d1", i));
} else {
ci->renamePort(ctx->idf("A[%d]", i), ctx->idf("A%d0", i));
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d0", i));
}
}
switch (multalu18x18_mode) {
case 0:
ci->renamePort(ctx->idf("C[%d]", i), ctx->idf("C%d", i));
ci->disconnectPort(ctx->idf("D[%d]", i));
break;
case 1:
ci->disconnectPort(ctx->idf("C[%d]", i));
ci->disconnectPort(ctx->idf("D[%d]", i));
break;
case 2:
ci->disconnectPort(ctx->idf("C[%d]", i));
ci->renamePort(ctx->idf("D[%d]", i), ctx->idf("D%d", i));
break;
default:
break;
}
}
if (multalu18x18_mode != 2) {
ci->renamePort(id_ASIGN, id_ASIGN1);
ci->renamePort(id_BSIGN, id_BSIGN1);
ci->addInput(id_ASIGN0);
ci->addInput(id_BSIGN0);
ci->connectPort(id_ASIGN0, vss_net);
ci->connectPort(id_BSIGN0, vss_net);
ci->disconnectPort(id_DSIGN);
} else { // BSIGN0 and DSIGN are the same wire
ci->renamePort(id_ASIGN, id_ASIGN0);
ci->addInput(id_ASIGN1);
ci->connectPort(id_ASIGN1, vss_net);
ci->renamePort(id_BSIGN, id_BSIGN0);
}
// ACCLOAD - It looks like these wires are always connected to each other.
pass_net_type(ci, id_ACCLOAD);
ci->cell_bel_pins.at(id_ACCLOAD).clear();
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ACCLOAD0);
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ACCLOAD1);
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = gwu.create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULTALU18X18_0_Z + i;
IdString mult_name = gwu.create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::MULTALU18X18_0_Z + i;
}
// DSP head?
if (gwu.dsp_bus_src(ci, "CASI", 55) == nullptr) {
for (int i = 0; i < 55; ++i) {
ci->disconnectPort(ctx->idf("CASI[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULTALU36X18: {
if (ci->params.count(id_MULTALU18X18_MODE) == 0) {
ci->setParam(id_MULTALU18X18_MODE, 0);
}
int multalu36x18_mode = ci->params.at(id_MULTALU36X18_MODE).as_int64();
NPNR_ASSERT_MSG(multalu36x18_mode >= 0 && multalu36x18_mode <= 2,
"MULTALU36X18_MODE is not in {0, 1, 2}");
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
for (int i = 0; i < 36; ++i) {
if (i < 18) {
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).clear();
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).push_back(ctx->idf("A%d0", i));
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).push_back(ctx->idf("A%d1", i));
}
ci->renamePort(ctx->idf("B[%d]", i), ctx->idf("B%d", i));
}
for (int i = 0; i < 54; ++i) {
switch (multalu36x18_mode) {
case 0:
ci->renamePort(ctx->idf("C[%d]", i), ctx->idf("C%d", i));
break;
case 1: /* fallthrough */
case 2:
ci->disconnectPort(ctx->idf("C[%d]", i));
break;
default:
break;
}
}
// both A have sign bit
// only MSB part of B has sign bit
ci->cell_bel_pins.at(id_ASIGN).clear();
ci->cell_bel_pins.at(id_ASIGN).push_back(id_ASIGN0);
ci->cell_bel_pins.at(id_ASIGN).push_back(id_ASIGN1);
ci->renamePort(id_BSIGN, id_BSIGN1);
ci->addInput(id_BSIGN0);
ci->connectPort(id_BSIGN0, vss_net);
pass_net_type(ci, id_ACCLOAD);
if (multalu36x18_mode == 1) {
if (ci->attrs.at(id_NET_ACCLOAD).as_string() == "GND" ||
ci->attrs.at(id_NET_ACCLOAD).as_string() == "VCC") {
ci->disconnectPort(id_ACCLOAD);
} else {
ci->addInput(id_ALUSEL4);
ci->addInput(id_ALUSEL6);
ci->cell_bel_pins.at(id_ACCLOAD).clear();
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ALUSEL4);
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ALUSEL6);
}
} else {
ci->disconnectPort(id_ACCLOAD);
}
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = gwu.create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULTALU36X18_0_Z + i;
IdString mult_name = gwu.create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::MULTALU36X18_0_Z + i;
}
// DSP head?
if (gwu.dsp_bus_src(ci, "CASI", 55) == nullptr) {
for (int i = 0; i < 55; ++i) {
ci->disconnectPort(ctx->idf("CASI[%d]", i));
}
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULTADDALU18X18: {
if (ci->params.count(id_MULTADDALU18X18_MODE) == 0) {
ci->setParam(id_MULTADDALU18X18_MODE, 0);
}
int multaddalu18x18_mode = ci->params.at(id_MULTADDALU18X18_MODE).as_int64();
NPNR_ASSERT_MSG(multaddalu18x18_mode >= 0 && multaddalu18x18_mode <= 2,
"MULTADDALU18X18_MODE is not in {0, 1, 2}");
for (int i = 0; i < 54; ++i) {
if (i < 18) {
ci->renamePort(ctx->idf("A0[%d]", i), ctx->idf("A%d0", i));
ci->renamePort(ctx->idf("B0[%d]", i), ctx->idf("B%d0", i));
ci->renamePort(ctx->idf("A1[%d]", i), ctx->idf("A%d1", i));
ci->renamePort(ctx->idf("B1[%d]", i), ctx->idf("B%d1", i));
}
if (multaddalu18x18_mode == 0) {
ci->renamePort(ctx->idf("C[%d]", i), ctx->idf("C%d", i));
} else {
ci->disconnectPort(ctx->idf("C[%d]", i));
}
}
for (int i = 0; i < 2; ++i) {
ci->renamePort(ctx->idf("ASIGN[%d]", i), ctx->idf("ASIGN%d", i));
ci->renamePort(ctx->idf("BSIGN[%d]", i), ctx->idf("BSIGN%d", i));
ci->renamePort(ctx->idf("ASEL[%d]", i), ctx->idf("ASEL%d", i));
ci->renamePort(ctx->idf("BSEL[%d]", i), ctx->idf("BSEL%d", i));
}
pass_net_type(ci, id_ASEL0);
pass_net_type(ci, id_ASEL1);
pass_net_type(ci, id_BSEL0);
pass_net_type(ci, id_BSEL1);
pass_net_type(ci, id_ACCLOAD);
if (multaddalu18x18_mode == 1) {
if (ci->attrs.at(id_NET_ACCLOAD).as_string() == "GND" ||
ci->attrs.at(id_NET_ACCLOAD).as_string() == "VCC") {
ci->disconnectPort(id_ACCLOAD);
} else {
ci->addInput(id_ALUSEL4);
ci->addInput(id_ALUSEL6);
ci->cell_bel_pins.at(id_ACCLOAD).clear();
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ALUSEL4);
ci->cell_bel_pins.at(id_ACCLOAD).push_back(id_ALUSEL6);
}
} else {
ci->disconnectPort(id_ACCLOAD);
}
for (int i = 0; i < 54; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 2; ++i) {
IdString padd_name = gwu.create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = BelZ::PADD9_0_0_Z - BelZ::MULTADDALU18X18_0_Z + i;
IdString mult_name = gwu.create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = BelZ::MULT9X9_0_0_Z - BelZ::MULTADDALU18X18_0_Z + i;
}
// DSP head? This primitive has the ability to form chains using both SO[AB] -> SI[AB] and
// CASO->CASI
bool cas_head = false;
if (gwu.dsp_bus_src(ci, "CASI", 55) == nullptr) {
for (int i = 0; i < 55; ++i) {
ci->disconnectPort(ctx->idf("CASI[%d]", i));
}
cas_head = true;
}
bool so_head = false;
if (gwu.dsp_bus_src(ci, "SIA", 18) == nullptr && gwu.dsp_bus_src(ci, "SIB", 18) == nullptr) {
for (int i = 0; i < 18; ++i) {
ci->disconnectPort(ctx->idf("SIA[%d]", i));
ci->disconnectPort(ctx->idf("SIB[%d]", i));
}
so_head = true;
}
if (cas_head && so_head) {
dsp_heads.push_back(ci);
if (ctx->verbose) {
log_info(" found a DSP head: %s\n", ctx->nameOf(ci));
}
}
} break;
case ID_MULT36X36: {
for (int i = 0; i < 36; ++i) {
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).clear();
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).push_back(ctx->idf("A%d0", i));
ci->cell_bel_pins.at(ctx->idf("A[%d]", i)).push_back(ctx->idf("A%d1", i));
ci->cell_bel_pins.at(ctx->idf("B[%d]", i)).clear();
ci->cell_bel_pins.at(ctx->idf("B[%d]", i)).push_back(ctx->idf("B%d0", i));
ci->cell_bel_pins.at(ctx->idf("B[%d]", i)).push_back(ctx->idf("B%d1", i));
}
// only MSB sign bits
ci->cell_bel_pins.at(id_ASIGN).clear();
ci->cell_bel_pins.at(id_ASIGN).push_back(id_ASIGN0);
ci->cell_bel_pins.at(id_ASIGN).push_back(id_ASIGN1);
ci->cell_bel_pins.at(id_BSIGN).clear();
ci->cell_bel_pins.at(id_BSIGN).push_back(id_BSIGN0);
ci->cell_bel_pins.at(id_BSIGN).push_back(id_BSIGN1);
// LSB sign bits = 0
NetInfo *vss_net = ctx->nets.at(ctx->id("$PACKER_GND")).get();
ci->addInput(id_ZERO_SIGN);
ci->cell_bel_pins[id_ZERO_SIGN].push_back(id_ZERO_ASIGN0);
ci->cell_bel_pins.at(id_ZERO_SIGN).push_back(id_ZERO_BSIGN0);
ci->cell_bel_pins.at(id_ZERO_SIGN).push_back(id_ZERO_BSIGN1);
ci->cell_bel_pins.at(id_ZERO_SIGN).push_back(id_ZERO_ASIGN1);
ci->connectPort(id_ZERO_SIGN, vss_net);
for (int i = 0; i < 72; ++i) {
ci->renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
// add padd9s and mult9s as a children
ci->cluster = ci->name;
ci->constr_abs_z = false;
ci->constr_x = 0;
ci->constr_y = 0;
ci->constr_z = 0;
ci->constr_children.clear();
for (int i = 0; i < 8; ++i) {
IdString padd_name = gwu.create_aux_name(ci->name, i * 2);
std::unique_ptr<CellInfo> padd_cell = gwu.create_cell(padd_name, id_DUMMY_CELL);
new_cells.push_back(std::move(padd_cell));
CellInfo *padd_ci = new_cells.back().get();
static int padd_z[] = {BelZ::PADD9_0_0_Z, BelZ::PADD9_0_2_Z, BelZ::PADD9_1_0_Z,
BelZ::PADD9_1_2_Z};
padd_ci->cluster = ci->name;
padd_ci->constr_abs_z = false;
padd_ci->constr_x = 0;
padd_ci->constr_y = 0;
padd_ci->constr_z = padd_z[i / 2] - BelZ::MULT36X36_Z + i % 2;
IdString mult_name = gwu.create_aux_name(ci->name, i * 2 + 1);
std::unique_ptr<CellInfo> mult_cell = gwu.create_cell(mult_name, id_DUMMY_CELL);
new_cells.push_back(std::move(mult_cell));
CellInfo *mult_ci = new_cells.back().get();
static int mult_z[] = {BelZ::MULT9X9_0_0_Z, BelZ::MULT9X9_0_2_Z, BelZ::MULT9X9_1_0_Z,
BelZ::MULT9X9_1_2_Z};
mult_ci->cluster = ci->name;
mult_ci->constr_abs_z = false;
mult_ci->constr_x = 0;
mult_ci->constr_y = 0;
mult_ci->constr_z = mult_z[i / 2] - BelZ::MULT36X36_Z + i % 2;
}
} break;
default:
log_error("Unsupported DSP type '%s'\n", ci->type.c_str(ctx));
}
}
}
// add new cells
for (auto &cell : new_cells) {
if (cell->cluster != ClusterId()) {
IdString cluster_root = cell->cluster;
IdString cell_name = cell->name;
ctx->cells[cell_name] = std::move(cell);
ctx->cells.at(cluster_root).get()->constr_children.push_back(ctx->cells.at(cell_name).get());
} else {
ctx->cells[cell->name] = std::move(cell);
}
}
// DSP chains
for (CellInfo *head : dsp_heads) {
if (ctx->verbose) {
log_info("Process a DSP head: %s\n", ctx->nameOf(head));
}
switch (head->type.hash()) {
case ID_PADD9: /* fallthrough */
case ID_PADD18: {
int wire_num = 9;
if (head->type == id_PADD18) {
wire_num = 18;
}
CellInfo *cur_dsp = head;
while (1) {
CellInfo *next_dsp_a = gwu.dsp_bus_dst(cur_dsp, "SO", wire_num);
CellInfo *next_dsp_b = gwu.dsp_bus_src(cur_dsp, "SBI", wire_num);
if (next_dsp_a != nullptr && next_dsp_b != nullptr && next_dsp_a != next_dsp_b) {
log_error("%s is the next for two different DSPs (%s and %s) in the chain.",
ctx->nameOf(cur_dsp), ctx->nameOf(next_dsp_a), ctx->nameOf(next_dsp_b));
}
if (next_dsp_a == nullptr && next_dsp_b == nullptr) {
// End of chain
cur_dsp->setAttr(id_LAST_IN_CHAIN, 1);
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SO[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SBI[%d]", i));
}
break;
}
next_dsp_a = next_dsp_a != nullptr ? next_dsp_a : next_dsp_b;
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SO[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SBI[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("SI[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("SBO[%d]", i));
}
cur_dsp = next_dsp_a;
if (ctx->verbose) {
log_info(" add %s to the chain.\n", ctx->nameOf(cur_dsp));
}
if (head->cluster == ClusterId()) {
head->cluster = head->name;
}
cur_dsp->cluster = head->name;
head->constr_children.push_back(cur_dsp);
for (auto child : cur_dsp->constr_children) {
child->cluster = head->name;
head->constr_children.push_back(child);
}
cur_dsp->constr_children.clear();
}
} break;
case ID_MULT9X9: /* fallthrough */
case ID_MULT18X18: {
int wire_num = 9;
if (head->type == id_MULT18X18) {
wire_num = 18;
}
CellInfo *cur_dsp = head;
while (1) {
CellInfo *next_dsp_a = gwu.dsp_bus_dst(cur_dsp, "SOA", wire_num);
CellInfo *next_dsp_b = gwu.dsp_bus_dst(cur_dsp, "SOB", wire_num);
if (next_dsp_a != nullptr && next_dsp_b != nullptr && next_dsp_a != next_dsp_b) {
log_error("%s is the source for two different DSPs (%s and %s) in the chain.",
ctx->nameOf(cur_dsp), ctx->nameOf(next_dsp_a), ctx->nameOf(next_dsp_b));
}
if (next_dsp_a == nullptr && next_dsp_b == nullptr) {
// End of chain
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SOA[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SOB[%d]", i));
}
break;
}
next_dsp_a = next_dsp_a != nullptr ? next_dsp_a : next_dsp_b;
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SOA[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SOB[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("SIA[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("SIB[%d]", i));
}
cur_dsp = next_dsp_a;
if (ctx->verbose) {
log_info(" add %s to the chain.\n", ctx->nameOf(cur_dsp));
}
if (head->cluster == ClusterId()) {
head->cluster = head->name;
}
cur_dsp->cluster = head->name;
head->constr_children.push_back(cur_dsp);
for (auto child : cur_dsp->constr_children) {
child->cluster = head->name;
head->constr_children.push_back(child);
}
cur_dsp->constr_children.clear();
}
} break;
case ID_MULTALU18X18: /* fallthrough */
case ID_MULTALU36X18: /* fallthrough */
case ID_ALU54D: {
int wire_num = 55;
CellInfo *cur_dsp = head;
while (1) {
CellInfo *next_dsp_a = gwu.dsp_bus_dst(cur_dsp, "CASO", wire_num);
if (next_dsp_a == nullptr) {
// End of chain
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("CASO[%d]", i));
}
break;
}
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("CASO[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("CASI[%d]", i));
}
cur_dsp->setAttr(id_USE_CASCADE_OUT, 1);
cur_dsp = next_dsp_a;
cur_dsp->setAttr(id_USE_CASCADE_IN, 1);
if (ctx->verbose) {
log_info(" add %s to the chain.\n", ctx->nameOf(cur_dsp));
}
if (head->cluster == ClusterId()) {
head->cluster = head->name;
}
cur_dsp->cluster = head->name;
head->constr_children.push_back(cur_dsp);
for (auto child : cur_dsp->constr_children) {
child->cluster = head->name;
head->constr_children.push_back(child);
}
cur_dsp->constr_children.clear();
}
} break;
case ID_MULTADDALU18X18: {
// This primitive has the ability to form chains using both SO[AB] -> SI[AB] and CASO->CASI
CellInfo *cur_dsp = head;
while (1) {
bool end_of_cas_chain = false;
int wire_num = 55;
CellInfo *next_dsp_a = gwu.dsp_bus_dst(cur_dsp, "CASO", wire_num);
if (next_dsp_a == nullptr) {
// End of CASO chain
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("CASO[%d]", i));
}
end_of_cas_chain = true;
} else {
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("CASO[%d]", i));
next_dsp_a->disconnectPort(ctx->idf("CASI[%d]", i));
}
}
bool end_of_so_chain = false;
wire_num = 18;
CellInfo *next_so_dsp_a = gwu.dsp_bus_dst(cur_dsp, "SOA", wire_num);
CellInfo *next_so_dsp_b = gwu.dsp_bus_dst(cur_dsp, "SOB", wire_num);
if (next_so_dsp_a != nullptr && next_so_dsp_b != nullptr && next_so_dsp_a != next_so_dsp_b) {
log_error("%s is the source for two different DSPs (%s and %s) in the chain.",
ctx->nameOf(cur_dsp), ctx->nameOf(next_so_dsp_a), ctx->nameOf(next_so_dsp_b));
}
if (next_so_dsp_a == nullptr && next_so_dsp_b == nullptr) {
// End of SO chain
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SOA[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SOB[%d]", i));
}
end_of_so_chain = true;
} else {
next_so_dsp_a = next_so_dsp_a != nullptr ? next_so_dsp_a : next_so_dsp_b;
for (int i = 0; i < wire_num; ++i) {
cur_dsp->disconnectPort(ctx->idf("SOA[%d]", i));
cur_dsp->disconnectPort(ctx->idf("SOB[%d]", i));
next_so_dsp_a->disconnectPort(ctx->idf("SIA[%d]", i));
next_so_dsp_a->disconnectPort(ctx->idf("SIB[%d]", i));
}
}
if (end_of_cas_chain && end_of_so_chain) {
break;
}
// to next
if (!end_of_cas_chain) {
cur_dsp->setAttr(id_USE_CASCADE_OUT, 1);
}
cur_dsp = next_dsp_a != nullptr ? next_dsp_a : next_so_dsp_a;
if (!end_of_cas_chain) {
cur_dsp->setAttr(id_USE_CASCADE_IN, 1);
}
if (ctx->verbose) {
log_info(" add %s to the chain. End of the SO chain:%d, end of the CAS chain:%d\n",
ctx->nameOf(cur_dsp), end_of_so_chain, end_of_cas_chain);
}
if (head->cluster == ClusterId()) {
head->cluster = head->name;
}
cur_dsp->cluster = head->name;
head->constr_children.push_back(cur_dsp);
for (auto child : cur_dsp->constr_children) {
child->cluster = head->name;
head->constr_children.push_back(child);
}
cur_dsp->constr_children.clear();
}
} break;
}
}
}
// ===================================
// Global set/reset
// ===================================
void pack_gsr(void)
{
log_info("Pack GSR...\n");
bool user_gsr = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_GSR) {
user_gsr = true;
break;
}
}
if (!user_gsr) {
// make default GSR
auto gsr_cell = std::make_unique<CellInfo>(ctx, id_GSR, id_GSR);
gsr_cell->addInput(id_GSRI);
gsr_cell->connectPort(id_GSRI, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
ctx->cells[gsr_cell->name] = std::move(gsr_cell);
}
if (ctx->verbose) {
if (user_gsr) {
log_info("Have user GSR\n");
} else {
log_info("No user GSR. Make one.\n");
}
}
}
// ===================================
// Global power regulator
// ===================================
void pack_bandgap(void)
{
if (!gwu.has_BANDGAP()) {
return;
}
log_info("Pack BANDGAP...\n");
bool user_bandgap = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_BANDGAP) {
user_bandgap = true;
break;
}
}
if (!user_bandgap) {
// make default BANDGAP
auto bandgap_cell = std::make_unique<CellInfo>(ctx, id_BANDGAP, id_BANDGAP);
bandgap_cell->addInput(id_BGEN);
bandgap_cell->connectPort(id_BGEN, ctx->nets.at(ctx->id("$PACKER_VCC")).get());
ctx->cells[bandgap_cell->name] = std::move(bandgap_cell);
}
if (ctx->verbose) {
if (user_bandgap) {
log_info("Have user BANDGAP\n");
} else {
log_info("No user BANDGAP. Make one.\n");
}
}
}
// ===================================
// Replace INV with LUT
// ===================================
void pack_inv(void)
{
log_info("Pack INV...\n");
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_INV) {
ci.type = id_LUT4;
ci.renamePort(id_O, id_F);
ci.renamePort(id_I, id_I3); // use D - it's simple for INIT
ci.params[id_INIT] = Property(0x00ff);
}
}
}
// ===================================
// PLL
// ===================================
void pack_pll(void)
{
log_info("Pack PLL...\n");
pool<BelId> used_pll_bels;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type.in(id_rPLL, id_PLLVR)) {
// pin renaming for compatibility
for (int i = 0; i < 6; ++i) {
ci.renamePort(ctx->idf("FBDSEL[%d]", i), ctx->idf("FBDSEL%d", i));
ci.renamePort(ctx->idf("IDSEL[%d]", i), ctx->idf("IDSEL%d", i));
ci.renamePort(ctx->idf("ODSEL[%d]", i), ctx->idf("ODSEL%d", i));
if (i < 4) {
ci.renamePort(ctx->idf("PSDA[%d]", i), ctx->idf("PSDA%d", i));
ci.renamePort(ctx->idf("DUTYDA[%d]", i), ctx->idf("DUTYDA%d", i));
ci.renamePort(ctx->idf("FDLY[%d]", i), ctx->idf("FDLY%d", i));
}
}
// If CLKIN is connected to a special pin, then it makes sense
// to try to place the PLL so that it uses a direct connection
// to this pin.
if (ci.bel == BelId()) {
NetInfo *ni = ci.getPort(id_CLKIN);
if (ni && ni->driver.cell && ni->driver.cell->bel != BelId()) {
BelId pll_bel = gwu.get_pll_bel(ni->driver.cell->bel, id_CLKIN_T);
if (ctx->debug) {
log_info("PLL clkin driver:%s at %s, PLL bel:%s\n", ctx->nameOf(ni->driver.cell),
ctx->getBelName(ni->driver.cell->bel).str(ctx).c_str(),
pll_bel != BelId() ? ctx->getBelName(pll_bel).str(ctx).c_str() : "NULL");
}
if (pll_bel != BelId() && used_pll_bels.count(pll_bel) == 0) {
used_pll_bels.insert(pll_bel);
ctx->bindBel(pll_bel, &ci, PlaceStrength::STRENGTH_LOCKED);
ci.disconnectPort(id_CLKIN);
ci.setParam(id_INSEL, std::string("CLKIN0"));
}
}
}
}
}
}
// ===================================
// HCLK -- CLKDIV and CLKDIV2 for now
// ===================================
void pack_hclk(void)
{
log_info("Pack HCLK cells...\n");
for (auto &cell : ctx->cells) {
auto ci = cell.second.get();
if (ci->type != id_CLKDIV)
continue;
NetInfo *hclk_in = ci->getPort(id_HCLKIN);
if (hclk_in) {
CellInfo *this_driver = hclk_in->driver.cell;
if (this_driver && this_driver->type == id_CLKDIV2) {
NetInfo *out = this_driver->getPort(id_CLKOUT);
if (out->users.entries() > 1) {
// We could do as the IDE does sometimes and replicate the CLKDIV2 cell
// as many times as we need. For now, we keep things simple
log_error("CLKDIV2 that drives CLKDIV should drive no other cells\n");
}
ci->cluster = ci->name;
this_driver->cluster = ci->name;
ci->constr_children.push_back(this_driver);
this_driver->constr_x = 0;
this_driver->constr_y = 0;
this_driver->constr_z = BelZ::CLKDIV2_0_Z - BelZ::CLKDIV_0_Z;
this_driver->constr_abs_z = false;
}
}
}
}
// =========================================
// Create entry points to the clock system
// =========================================
void pack_buffered_nets()
{
log_info("Pack buffered nets...\n");
for (auto &net : ctx->nets) {
auto &ni = *net.second;
if (ni.driver.cell == nullptr || ni.attrs.count(id_CLOCK) == 0 || ni.users.empty()) {
continue;
}
// make new BUF cell single user for the net driver
IdString buf_name = ctx->idf("%s_BUFG", net.first.c_str(ctx));
ctx->createCell(buf_name, id_BUFG);
CellInfo *buf_ci = ctx->cells.at(buf_name).get();
buf_ci->addInput(id_I);
// move driver
CellInfo *driver_cell = ni.driver.cell;
IdString driver_port = ni.driver.port;
driver_cell->movePortTo(driver_port, buf_ci, id_O);
buf_ci->connectPorts(id_I, driver_cell, driver_port);
}
}
// =========================================
// Create DQCEs
// =========================================
void pack_dqce()
{
log_info("Pack DQCE cells...\n");
// At the placement stage, nothing can be said definitively about DQCE,
// so we make user cells virtual but allocate all available bels by
// creating and placing cells - we will use some of them after, and
// delete the rest.
// We do this here because the decision about which physical DQCEs to
// use is made during routing, but some of the information (lets say
// mapping cell pins -> bel pins) is filled in before routing.
bool grab_bels = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_DQCE) {
ci.pseudo_cell = std::make_unique<RegionPlug>(Loc(0, 0, 0));
grab_bels = true;
}
}
if (grab_bels) {
for (int i = 0; i < 32; ++i) {
BelId dqce_bel = gwu.get_dqce_bel(ctx->idf("SPINE%d", i));
if (dqce_bel != BelId()) {
IdString dqce_name = ctx->idf("$PACKER_DQCE_SPINE%d", i);
CellInfo *dqce = ctx->createCell(dqce_name, id_DQCE);
dqce->addInput(id_CE);
ctx->bindBel(dqce_bel, dqce, STRENGTH_LOCKED);
}
}
}
}
// =========================================
// Create DCSs
// =========================================
void pack_dcs()
{
log_info("Pack DCS cells...\n");
// At the placement stage, nothing can be said definitively about DCS,
// so we make user cells virtual but allocate all available bels by
// creating and placing cells - we will use some of them after, and
// delete the rest.
// We do this here because the decision about which physical DCEs to
// use is made during routing, but some of the information (lets say
// mapping cell pins -> bel pins) is filled in before routing.
bool grab_bels = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_DCS) {
ci.pseudo_cell = std::make_unique<RegionPlug>(Loc(0, 0, 0));
grab_bels = true;
}
}
if (grab_bels) {
for (int i = 0; i < 8; ++i) {
BelId dcs_bel = gwu.get_dcs_bel(ctx->idf("P%d%dA", 1 + (i % 4), 6 + (i >> 2)));
if (dcs_bel != BelId()) {
IdString dcs_name = ctx->idf("$PACKER_DCS_SPINE%d", 8 * (i % 4) + 6 + (i >> 2));
CellInfo *dcs = ctx->createCell(dcs_name, id_DCS);
dcs->addInput(id_SELFORCE);
for (int j = 0; j < 4; ++j) {
dcs->addInput(ctx->idf("CLK%d", j));
dcs->addInput(ctx->idf("CLKSEL%d", j));
}
dcs->addOutput(id_CLKOUT);
ctx->bindBel(dcs_bel, dcs, STRENGTH_LOCKED);
}
}
}
}
// =========================================
// Create DHCENs
// =========================================
void pack_dhcens()
{
// Allocate all available dhcen bels; we will find out which of them
// will actually be used during the routing process.
bool grab_bels = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (ci.type == id_DHCEN) {
ci.pseudo_cell = std::make_unique<RegionPlug>(Loc(0, 0, 0));
grab_bels = true;
}
}
if (grab_bels) {
// sane message if new primitives are used with old bases
auto buckets = ctx->getBelBuckets();
NPNR_ASSERT_MSG(std::find(buckets.begin(), buckets.end(), id_DHCEN) != buckets.end(),
"There are no DHCEN bels to use.");
int i = 0;
for (auto &bel : ctx->getBelsInBucket(ctx->getBelBucketForCellType(id_DHCEN))) {
IdString dhcen_name = ctx->idf("$PACKER_DHCEN_%d", ++i);
CellInfo *dhcen = ctx->createCell(dhcen_name, id_DHCEN);
dhcen->addInput(id_CE);
ctx->bindBel(bel, dhcen, STRENGTH_LOCKED);
}
}
}
// =========================================
// Enable UserFlash
// =========================================
void pack_userflash(bool have_emcu)
{
log_info("Pack UserFlash cells...\n");
std::vector<std::unique_ptr<CellInfo>> new_cells;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (!is_userflash(&ci)) {
continue;
}
if (ci.type.in(id_FLASH96K, id_FLASH256K, id_FLASH608K)) {
// enable
ci.addInput(id_INUSEN);
ci.connectPort(id_INUSEN, ctx->nets.at(ctx->id("$PACKER_GND")).get());
}
// rename ports
for (int i = 0; i < 32; ++i) {
ci.renamePort(ctx->idf("DIN[%d]", i), ctx->idf("DIN%d", i));
ci.renamePort(ctx->idf("DOUT[%d]", i), ctx->idf("DOUT%d", i));
}
if (ci.type.in(id_FLASH96K)) {
for (int i = 0; i < 6; ++i) {
ci.renamePort(ctx->idf("RA[%d]", i), ctx->idf("RA%d", i));
ci.renamePort(ctx->idf("CA[%d]", i), ctx->idf("CA%d", i));
ci.renamePort(ctx->idf("PA[%d]", i), ctx->idf("PA%d", i));
}
for (int i = 0; i < 2; ++i) {
ci.renamePort(ctx->idf("MODE[%d]", i), ctx->idf("MODE%d", i));
ci.renamePort(ctx->idf("SEQ[%d]", i), ctx->idf("SEQ%d", i));
ci.renamePort(ctx->idf("RMODE[%d]", i), ctx->idf("RMODE%d", i));
ci.renamePort(ctx->idf("WMODE[%d]", i), ctx->idf("WMODE%d", i));
ci.renamePort(ctx->idf("RBYTESEL[%d]", i), ctx->idf("RBYTESEL%d", i));
ci.renamePort(ctx->idf("WBYTESEL[%d]", i), ctx->idf("WBYTESEL%d", i));
}
} else {
for (int i = 0; i < 9; ++i) {
ci.renamePort(ctx->idf("XADR[%d]", i), ctx->idf("XADR%d", i));
}
for (int i = 0; i < 6; ++i) {
ci.renamePort(ctx->idf("YADR[%d]", i), ctx->idf("YADR%d", i));
}
}
if (have_emcu) {
continue;
}
// add invertor
int lut_idx = 0;
auto add_inv = [&](IdString port, PortType port_type) {
if (!gwu.port_used(&ci, port)) {
return;
}
std::unique_ptr<CellInfo> lut_cell =
gwu.create_cell(gwu.create_aux_name(ci.name, lut_idx, "_lut$"), id_LUT4);
new_cells.push_back(std::move(lut_cell));
CellInfo *lut = new_cells.back().get();
lut->addInput(id_I0);
lut->addOutput(id_F);
lut->setParam(id_INIT, 0x5555);
++lut_idx;
if (port_type == PORT_IN) {
ci.movePortTo(port, lut, id_I0);
lut->connectPorts(id_F, &ci, port);
} else {
ci.movePortTo(port, lut, id_F);
ci.connectPorts(port, lut, id_I0);
}
};
for (auto pin : ci.ports) {
if (pin.second.type == PORT_OUT) {
add_inv(pin.first, PORT_OUT);
} else {
if (pin.first == id_INUSEN) {
continue;
}
if (ci.type == id_FLASH608K && pin.first.in(id_XADR0, id_XADR1, id_XADR2, id_XADR3, id_XADR4,
id_XADR5, id_XADR6, id_XADR7, id_XADR8)) {
continue;
}
add_inv(pin.first, PORT_IN);
}
}
}
for (auto &ncell : new_cells) {
ctx->cells[ncell->name] = std::move(ncell);
}
}
// =========================================
// Create EMCU
// =========================================
void pack_emcu_and_flash()
{
log_info("Pack EMCU and UserFlash cells...\n");
std::vector<std::unique_ptr<CellInfo>> new_cells;
bool have_emcu = false;
for (auto &cell : ctx->cells) {
auto &ci = *cell.second;
if (!is_emcu(&ci)) {
continue;
}
have_emcu = true;
// rename ports
for (int i = 0; i < 2; ++i) {
ci.renamePort(ctx->idf("TARGFLASH0HTRANS[%d]", i), ctx->idf("TARGFLASH0HTRANS%d", i));
ci.renamePort(ctx->idf("TARGEXP0HTRANS[%d]", i), ctx->idf("TARGEXP0HTRANS%d", i));
ci.renamePort(ctx->idf("TARGEXP0MEMATTR[%d]", i), ctx->idf("TARGEXP0MEMATTR%d", i));
// ins
ci.renamePort(ctx->idf("INITEXP0HTRANS[%d]", i), ctx->idf("INITEXP0HTRANS%d", i));
ci.renamePort(ctx->idf("INITEXP0MEMATTR[%d]", i), ctx->idf("INITEXP0MEMATTR%d", i));
}
for (int i = 0; i < 3; ++i) {
ci.renamePort(ctx->idf("TARGEXP0HSIZE[%d]", i), ctx->idf("TARGEXP0HSIZE%d", i));
ci.renamePort(ctx->idf("TARGEXP0HBURST[%d]", i), ctx->idf("TARGEXP0HBURST%d", i));
ci.renamePort(ctx->idf("APBTARGEXP2PPROT[%d]", i), ctx->idf("APBTARGEXP2PPROT%d", i));
// ins
ci.renamePort(ctx->idf("TARGEXP0HRUSER[%d]", i), ctx->idf("TARGEXP0HRUSER%d", i));
ci.renamePort(ctx->idf("INITEXP0HSIZE[%d]", i), ctx->idf("INITEXP0HSIZE%d", i));
ci.renamePort(ctx->idf("INITEXP0HBURST[%d]", i), ctx->idf("INITEXP0HBURST%d", i));
}
for (int i = 0; i < 4; ++i) {
ci.renamePort(ctx->idf("SRAM0WREN[%d]", i), ctx->idf("SRAM0WREN%d", i));
ci.renamePort(ctx->idf("TARGEXP0HPROT[%d]", i), ctx->idf("TARGEXP0HPROT%d", i));
ci.renamePort(ctx->idf("TARGEXP0HMASTER[%d]", i), ctx->idf("TARGEXP0HMASTER%d", i));
ci.renamePort(ctx->idf("APBTARGEXP2PSTRB[%d]", i), ctx->idf("APBTARGEXP2PSTRB%d", i));
ci.renamePort(ctx->idf("TPIUTRACEDATA[%d]", i), ctx->idf("TPIUTRACEDATA%d", i));
// ins
ci.renamePort(ctx->idf("INITEXP0HPROT[%d]", i), ctx->idf("INITEXP0HPROT%d", i));
ci.renamePort(ctx->idf("INITEXP0HMASTER[%d]", i), ctx->idf("INITEXP0HMASTER%d", i));
ci.renamePort(ctx->idf("INITEXP0HWUSER[%d]", i), ctx->idf("INITEXP0HWUSER%d", i));
}
for (int i = 0; i < 16; ++i) {
if (i < 13) {
if (i < 12) {
if (i < 5) {
ci.renamePort(ctx->idf("GPINT[%d]", i), ctx->idf("GPINT%d", i));
}
ci.renamePort(ctx->idf("APBTARGEXP2PADDR[%d]", i), ctx->idf("APBTARGEXP2PADDR%d", i));
}
ci.renamePort(ctx->idf("SRAM0ADDR[%d]", i), ctx->idf("SRAM0ADDR%d", i));
}
ci.renamePort(ctx->idf("IOEXPOUTPUTO[%d]", i), ctx->idf("IOEXPOUTPUTO%d", i));
ci.renamePort(ctx->idf("IOEXPOUTPUTENO[%d]", i), ctx->idf("IOEXPOUTPUTENO%d", i));
// ins
ci.renamePort(ctx->idf("IOEXPINPUTI[%d]", i), ctx->idf("IOEXPINPUTI%d", i));
}
for (int i = 0; i < 32; ++i) {
if (i < 29) {
ci.renamePort(ctx->idf("TARGFLASH0HADDR[%d]", i), ctx->idf("TARGFLASH0HADDR%d", i));
}
ci.renamePort(ctx->idf("SRAM0WDATA[%d]", i), ctx->idf("SRAM0WDATA%d", i));
ci.renamePort(ctx->idf("TARGEXP0HADDR[%d]", i), ctx->idf("TARGEXP0HADDR%d", i));
ci.renamePort(ctx->idf("TARGEXP0HWDATA[%d]", i), ctx->idf("TARGEXP0HWDATA%d", i));
ci.renamePort(ctx->idf("INITEXP0HRDATA[%d]", i), ctx->idf("INITEXP0HRDATA%d", i));
ci.renamePort(ctx->idf("APBTARGEXP2PWDATA[%d]", i), ctx->idf("APBTARGEXP2PWDATA%d", i));
// ins
ci.renamePort(ctx->idf("SRAM0RDATA[%d]", i), ctx->idf("SRAM0RDATA%d", i));
ci.renamePort(ctx->idf("TARGEXP0HRDATA[%d]", i), ctx->idf("TARGEXP0HRDATA%d", i));
ci.renamePort(ctx->idf("INITEXP0HADDR[%d]", i), ctx->idf("INITEXP0HADDR%d", i));
ci.renamePort(ctx->idf("INITEXP0HWDATA[%d]", i), ctx->idf("INITEXP0HWDATA%d", i));
ci.renamePort(ctx->idf("APBTARGEXP2PRDATA[%d]", i), ctx->idf("APBTARGEXP2PRDATA%d", i));
}
// The flash data bus is connected directly to the CPU so just disconnect these networks
// also other non-switched networks
ci.disconnectPort(ctx->id("DAPNTDOEN"));
ci.disconnectPort(ctx->id("DAPNTRST"));
ci.disconnectPort(ctx->id("DAPTDO"));
ci.disconnectPort(ctx->id("DAPTDI"));
ci.disconnectPort(ctx->id("TARGFLASH0HREADYMUX"));
ci.disconnectPort(ctx->id("TARGEXP0HAUSER"));
ci.disconnectPort(ctx->id("TARGFLASH0EXRESP"));
ci.disconnectPort(ctx->id("PORESETN"));
ci.disconnectPort(ctx->id("SYSRESETN"));
ci.disconnectPort(ctx->id("DAPSWDITMS"));
ci.disconnectPort(ctx->id("DAPSWCLKTCK"));
ci.disconnectPort(ctx->id("TPIUTRACECLK"));
for (int i = 0; i < 32; ++i) {
if (i < 4) {
if (i < 3) {
ci.disconnectPort(ctx->idf("TARGFLASH0HSIZE[%d]", i));
ci.disconnectPort(ctx->idf("TARGFLASH0HBURST[%d]", i));
ci.disconnectPort(ctx->idf("TARGFLASH0HRUSER[%d]", i));
ci.disconnectPort(ctx->idf("INITEXP0HRUSER[%d]", i));
}
// ci.disconnectPort(ctx->idf("TARGFLASH0HPROT[%d]", i));
ci.disconnectPort(ctx->idf("TARGEXP0HWUSER[%d]", i));
ci.disconnectPort(ctx->idf("MTXREMAP[%d]", i));
}
// ins
ci.disconnectPort(ctx->idf("TARGFLASH0HRDATA[%d]", i));
}
}
pack_userflash(have_emcu);
}
void run(void)
{
handle_constants();
pack_iobs();
ctx->check();
pack_diff_iobs();
ctx->check();
pack_iem();
ctx->check();
pack_iologic();
ctx->check();
pack_io16();
ctx->check();
pack_gsr();
ctx->check();
pack_hclk();
ctx->check();
pack_bandgap();
ctx->check();
pack_wideluts();
ctx->check();
pack_alus();
ctx->check();
constrain_lutffs();
ctx->check();
pack_pll();
ctx->check();
pack_ram16sdp4();
ctx->check();
pack_bsram();
ctx->check();
pack_dsp();
ctx->check();
pack_inv();
ctx->check();
pack_buffered_nets();
ctx->check();
pack_emcu_and_flash();
ctx->check();
pack_dhcens();
ctx->check();
pack_dqce();
ctx->check();
pack_dcs();
ctx->check();
ctx->fixupHierarchy();
ctx->check();
}
};
} // namespace
void gowin_pack(Context *ctx)
{
GowinPacker packer(ctx);
packer.run();
}
NEXTPNR_NAMESPACE_END