nextpnr/fpga_interchange/arch_pack_clusters.cc

1077 lines
38 KiB
C++
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 Symbiflow Authors
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "arch.h"
#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include <boost/algorithm/string.hpp>
#include <queue>
NEXTPNR_NAMESPACE_BEGIN
namespace {
enum ClusterWireNodeState
{
IN_SINK_SITE = 0,
IN_ROUTING = 1,
IN_SOURCE_SITE = 2,
ONLY_IN_SOURCE_SITE = 3
};
enum ExpansionDirection
{
CLUSTER_UPHILL_DIR = 0,
2021-08-30 17:12:49 +08:00
CLUSTER_DOWNHILL_DIR = 1,
CLUSTER_BOTH_DIR = 2
};
struct ClusterWireNode
{
WireId wire;
ClusterWireNodeState state;
int depth;
bool only_down;
};
} // namespace
static void handle_expansion_node(const Context *ctx, WireId prev_wire, PipId pip, ClusterWireNode curr_node,
std::vector<ClusterWireNode> &nodes_to_expand, pool<BelId> &bels,
ExpansionDirection direction)
{
WireId wire;
if (direction == CLUSTER_UPHILL_DIR)
wire = ctx->getPipSrcWire(pip);
else
wire = ctx->getPipDstWire(pip);
if (wire == WireId())
return;
ClusterWireNode next_node;
next_node.wire = wire;
next_node.depth = curr_node.depth;
if (next_node.depth >= 2)
return;
auto const &wire_data = ctx->wire_info(wire);
bool expand_node = true;
if (ctx->is_site_port(pip)) {
switch (curr_node.state) {
case ONLY_IN_SOURCE_SITE:
expand_node = false;
break;
case IN_SOURCE_SITE:
NPNR_ASSERT(wire_data.site == -1);
next_node.state = IN_ROUTING;
break;
case IN_ROUTING:
NPNR_ASSERT(wire_data.site != -1);
next_node.state = IN_SINK_SITE;
break;
case IN_SINK_SITE:
expand_node = false;
break;
default:
// Unreachable!!!
NPNR_ASSERT(false);
}
} else {
if (curr_node.state == IN_ROUTING)
next_node.depth++;
next_node.state = curr_node.state;
}
if (expand_node)
nodes_to_expand.push_back(next_node);
else
return;
if (next_node.state == IN_SINK_SITE || next_node.state == ONLY_IN_SOURCE_SITE) {
for (BelPin bel_pin : ctx->getWireBelPins(wire)) {
BelId bel = bel_pin.bel;
auto const &bel_data = bel_info(ctx->chip_info, bel);
if (bels.count(bel))
continue;
if (bel_data.category != BEL_CATEGORY_LOGIC)
return;
if (bel_data.synthetic)
return;
if (direction == CLUSTER_UPHILL_DIR) {
// Check that the BEL is indeed the one reached by backward exploration,
// by checking the previous visited wire.
for (IdString check_pin : ctx->getBelPins(bel)) {
if (prev_wire == ctx->getBelPinWire(bel, check_pin)) {
bels.insert(bel);
break;
}
}
} else {
bels.insert(bel);
}
}
}
return;
}
static pool<BelId> find_cluster_bels(const Context *ctx, WireId wire, ExpansionDirection direction,
bool out_of_site_expansion = false)
{
std::vector<ClusterWireNode> nodes_to_expand;
pool<BelId> bels;
const auto &wire_data = ctx->wire_info(wire);
NPNR_ASSERT(wire_data.site != -1);
ClusterWireNode wire_node;
wire_node.wire = wire;
wire_node.state = IN_SOURCE_SITE;
if (!out_of_site_expansion)
wire_node.state = ONLY_IN_SOURCE_SITE;
wire_node.depth = 0;
nodes_to_expand.push_back(wire_node);
while (!nodes_to_expand.empty()) {
ClusterWireNode node_to_expand = nodes_to_expand.back();
WireId prev_wire = node_to_expand.wire;
nodes_to_expand.pop_back();
if (direction == CLUSTER_DOWNHILL_DIR) {
for (PipId pip : ctx->getPipsDownhill(node_to_expand.wire)) {
if (ctx->is_pip_synthetic(pip))
continue;
handle_expansion_node(ctx, prev_wire, pip, node_to_expand, nodes_to_expand, bels, direction);
}
} else {
NPNR_ASSERT(direction == CLUSTER_UPHILL_DIR);
for (PipId pip : ctx->getPipsUphill(node_to_expand.wire)) {
if (ctx->is_pip_synthetic(pip))
continue;
handle_expansion_node(ctx, prev_wire, pip, node_to_expand, nodes_to_expand, bels, direction);
}
}
}
return bels;
}
CellInfo *Arch::getClusterRootCell(ClusterId cluster) const
{
NPNR_ASSERT(cluster != ClusterId());
return clusters.at(cluster).root;
}
bool Arch::normal_cluster_placement(const Context *ctx, const Cluster &packed_cluster, const ClusterPOD &cluster_data,
CellInfo *root_cell, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
BelId next_bel;
// Place cluster
for (CellInfo *cluster_node : packed_cluster.cluster_nodes) {
if (cluster_node == root_cell) {
next_bel = root_bel;
} else {
// Find next chained cluster node
IdString next_bel_pin(cluster_data.chainable_ports[0].bel_source);
WireId next_bel_pin_wire = ctx->getBelPinWire(next_bel, next_bel_pin);
next_bel = BelId();
for (BelId bel :
find_cluster_bels(ctx, next_bel_pin_wire, CLUSTER_DOWNHILL_DIR, /*out_of_site_expansion=*/true)) {
if (ctx->isValidBelForCellType(cluster_node->type, bel)) {
next_bel = bel;
break;
}
}
if (next_bel == BelId())
return false;
}
// Build a cell to bell mapping required to find BELs connected to the cluster ports.
dict<IdString, std::vector<IdString>> cell_bel_pins;
int32_t mapping = bel_info(chip_info, next_bel).pin_map[get_cell_type_index(cluster_node->type)];
NPNR_ASSERT(mapping >= 0);
const CellBelMapPOD &cell_pin_map = chip_info->cell_map->cell_bel_map[mapping];
for (const auto &pin_map : cell_pin_map.common_pins) {
IdString cell_pin(pin_map.cell_pin);
IdString bel_pin(pin_map.bel_pin);
cell_bel_pins[cell_pin].push_back(bel_pin);
}
placement.emplace_back(cluster_node, next_bel);
// Place cluster node cells at the same site
for (auto port_cell : packed_cluster.cluster_node_cells.at(cluster_node->name)) {
bool placed_cell = false;
IdString port = port_cell.first;
CellInfo *cell = port_cell.second;
NPNR_ASSERT(cell_bel_pins.count(port));
PortType port_type = cluster_node->ports.at(port).type;
if (port_type == PORT_INOUT)
continue;
for (auto &bel_pin : cell_bel_pins.at(port)) {
WireId bel_pin_wire = ctx->getBelPinWire(next_bel, bel_pin);
ExpansionDirection direction = port_type == PORT_IN ? CLUSTER_UPHILL_DIR : CLUSTER_DOWNHILL_DIR;
pool<BelId> cluster_bels =
find_cluster_bels(ctx, bel_pin_wire, direction, (bool)cluster_data.out_of_site_clusters);
if (cluster_bels.size() == 0)
continue;
for (BelId bel : cluster_bels) {
if (ctx->isValidBelForCellType(cell->type, bel)) {
placement.emplace_back(cell, bel);
placed_cell = true;
break;
}
}
if (placed_cell)
break;
}
if (!placed_cell)
return false;
}
}
return true;
}
static dict<int32_t, dict<IdString, BelId>> tileAndBelNameToBelIdCache;
BelId check_and_return(int32_t tile, IdString name)
{
if (tileAndBelNameToBelIdCache.count(tile) && tileAndBelNameToBelIdCache[tile].count(name))
return tileAndBelNameToBelIdCache[tile][name];
else
return BelId();
}
void add_to_cache(int32_t tile, IdString name, BelId t) { tileAndBelNameToBelIdCache[tile][name] = t; }
bool find_site_idx(const Context *ctx, const ClusterPOD &cluster, BelId root_bel, uint32_t &idx)
{
bool found = false;
const auto &site_inst = ctx->get_site_inst(root_bel);
IdString site_type(site_inst.site_type);
if (ctx->debug) {
log_info("%s\n", ctx->get_site_name(root_bel));
log_info("Root_bel site_type: %s\n", site_type.c_str(ctx));
log_info("Allowed site_types:\n");
}
for (const auto &site : cluster.physical_placements) {
IdString name(site.site_type);
if (ctx->debug)
log_info("\t%s\n", name.c_str(ctx));
if (name == site_type) {
found = true;
break;
}
idx++;
}
return found;
}
bool find_placement_idx(const Context *ctx, const ClusterPOD &cluster, BelId root_bel, uint32_t idx,
uint32_t &placement_idx)
{
bool found = false;
const auto &bel_data = bel_info(ctx->chip_info, root_bel);
IdString root_bel_name(bel_data.name);
if (ctx->debug) {
log_info("Root_bel name: %s\n", root_bel_name.c_str(ctx));
log_info("Allowed root_bels:\n");
}
for (const auto &place : cluster.physical_placements[idx].places) {
for (const auto bel : place.bels) {
IdString name(bel);
if (ctx->debug)
log_info("\t%s\n", name.c_str(ctx));
if (name == root_bel_name) {
found = true;
break;
}
}
if (found)
break;
placement_idx++;
}
return found;
}
dict<uint32_t, BelId> idx_bel_mapping(const Context *ctx, BelId root_bel, const ClusterPOD &cluster, uint32_t idx,
uint32_t placement_idx)
{
dict<uint32_t, BelId> idx_bel_map;
auto root_bel_full_name = ctx->getBelName(root_bel);
uint32_t t_idx = 0;
if (ctx->debug)
log_info("Used bels:\n");
for (const auto &bel : cluster.physical_placements[idx].places[placement_idx].bels) {
IdString s_bel(bel);
BelId t = check_and_return(root_bel.tile, s_bel);
IdStringList cpy(root_bel_full_name.size());
if (t == BelId()) {
for (uint32_t j = 0; j < root_bel_full_name.size(); j++)
cpy.ids[j] = root_bel_full_name[j];
cpy.ids[root_bel_full_name.size() - 1] = s_bel;
t = ctx->getBelByName(cpy);
add_to_cache(root_bel.tile, s_bel, t);
}
if (ctx->debug) {
for (uint32_t j = 0; j < root_bel_full_name.size(); j++)
cpy.ids[j] = root_bel_full_name[j];
cpy.ids[1] = s_bel;
for (auto str : cpy)
log_info("\t%s\n", str.c_str(ctx));
}
idx_bel_map[t_idx] = t;
t_idx++;
}
return idx_bel_map;
}
bool Arch::macro_cluster_placement(const Context *ctx, const Cluster &packed_cluster, const ClusterPOD &cluster_data,
CellInfo *root_cell, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
// Check root_bel site_type
const auto &cluster = cluster_info(chip_info, packed_cluster.index);
uint32_t idx = 0;
if (!find_site_idx(ctx, cluster, root_bel, idx))
return false;
// Check if root_bel name
uint32_t placement_idx = 0;
if (!find_placement_idx(ctx, cluster, root_bel, idx, placement_idx))
return false;
// Map cells to bels
dict<uint32_t, BelId> idx_bel_map = idx_bel_mapping(ctx, root_bel, cluster, idx, placement_idx);
for (auto idx_bel : idx_bel_map) {
placement.emplace_back(packed_cluster.cluster_nodes[idx_bel.first], idx_bel.second);
}
return true;
}
bool Arch::getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
const Context *ctx = getCtx();
const Cluster &packed_cluster = clusters.at(cluster);
auto &cluster_data = cluster_info(chip_info, packed_cluster.index);
CellInfo *root_cell = getClusterRootCell(cluster);
if (!ctx->isValidBelForCellType(root_cell->type, root_bel))
return false;
if (!cluster_data.from_macro)
return normal_cluster_placement(ctx, packed_cluster, cluster_data, root_cell, root_bel, placement);
else {
bool temp = macro_cluster_placement(ctx, packed_cluster, cluster_data, root_cell, root_bel, placement);
return temp;
}
}
ArcBounds Arch::getClusterBounds(ClusterId cluster) const
{
// TODO: Implement this
ArcBounds bounds(0, 0, 0, 0);
return bounds;
}
Loc Arch::getClusterOffset(const CellInfo *cell) const
{
Loc offset;
CellInfo *root = getClusterRootCell(cell->cluster);
if (cell->bel != BelId() && root->bel != BelId()) {
Loc root_loc = getBelLocation(root->bel);
Loc cell_loc = getBelLocation(cell->bel);
offset.x = cell_loc.x - root_loc.x;
offset.y = cell_loc.y - root_loc.y;
offset.z = cell_loc.z - root_loc.z;
} else {
Cluster cluster = clusters.at(cell->cluster);
auto &cluster_data = cluster_info(chip_info, cluster.index);
if (cluster_data.chainable_ports.size() == 0)
return offset;
auto &chainable_port = cluster_data.chainable_ports[0];
IdString cluster_node = cluster.cell_cluster_node_map.at(cell->name);
CellInfo *cluster_node_cell = cells.at(cluster_node).get();
auto res = std::find(cluster.cluster_nodes.begin(), cluster.cluster_nodes.end(), cluster_node_cell);
NPNR_ASSERT(res != cluster.cluster_nodes.end());
auto distance = std::distance(cluster.cluster_nodes.begin(), res);
offset.x = chainable_port.avg_x_offset * distance;
offset.y = chainable_port.avg_y_offset * distance;
}
return offset;
}
bool Arch::isClusterStrict(const CellInfo *cell) const { return true; }
static void dump_clusters(const ChipInfoPOD *chip_info, Context *ctx)
{
for (size_t i = 0; i < chip_info->clusters.size(); ++i) {
const auto &cluster = chip_info->clusters[i];
IdString cluster_name(cluster.name);
log_info("Cluster '%s' loaded! Parameters:\n", cluster_name.c_str(ctx));
log_info(" - root cell types:\n");
for (auto cell : cluster.root_cell_types)
log_info(" - %s\n", IdString(cell).c_str(ctx));
for (auto chain_ports : cluster.chainable_ports)
log_info(" - chainable pair: source %s - sink %s\n", IdString(chain_ports.cell_source).c_str(ctx),
IdString(chain_ports.cell_sink).c_str(ctx));
if (cluster.cluster_cells_map.size() != 0)
log_info(" - cell port maps:\n");
for (auto cluster_cell : cluster.cluster_cells_map) {
log_info(" - cell: %s - port: %s\n", IdString(cluster_cell.cell).c_str(ctx),
IdString(cluster_cell.port).c_str(ctx));
}
}
}
static bool check_cluster_cells_compatibility(CellInfo *old_cell, CellInfo *new_cell, pool<IdString> &exclude_nets)
{
NPNR_ASSERT(new_cell->type == old_cell->type);
for (auto &new_port_pair : new_cell->ports) {
PortInfo new_port_info = new_port_pair.second;
PortInfo old_port_info = old_cell->ports.at(new_port_pair.first);
if (exclude_nets.count(new_port_info.net->name))
continue;
if (new_port_info.type != PORT_IN)
continue;
if (new_port_info.net != old_port_info.net)
return false;
}
return true;
}
bool reduce(uint32_t x, uint32_t y, const ClusterPOD *cluster, dict<uint32_t, pool<CellInfo *, hash_ptr_ops>> &domain,
Context *ctx)
{
// Reduce X domain by removing values, which don't satisfy binary constraint with values from Y domain.
2021-08-30 17:12:49 +08:00
bool change = false;
std::vector<CellInfo *> remove_cell;
uint32_t counter = 0;
for (const auto &connection : cluster->connection_graph[x].connections) {
if (connection.target_idx == y)
2021-08-30 17:12:49 +08:00
break;
counter++;
2021-08-30 17:12:49 +08:00
}
for (const auto &x_cell : domain[x]) {
2021-08-30 17:12:49 +08:00
bool found = false;
for (const auto &y_cell : domain[y]) {
found = true;
for (const auto edge : cluster->connection_graph[x].connections[counter].edges) {
if (!x_cell->ports.count(IdString(edge.cell_pin)) ||
!y_cell->ports.count(IdString(edge.other_cell_pin))) {
found = false;
2021-08-30 17:12:49 +08:00
break;
}
2021-08-30 17:12:49 +08:00
const auto x_net = x_cell->ports[IdString(edge.cell_pin)].net;
const auto y_net = y_cell->ports[IdString(edge.other_cell_pin)].net;
if (x_net != y_net) {
found = false;
2021-08-30 17:12:49 +08:00
break;
}
2021-08-30 17:12:49 +08:00
bool x_driver = x_net->driver.cell == x_cell;
bool y_driver = y_net->driver.cell == y_cell;
if ((edge.dir != 0 || !y_driver) && (edge.dir != 1 || !x_driver) &&
(edge.dir != 2 || y_driver || x_driver)) {
found = false;
2021-08-30 17:12:49 +08:00
break;
}
2021-08-30 17:12:49 +08:00
}
if (found)
2021-08-30 17:12:49 +08:00
break;
}
if (!found)
remove_cell.push_back(x_cell);
}
for (const auto &cell : remove_cell) {
2021-08-30 17:12:49 +08:00
domain[x].erase(cell);
change = true;
}
return change;
}
void binary_constraint_check(const ClusterPOD *cluster, std::queue<std::pair<uint32_t, uint32_t>> &workqueue,
dict<uint32_t, pool<CellInfo *, hash_ptr_ops>> &idx_to_cells, Context *ctx)
{
while (!workqueue.empty()) {
2021-08-30 17:12:49 +08:00
std::pair<uint32_t, uint32_t> arc = workqueue.front();
workqueue.pop();
uint32_t x, y;
x = arc.first;
y = arc.second;
if (reduce(x, y, cluster, idx_to_cells, ctx)) {
for (const auto &node : cluster->connection_graph) {
if (node.idx != arc.first)
for (const auto &connection : node.connections)
if (connection.target_idx == arc.first)
workqueue.push(std::pair<uint32_t, uint32_t>(node.idx, arc.first));
}
2021-08-30 17:12:49 +08:00
}
}
}
bool back_solver(const ClusterPOD *cluster, dict<uint32_t, pool<CellInfo *, hash_ptr_ops>> &idx_to_cells, Context *ctx)
{
2021-08-30 17:12:49 +08:00
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
std::queue<uint32_t> prep;
for (const auto &arc : idx_to_cells) {
2021-08-30 17:12:49 +08:00
if (arc.second.size() == 0)
return false;
if (arc.second.size() > 1) {
for (const auto &cell : arc.second) {
2021-08-30 17:12:49 +08:00
auto copy_idx_to_cells(idx_to_cells);
copy_idx_to_cells[arc.first].clear();
for (uint32_t idx : possible_idx[cell]) {
2021-08-30 17:12:49 +08:00
copy_idx_to_cells[idx].erase(cell);
prep.push(idx);
}
copy_idx_to_cells[arc.first].insert(cell);
std::queue<std::pair<uint32_t, uint32_t>> workqueue;
while (!prep.empty()) {
uint32_t idx = prep.front();
prep.pop();
2021-08-30 17:12:49 +08:00
for (const auto &connection : cluster->connection_graph[idx].connections)
if (arc.first != connection.target_idx)
workqueue.push(std::pair<uint32_t, uint32_t>(arc.first, connection.target_idx));
}
binary_constraint_check(cluster, workqueue, copy_idx_to_cells, ctx);
if (back_solver(cluster, copy_idx_to_cells, ctx)) {
2021-08-30 17:12:49 +08:00
idx_to_cells = std::move(copy_idx_to_cells);
return true;
}
}
}
}
return true;
}
void Arch::prepare_macro_cluster(const ClusterPOD *cluster, uint32_t index)
2021-08-30 17:12:49 +08:00
{
Context *ctx = getCtx();
IdString cluster_name(cluster->name);
pool<IdString> cluster_cell_types;
for (auto cell_type : cluster->root_cell_types)
cluster_cell_types.insert(IdString(cell_type));
// Find cluster roots for each macro only ones
dict<IdString, CellInfo *> roots;
for (auto &cell : cells) {
2021-08-30 17:12:49 +08:00
CellInfo *ci = cell.second.get();
if (ci->macro_parent == IdString())
2021-08-30 17:12:49 +08:00
continue;
if (ci->cluster != ClusterId())
2021-08-30 17:12:49 +08:00
continue;
if (!cluster_cell_types.count(ci->type))
continue;
if (roots.count(ci->macro_parent))
2021-08-30 17:12:49 +08:00
continue;
// Simple check based on cell type counting
2021-08-30 17:12:49 +08:00
dict<IdString, uint32_t> cells_in_macro, counter;
// cells_in_macro stores cell_types used in tested cluster and
// cell_types that are in macro_to_cells[ci->macro_parent]
2021-08-30 17:12:49 +08:00
pool<IdString> cell_types;
for (auto &cell_type : cluster->required_cells) {
2021-08-30 17:12:49 +08:00
cells_in_macro[IdString(cell_type.name)] = cell_type.count;
cell_types.insert(IdString(cell_type.name));
}
for (auto &node_cell : macro_to_cells[ci->macro_parent]) {
2021-08-30 17:12:49 +08:00
auto cell_type = node_cell->type;
counter[cell_type]++;
cell_types.insert(cell_type);
}
bool failed = false;
for (auto cell_type : cell_types) {
if (ctx->verbose && cells_in_macro.count(cell_type))
2021-08-30 17:12:49 +08:00
log_info("Required: %s %d\n", cell_type.c_str(ctx), cells_in_macro[cell_type]);
if (ctx->verbose && cells_in_macro.count(cell_type))
2021-08-30 17:12:49 +08:00
log_info("Have: %s %d\n", cell_type.c_str(ctx), counter[cell_type]);
if (!cells_in_macro.count(cell_type) || !counter.count(cell_type) ||
cells_in_macro[cell_type] != counter[cell_type])
2021-08-30 17:12:49 +08:00
failed = true;
if (failed && ctx->verbose)
2021-08-30 17:12:49 +08:00
log_info("Cell count stage failed, for sure not this cluster\n");
if (failed)
2021-08-30 17:12:49 +08:00
break;
}
if (failed) {
2021-08-30 17:12:49 +08:00
roots[ci->macro_parent] = nullptr;
continue;
}
// Arc consistency
dict<uint32_t, pool<CellInfo *, hash_ptr_ops>> idx_to_cells;
// First singular constraints, like used cell type and used_cell ports
for (auto &cell : macro_to_cells[ci->macro_parent])
for (auto &node : cluster->connection_graph)
if (IdString(node.cell_type) == cell->type)
if ((node.idx != 0 && cell->name != ci->name) || (node.idx == 0 && cell->name == ci->name)) {
2021-08-30 17:12:49 +08:00
idx_to_cells[node.idx].insert(cell);
}
for (auto &arc : idx_to_cells) {
2021-08-30 17:12:49 +08:00
std::vector<CellInfo *> remove_cell;
pool<IdString> used_ports;
for (const auto &port : cluster->connection_graph[arc.first].used_ports)
used_ports.insert(IdString(port.name));
for (const auto &cell : arc.second) {
2021-08-30 17:12:49 +08:00
uint32_t count = 0;
for (const auto &port : cell->ports) {
if (!used_ports.count(port.first)) {
2021-08-30 17:12:49 +08:00
remove_cell.push_back(cell);
break;
}
count++;
}
if (count != used_ports.size()) {
2021-08-30 17:12:49 +08:00
remove_cell.push_back(cell);
break;
}
}
for (const auto &cell : remove_cell) {
2021-08-30 17:12:49 +08:00
arc.second.erase(cell);
}
}
if (ctx->debug) {
2021-08-30 17:12:49 +08:00
log_info("After mono constraints are applied\n");
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
for (const auto &arc : possible_idx) {
2021-08-30 17:12:49 +08:00
log_info("Possible idx %s:\n", arc.first->name.c_str(ctx));
for (const auto idx : arc.second)
log_info(" - %d\n", idx);
}
}
// Solve for binary constraints
std::queue<std::pair<uint32_t, uint32_t>> workqueue;
for (const auto &arc : idx_to_cells)
for (const auto &connection : cluster->connection_graph[arc.first].connections)
workqueue.emplace(arc.first, connection.target_idx);
2021-08-30 17:12:49 +08:00
binary_constraint_check(cluster, workqueue, idx_to_cells, ctx);
for (const auto &arc : idx_to_cells) {
if (arc.second.size() == 0) {
if (ctx->debug)
2021-08-30 17:12:49 +08:00
log_info("AC-3 failed\n");
failed = true;
break;
}
}
if (failed)
continue;
if (ctx->debug) {
2021-08-30 17:12:49 +08:00
log_info("After AC-3\n");
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
for (const auto &arc : possible_idx) {
2021-08-30 17:12:49 +08:00
log_info("Possible idx %s:\n", arc.first->name.c_str(ctx));
for (const auto idx : arc.second)
log_info(" - %d\n", idx);
}
}
bool change = false;
std::queue<std::pair<uint32_t, CellInfo *>> removequeue;
// Keep assigning cells to indices that only map to single cell
// Remove this cell from other mappings and recheck binary constraints
// Fail if there is no cell for idx or cell has no idx assign
do {
2021-08-30 17:12:49 +08:00
change = false;
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
pool<uint32_t> changed_idxs;
for (const auto &arc : idx_to_cells) {
if (arc.second.size() == 0) {
2021-08-30 17:12:49 +08:00
failed = true;
break;
}
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
}
if (failed)
2021-08-30 17:12:49 +08:00
break;
for (auto &cell : macro_to_cells[ci->macro_parent])
if (possible_idx[cell].size() == 0) {
2021-08-30 17:12:49 +08:00
failed = true;
break;
}
if (failed)
2021-08-30 17:12:49 +08:00
break;
for (const auto &arc : idx_to_cells) {
2021-08-30 17:12:49 +08:00
if (arc.second.size() == 1)
for (const auto &idx : possible_idx[*arc.second.begin()])
if (idx != arc.first)
removequeue.push(std::pair<uint32_t, CellInfo *>(idx, *arc.second.begin()));
2021-08-30 17:12:49 +08:00
}
while (!removequeue.empty()) {
auto t = removequeue.front();
removequeue.pop();
2021-08-30 17:12:49 +08:00
uint32_t idx = t.first;
CellInfo *cell = t.second;
idx_to_cells[idx].erase(cell);
change = true;
changed_idxs.insert(idx);
}
for (const uint32_t &idx : changed_idxs)
for (const auto &connection : cluster->connection_graph[idx].connections)
workqueue.push(std::pair<uint32_t, uint32_t>(idx, connection.target_idx));
binary_constraint_check(cluster, workqueue, idx_to_cells, ctx);
} while (change);
if (failed) {
if (ctx->debug)
2021-08-30 17:12:49 +08:00
log_info("Single cell mapping failed\n");
continue;
}
if (ctx->debug) {
2021-08-30 17:12:49 +08:00
log_info("After mapping indices with single cell\n");
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
for (const auto &arc : possible_idx) {
2021-08-30 17:12:49 +08:00
log_info("Possible idx %s:\n", arc.first->name.c_str(ctx));
for (const auto idx : arc.second)
log_info(" - %d\n", idx);
}
}
// At this point all indices that cloud only be mapped to single cell are mapped
// Next step is to run solver with backtracing to solve for other idx<->cell mappings
if (ctx->debug)
2021-08-30 17:12:49 +08:00
log_info("Back solver\n");
if (!back_solver(cluster, idx_to_cells, ctx)) {
if (ctx->debug)
2021-08-30 17:12:49 +08:00
log_info("Back solver failed\n");
continue;
}
if (ctx->debug) {
2021-08-30 17:12:49 +08:00
log_info("Final mapping after back solver\n");
dict<CellInfo *, pool<uint32_t>, hash_ptr_ops> possible_idx;
for (const auto &arc : idx_to_cells)
for (const auto &cell : arc.second)
possible_idx[cell].insert(arc.first);
for (const auto &arc : possible_idx) {
2021-08-30 17:12:49 +08:00
log_info("Possible idx %s:\n", arc.first->name.c_str(ctx));
for (const auto idx : arc.second)
log_info(" - %d\n", idx);
}
}
Cluster cluster_info;
cluster_info.root = ci;
cluster_info.index = index;
cluster_info.cluster_nodes.resize(idx_to_cells.size());
ci->cluster = ci->name;
for (auto &arc : idx_to_cells) {
CellInfo *sub_cell = arc.second.pop();
if (ctx->verbose)
log_info("%d %s - %s\n", arc.first, sub_cell->name.c_str(ctx), sub_cell->type.c_str(ctx));
sub_cell->cluster = ci->cluster;
cluster_info.cluster_nodes[arc.first] = sub_cell;
}
clusters.emplace(ci->cluster, cluster_info);
2021-08-30 17:12:49 +08:00
}
}
void Arch::prepare_cluster(const ClusterPOD *cluster, uint32_t index)
{
Context *ctx = getCtx();
IdString cluster_name(cluster->name);
pool<IdString> cluster_cell_types;
for (auto cell_type : cluster->root_cell_types)
cluster_cell_types.insert(IdString(cell_type));
// Find cluster roots
std::vector<CellInfo *> roots;
for (auto &cell : cells) {
CellInfo *ci = cell.second.get();
2021-08-30 17:12:49 +08:00
if (ci->macro_parent != IdString())
continue;
if (ci->cluster != ClusterId())
continue;
if (!cluster_cell_types.count(ci->type))
continue;
if (cluster->chainable_ports.size() == 0) {
ci->cluster.set(ctx, ci->name.str(ctx));
roots.push_back(ci);
continue;
}
// Only one type of dedicated interconnect is allowed.
auto chain_ports = cluster->chainable_ports[0];
IdString source_port(chain_ports.cell_source);
IdString sink_port(chain_ports.cell_sink);
PortRef driver = ci->ports[sink_port].net->driver;
if (driver.cell == nullptr || driver.port != source_port) {
// We hit a root cell
ci->cluster.set(ctx, ci->name.c_str(ctx));
roots.push_back(ci);
// Chained cells use dedicated connections, usually not exposed to the
// general interconnect resources. The port disconnection is required for
// sink ports which are connected to GND or VCC by default, which are not
// reachable due to the fixed dedicated interconnect.
// E.g.: The CI input of carry chains in 7series corresponds to the CIN bel port,
// which can only be connected to the COUT output of the tile below.
ci->disconnectPort(sink_port);
}
}
dict<IdString, pool<IdString>> port_cell_maps;
for (auto cell_port_map : cluster->cluster_cells_map) {
IdString cell(cell_port_map.cell);
IdString port(cell_port_map.port);
pool<IdString> cells_pool({cell});
port_cell_maps.emplace(port, cells_pool).first->second.insert(cell);
}
// Generate unique clusters starting from each root
for (auto root : roots) {
Cluster cluster_info;
cluster_info.root = root;
cluster_info.index = index;
CellInfo *next_cluster_node = root;
if (ctx->verbose)
log_info(" - forming cluster starting from root cell: %s\n", next_cluster_node->name.c_str(ctx));
// counter to determine whether this cluster needs to exist
uint32_t count_cluster_cells = 0;
do {
std::vector<std::pair<IdString, CellInfo *>> cluster_cells;
// type -> cells map to verify compatibility of cells in the same cluster
dict<IdString, CellInfo *> cell_type_dict;
pool<IdString> exclude_nets;
count_cluster_cells++;
for (auto port : next_cluster_node->ports) {
if (!port_cell_maps.count(port.first))
continue;
PortInfo port_info = port.second;
if (port_info.type == PORT_OUT) {
exclude_nets.insert(port_info.net->name);
auto &users = port_info.net->users;
if (users.entries() != 1)
continue;
CellInfo *user_cell = (*users.begin()).cell;
if (user_cell == nullptr)
continue;
if (!port_cell_maps.at(port.first).count(user_cell->type))
continue;
auto res = cell_type_dict.emplace(user_cell->type, user_cell);
bool compatible = true;
if (!res.second)
// Check whether a cell of the same type has all the required nets compatible with
// all other nets for the same type. If not, discard the cell.
// An example is multiple FFs belonging to the same cluster, where one of them has a different
// Set/Reset or CE net w.r.t. the others, making the cluster unplaceable.
compatible = check_cluster_cells_compatibility(res.first->second, user_cell, exclude_nets);
if (!compatible)
continue;
user_cell->cluster = root->cluster;
cluster_cells.push_back(std::make_pair(port.first, user_cell));
cluster_info.cell_cluster_node_map.emplace(user_cell->name, next_cluster_node->name);
count_cluster_cells++;
if (ctx->verbose)
log_info(" - adding user cell: %s\n", user_cell->name.c_str(ctx));
} else if (port_info.type == PORT_IN) {
auto &driver = port_info.net->driver;
auto &users = port_info.net->users;
if (users.entries() != 1)
continue;
CellInfo *driver_cell = driver.cell;
if (driver_cell == nullptr)
continue;
if (!port_cell_maps.at(port.first).count(driver_cell->type))
continue;
driver_cell->cluster = root->cluster;
cluster_cells.push_back(std::make_pair(port.first, driver_cell));
cluster_info.cell_cluster_node_map.emplace(driver_cell->name, next_cluster_node->name);
count_cluster_cells++;
if (ctx->verbose)
log_info(" - adding driver cell: %s\n", driver_cell->name.c_str(ctx));
}
}
cluster_info.cell_cluster_node_map.emplace(next_cluster_node->name, next_cluster_node->name);
cluster_info.cluster_nodes.push_back(next_cluster_node);
cluster_info.cluster_node_cells.emplace(next_cluster_node->name, cluster_cells);
if (cluster->chainable_ports.size() == 0)
break;
// Only one type of dedicated interconnect is allowed.
auto chain_ports = cluster->chainable_ports[0];
IdString source_port(chain_ports.cell_source);
IdString sink_port(chain_ports.cell_sink);
NetInfo *next_net = next_cluster_node->ports.at(source_port).net;
if (next_net == nullptr)
continue;
next_cluster_node = nullptr;
for (auto &user : next_net->users) {
CellInfo *user_cell = user.cell;
if (user_cell == nullptr)
continue;
if (cluster_cell_types.count(user_cell->type)) {
user_cell->cluster = root->cluster;
next_cluster_node = user_cell;
break;
}
}
if (next_cluster_node == nullptr)
break;
} while (true);
if (count_cluster_cells == 1 && cluster->chainable_ports.size() == 0) {
root->cluster = ClusterId();
continue;
}
clusters.emplace(root->cluster, cluster_info);
}
}
void Arch::pack_cluster()
{
Context *ctx = getCtx();
if (ctx->verbose)
dump_clusters(chip_info, ctx);
for (uint32_t i = 0; i < chip_info->clusters.size(); ++i) {
if (!chip_info->clusters[i].from_macro) {
2021-08-30 17:12:49 +08:00
const auto &cluster = chip_info->clusters[i];
2021-08-30 17:12:49 +08:00
prepare_cluster(&cluster, i);
} else if (chip_info->clusters[i].physical_placements.size() > 0) {
2021-08-30 17:12:49 +08:00
const auto &cluster = chip_info->clusters[i];
if (ctx->verbose) {
log_info("%s\n", IdString(cluster.name).c_str(ctx));
}
2021-08-30 17:12:49 +08:00
prepare_macro_cluster(&cluster, i);
} else {
// No physical placement definitions found for given macro.
// Use default place and route algorithm as routes connectiong
// cells will use global routing
const auto &cluster = chip_info->clusters[i];
if (ctx->verbose)
log_info("Out of site cluster from macro: %s\n", IdString(cluster.name).c_str(ctx));
}
}
}
NEXTPNR_NAMESPACE_END