nextpnr/ecp5/arch.h

741 lines
21 KiB
C
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef NEXTPNR_H
#error Include "arch.h" via "nextpnr.h" only.
#endif
#include <sstream>
NEXTPNR_NAMESPACE_BEGIN
/**** Everything in this section must be kept in sync with chipdb.py ****/
template <typename T> struct RelPtr
{
int32_t offset;
// void set(const T *ptr) {
// offset = reinterpret_cast<const char*>(ptr) -
// reinterpret_cast<const char*>(this);
// }
const T *get() const { return reinterpret_cast<const T *>(reinterpret_cast<const char *>(this) + offset); }
const T &operator[](size_t index) const { return get()[index]; }
const T &operator*() const { return *(get()); }
const T *operator->() const { return get(); }
};
NPNR_PACKED_STRUCT(struct BelWirePOD {
LocationPOD rel_wire_loc;
int32_t wire_index;
PortPin port;
});
NPNR_PACKED_STRUCT(struct BelInfoPOD {
RelPtr<char> name;
BelType type;
int32_t num_bel_wires;
RelPtr<BelWirePOD> bel_wires;
});
NPNR_PACKED_STRUCT(struct BelPortPOD {
LocationPOD rel_bel_loc;
int32_t bel_index;
PortPin port;
});
NPNR_PACKED_STRUCT(struct PipInfoPOD {
LocationPOD rel_src_loc, rel_dst_loc;
int32_t src_idx, dst_idx;
int32_t delay;
int16_t tile_type;
int8_t pip_type;
int8_t padding_0;
});
NPNR_PACKED_STRUCT(struct PipLocatorPOD {
LocationPOD rel_loc;
int32_t index;
});
NPNR_PACKED_STRUCT(struct WireInfoPOD {
RelPtr<char> name;
int32_t num_uphill, num_downhill;
RelPtr<PipLocatorPOD> pips_uphill, pips_downhill;
int32_t num_bels_downhill;
BelPortPOD bel_uphill;
RelPtr<BelPortPOD> bels_downhill;
});
NPNR_PACKED_STRUCT(struct LocationTypePOD {
int32_t num_bels, num_wires, num_pips;
RelPtr<BelInfoPOD> bel_data;
RelPtr<WireInfoPOD> wire_data;
RelPtr<PipInfoPOD> pip_data;
});
NPNR_PACKED_STRUCT(struct ChipInfoPOD {
int32_t width, height;
int32_t num_tiles;
int32_t num_location_types;
RelPtr<LocationTypePOD> locations;
RelPtr<int32_t> location_type;
});
#if defined(_MSC_VER)
extern const char *chipdb_blob_25k;
extern const char *chipdb_blob_45k;
extern const char *chipdb_blob_85k;
#else
extern const char chipdb_blob_25k[];
extern const char chipdb_blob_45k[];
extern const char chipdb_blob_85k[];
#endif
/************************ End of chipdb section. ************************/
struct BelIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
BelIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->num_tiles &&
cursor_index >= chip->locations[chip->location_type[cursor_tile]].num_bels) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
BelIterator operator++(int)
{
BelIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const BelIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const BelIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
BelId operator*() const
{
BelId ret;
ret.location.x = cursor_tile % chip->width;
ret.location.y = cursor_tile / chip->width;
ret.index = cursor_index;
return ret;
}
};
struct BelRange
{
BelIterator b, e;
BelIterator begin() const { return b; }
BelIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct BelPinIterator
{
const BelPortPOD *ptr = nullptr;
Location wire_loc;
void operator++() { ptr++; }
bool operator!=(const BelPinIterator &other) const { return ptr != other.ptr; }
BelPin operator*() const
{
BelPin ret;
ret.bel.index = ptr->bel_index;
ret.bel.location = wire_loc + ptr->rel_bel_loc;
ret.pin = ptr->port;
return ret;
}
};
struct BelPinRange
{
BelPinIterator b, e;
BelPinIterator begin() const { return b; }
BelPinIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct WireIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
WireIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->num_tiles &&
cursor_index >= chip->locations[chip->location_type[cursor_tile]].num_wires) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
WireIterator operator++(int)
{
WireIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const WireIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const WireIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
WireId operator*() const
{
WireId ret;
ret.location.x = cursor_tile % chip->width;
ret.location.y = cursor_tile / chip->width;
ret.index = cursor_index;
return ret;
}
};
struct WireRange
{
WireIterator b, e;
WireIterator begin() const { return b; }
WireIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct AllPipIterator
{
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
AllPipIterator operator++()
{
cursor_index++;
while (cursor_tile < chip->num_tiles &&
cursor_index >= chip->locations[chip->location_type[cursor_tile]].num_pips) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
AllPipIterator operator++(int)
{
AllPipIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const AllPipIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const AllPipIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
PipId operator*() const
{
PipId ret;
ret.location.x = cursor_tile % chip->width;
ret.location.y = cursor_tile / chip->width;
ret.index = cursor_index;
return ret;
}
};
struct AllPipRange
{
AllPipIterator b, e;
AllPipIterator begin() const { return b; }
AllPipIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct PipIterator
{
const PipLocatorPOD *cursor = nullptr;
Location wire_loc;
void operator++() { cursor++; }
bool operator!=(const PipIterator &other) const { return cursor != other.cursor; }
PipId operator*() const
{
PipId ret;
ret.index = cursor->index;
ret.location = wire_loc + cursor->rel_loc;
return ret;
}
};
struct PipRange
{
PipIterator b, e;
PipIterator begin() const { return b; }
PipIterator end() const { return e; }
};
struct ArchArgs
{
enum
{
NONE,
LFE5U_25F,
LFE5U_45F,
LFE5U_85F,
} type = NONE;
std::string package;
int speed = 6;
};
struct Arch : BaseCtx
{
const ChipInfoPOD *chip_info;
mutable std::unordered_map<IdString, BelId> bel_by_name;
mutable std::unordered_map<IdString, WireId> wire_by_name;
mutable std::unordered_map<IdString, PipId> pip_by_name;
std::unordered_map<BelId, IdString> bel_to_cell;
std::unordered_map<WireId, IdString> wire_to_net;
std::unordered_map<PipId, IdString> pip_to_net;
std::unordered_map<PipId, IdString> switches_locked;
ArchArgs args;
Arch(ArchArgs args);
std::string getChipName();
IdString archId() const { return id("ecp5"); }
IdString archArgsToId(ArchArgs args) const;
IdString belTypeToId(BelType type) const;
BelType belTypeFromId(IdString id) const;
IdString portPinToId(PortPin type) const;
PortPin portPinFromId(IdString id) const;
// -------------------------------------------------
BelId getBelByName(IdString name) const;
template <typename Id> const LocationTypePOD *locInfo(Id &id) const
{
return &(chip_info->locations[chip_info->location_type[id.location.y * chip_info->width + id.location.x]]);
}
IdString getBelName(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
std::stringstream name;
name << "X" << bel.location.x << "/Y" << bel.location.y << "/" << locInfo(bel)->bel_data[bel.index].name.get();
return id(name.str());
}
uint32_t getBelChecksum(BelId bel) const { return bel.index; }
void bindBel(BelId bel, IdString cell, PlaceStrength strength)
{
NPNR_ASSERT(bel != BelId());
NPNR_ASSERT(bel_to_cell[bel] == IdString());
bel_to_cell[bel] = cell;
cells[cell]->bel = bel;
cells[cell]->belStrength = strength;
}
void unbindBel(BelId bel)
{
NPNR_ASSERT(bel != BelId());
NPNR_ASSERT(bel_to_cell[bel] != IdString());
cells[bel_to_cell[bel]]->bel = BelId();
cells[bel_to_cell[bel]]->belStrength = STRENGTH_NONE;
bel_to_cell[bel] = IdString();
}
bool checkBelAvail(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
return bel_to_cell.find(bel) == bel_to_cell.end() || bel_to_cell.at(bel) == IdString();
}
IdString getBoundBelCell(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
if (bel_to_cell.find(bel) == bel_to_cell.end())
return IdString();
else
return bel_to_cell.at(bel);
}
IdString getConflictingBelCell(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
if (bel_to_cell.find(bel) == bel_to_cell.end())
return IdString();
else
return bel_to_cell.at(bel);
}
BelRange getBels() const
{
BelRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no Bels in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
BelRange getBelsByType(BelType type) const
{
BelRange range;
// FIXME
#if 0
if (type == "TYPE_A") {
range.b.cursor = bels_type_a_begin;
range.e.cursor = bels_type_a_end;
}
...
#endif
return range;
}
BelRange getBelsAtSameTile(BelId bel) const;
BelType getBelType(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
return locInfo(bel)->bel_data[bel.index].type;
}
WireId getWireBelPin(BelId bel, PortPin pin) const;
BelPin getBelPinUphill(WireId wire) const
{
BelPin ret;
NPNR_ASSERT(wire != WireId());
if (locInfo(wire)->wire_data[wire.index].bel_uphill.bel_index >= 0) {
ret.bel.index = locInfo(wire)->wire_data[wire.index].bel_uphill.bel_index;
ret.bel.location = wire.location + locInfo(wire)->wire_data[wire.index].bel_uphill.rel_bel_loc;
ret.pin = locInfo(wire)->wire_data[wire.index].bel_uphill.port;
}
return ret;
}
BelPinRange getBelPinsDownhill(WireId wire) const
{
BelPinRange range;
NPNR_ASSERT(wire != WireId());
range.b.ptr = locInfo(wire)->wire_data[wire.index].bels_downhill.get();
range.b.wire_loc = wire.location;
range.e.ptr = range.b.ptr + locInfo(wire)->wire_data[wire.index].num_bels_downhill;
range.e.wire_loc = wire.location;
return range;
}
// -------------------------------------------------
WireId getWireByName(IdString name) const;
IdString getWireName(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
std::stringstream name;
name << "X" << wire.location.x << "/Y" << wire.location.y << "/"
<< locInfo(wire)->wire_data[wire.index].name.get();
return id(name.str());
}
uint32_t getWireChecksum(WireId wire) const { return wire.index; }
void bindWire(WireId wire, IdString net, PlaceStrength strength)
{
NPNR_ASSERT(wire != WireId());
NPNR_ASSERT(wire_to_net[wire] == IdString());
wire_to_net[wire] = net;
nets[net]->wires[wire].pip = PipId();
nets[net]->wires[wire].strength = strength;
}
void unbindWire(WireId wire)
{
NPNR_ASSERT(wire != WireId());
NPNR_ASSERT(wire_to_net[wire] != IdString());
auto &net_wires = nets[wire_to_net[wire]]->wires;
auto it = net_wires.find(wire);
NPNR_ASSERT(it != net_wires.end());
auto pip = it->second.pip;
if (pip != PipId()) {
pip_to_net[pip] = IdString();
}
net_wires.erase(it);
wire_to_net[wire] = IdString();
}
bool checkWireAvail(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
return wire_to_net.find(wire) == wire_to_net.end() || wire_to_net.at(wire) == IdString();
}
IdString getBoundWireNet(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
if (wire_to_net.find(wire) == wire_to_net.end())
return IdString();
else
return wire_to_net.at(wire);
}
IdString getConflictingWireNet(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
if (wire_to_net.find(wire) == wire_to_net.end())
return IdString();
else
return wire_to_net.at(wire);
}
WireRange getWires() const
{
WireRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no wries in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
// -------------------------------------------------
PipId getPipByName(IdString name) const;
IdString getPipName(PipId pip) const;
uint32_t getPipChecksum(PipId pip) const { return pip.index; }
void bindPip(PipId pip, IdString net, PlaceStrength strength)
{
NPNR_ASSERT(pip != PipId());
NPNR_ASSERT(pip_to_net[pip] == IdString());
pip_to_net[pip] = net;
WireId dst;
dst.index = locInfo(pip)->pip_data[pip.index].dst_idx;
dst.location = pip.location + locInfo(pip)->pip_data[pip.index].rel_dst_loc;
NPNR_ASSERT(wire_to_net[dst] == IdString());
wire_to_net[dst] = net;
nets[net]->wires[dst].pip = pip;
nets[net]->wires[dst].strength = strength;
}
void unbindPip(PipId pip)
{
NPNR_ASSERT(pip != PipId());
NPNR_ASSERT(pip_to_net[pip] != IdString());
WireId dst;
dst.index = locInfo(pip)->pip_data[pip.index].dst_idx;
dst.location = pip.location + locInfo(pip)->pip_data[pip.index].rel_dst_loc;
NPNR_ASSERT(wire_to_net[dst] != IdString());
wire_to_net[dst] = IdString();
nets[pip_to_net[pip]]->wires.erase(dst);
pip_to_net[pip] = IdString();
}
bool checkPipAvail(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
return pip_to_net.find(pip) == pip_to_net.end() || pip_to_net.at(pip) == IdString();
}
IdString getBoundPipNet(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
if (pip_to_net.find(pip) == pip_to_net.end())
return IdString();
else
return pip_to_net.at(pip);
}
IdString getConflictingPipNet(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
if (pip_to_net.find(pip) == pip_to_net.end())
return IdString();
else
return pip_to_net.at(pip);
}
AllPipRange getPips() const
{
AllPipRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no wries in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
WireId getPipSrcWire(PipId pip) const
{
WireId wire;
NPNR_ASSERT(pip != PipId());
wire.index = locInfo(pip)->pip_data[pip.index].src_idx;
wire.location = pip.location + locInfo(pip)->pip_data[pip.index].rel_src_loc;
return wire;
}
WireId getPipDstWire(PipId pip) const
{
WireId wire;
NPNR_ASSERT(pip != PipId());
wire.index = locInfo(pip)->pip_data[pip.index].dst_idx;
wire.location = pip.location + locInfo(pip)->pip_data[pip.index].rel_dst_loc;
return wire;
}
DelayInfo getPipDelay(PipId pip) const
{
DelayInfo delay;
NPNR_ASSERT(pip != PipId());
delay.delay = locInfo(pip)->pip_data[pip.index].delay;
return delay;
}
PipRange getPipsDownhill(WireId wire) const
{
PipRange range;
NPNR_ASSERT(wire != WireId());
range.b.cursor = locInfo(wire)->wire_data[wire.index].pips_downhill.get();
range.e.cursor = range.b.cursor + locInfo(wire)->wire_data[wire.index].num_downhill;
return range;
}
PipRange getPipsUphill(WireId wire) const
{
PipRange range;
NPNR_ASSERT(wire != WireId());
range.b.cursor = locInfo(wire)->wire_data[wire.index].pips_uphill.get();
range.e.cursor = range.b.cursor + locInfo(wire)->wire_data[wire.index].num_uphill;
return range;
}
PipRange getWireAliases(WireId wire) const
{
PipRange range;
NPNR_ASSERT(wire != WireId());
range.b.cursor = nullptr;
range.e.cursor = nullptr;
return range;
}
BelId getPackagePinBel(const std::string &pin) const;
std::string getBelPackagePin(BelId bel) const;
// -------------------------------------------------
void estimatePosition(BelId bel, int &x, int &y, bool &gb) const;
delay_t estimateDelay(WireId src, WireId dst) const;
delay_t getDelayEpsilon() const { return 20; }
delay_t getRipupDelayPenalty() const { return 200; }
float getDelayNS(delay_t v) const { return v * 0.001; }
uint32_t getDelayChecksum(delay_t v) const { return v; }
// -------------------------------------------------
std::vector<GraphicElement> getFrameGraphics() const;
std::vector<GraphicElement> getBelGraphics(BelId bel) const;
std::vector<GraphicElement> getWireGraphics(WireId wire) const;
std::vector<GraphicElement> getPipGraphics(PipId pip) const;
bool allGraphicsReload = false;
bool frameGraphicsReload = false;
std::unordered_set<BelId> belGraphicsReload;
std::unordered_set<WireId> wireGraphicsReload;
std::unordered_set<PipId> pipGraphicsReload;
// -------------------------------------------------
// Get the delay through a cell from one port to another, returning false
// if no path exists
bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, delay_t &delay) const;
// Get the associated clock to a port, or empty if the port is combinational
IdString getPortClock(const CellInfo *cell, IdString port) const;
// Return true if a port is a clock
bool isClockPort(const CellInfo *cell, IdString port) const;
// Return true if a port is a net
bool isGlobalNet(const NetInfo *net) const;
// -------------------------------------------------
// Placement validity checks
bool isValidBelForCell(CellInfo *cell, BelId bel) const;
bool isBelLocationValid(BelId bel) const;
};
NEXTPNR_NAMESPACE_END