nextpnr/common/kernel/base_arch.h

487 lines
20 KiB
C
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Claire Xenia Wolf <claire@yosyshq.com>
* Copyright (C) 2018 Serge Bazanski <q3k@q3k.org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef BASE_ARCH_H
#define BASE_ARCH_H
#include <array>
#include <vector>
#include "arch_api.h"
#include "base_clusterinfo.h"
#include "idstring.h"
#include "nextpnr_types.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
// For several functions; such as bel/wire/pip attributes; the trivial implementation is to return an empty vector
// But an arch might want to do something fancy with a custom range type that doesn't provide a constructor
// So some cursed C++ is needed to return an empty object if possible; or error out if not; is needed
template <typename Tc> typename std::enable_if<std::is_constructible<Tc>::value, Tc>::type empty_if_possible()
{
return Tc();
}
template <typename Tc> typename std::enable_if<!std::is_constructible<Tc>::value, Tc>::type empty_if_possible()
{
NPNR_ASSERT_FALSE("attempting to use default implementation of range-returning function with range type lacking "
"default constructor!");
}
// Provide a default implementation of bel bucket name if typedef'd to IdString
template <typename Tbbid>
typename std::enable_if<std::is_same<Tbbid, IdString>::value, IdString>::type bbid_to_name(Tbbid id)
{
return id;
}
template <typename Tbbid>
typename std::enable_if<!std::is_same<Tbbid, IdString>::value, IdString>::type bbid_to_name(Tbbid id)
{
NPNR_ASSERT_FALSE("getBelBucketName must be implemented when BelBucketId is a type other than IdString!");
}
template <typename Tbbid>
typename std::enable_if<std::is_same<Tbbid, IdString>::value, BelBucketId>::type bbid_from_name(IdString name)
{
return name;
}
template <typename Tbbid>
typename std::enable_if<!std::is_same<Tbbid, IdString>::value, BelBucketId>::type bbid_from_name(IdString name)
{
NPNR_ASSERT_FALSE("getBelBucketByName must be implemented when BelBucketId is a type other than IdString!");
}
// For the cell type and bel type ranges; we want to return our stored vectors only if the type matches
template <typename Tret, typename Tc>
typename std::enable_if<std::is_same<Tret, Tc>::value, Tret>::type return_if_match(Tret r)
{
return r;
}
template <typename Tret, typename Tc>
typename std::enable_if<!std::is_same<Tret, Tc>::value, Tc>::type return_if_match(Tret r)
{
NPNR_ASSERT_FALSE("default implementations of cell type and bel bucket range functions only available when the "
"respective range types are 'const std::vector&'");
}
// Default implementations of the clustering functions
template <typename Tid>
typename std::enable_if<std::is_same<Tid, IdString>::value, CellInfo *>::type get_cluster_root(const BaseCtx *ctx,
Tid cluster)
{
return ctx->cells.at(cluster).get();
}
template <typename Tid>
typename std::enable_if<!std::is_same<Tid, IdString>::value, CellInfo *>::type get_cluster_root(const BaseCtx *ctx,
Tid cluster)
{
NPNR_ASSERT_FALSE("default implementation of getClusterRootCell requires ClusterId to be IdString");
}
// Executes the lambda with the base cluster data, only if the derivation works
template <typename Tret, typename Tcell, typename Tfunc>
typename std::enable_if<std::is_base_of<BaseClusterInfo, Tcell>::value, Tret>::type
if_using_basecluster(const Tcell *cell, Tfunc func)
{
return func(static_cast<const BaseClusterInfo *>(cell));
}
template <typename Tret, typename Tcell, typename Tfunc>
typename std::enable_if<!std::is_base_of<BaseClusterInfo, Tcell>::value, Tret>::type
if_using_basecluster(const Tcell *cell, Tfunc func)
{
NPNR_ASSERT_FALSE(
"default implementation of cluster functions requires ArchCellInfo to derive from BaseClusterInfo");
}
} // namespace
// This contains the relevant range types for the default implementations of Arch functions
struct BaseArchRanges
{
// Bels
using CellBelPinRangeT = std::array<IdString, 1>;
// Attributes
using BelAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
using WireAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
using PipAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
// Groups
using AllGroupsRangeT = std::vector<GroupId>;
using GroupBelsRangeT = std::vector<BelId>;
using GroupWiresRangeT = std::vector<WireId>;
using GroupPipsRangeT = std::vector<PipId>;
using GroupGroupsRangeT = std::vector<GroupId>;
// Decals
using DecalGfxRangeT = std::vector<GraphicElement>;
// Placement validity
using CellTypeRangeT = const std::vector<IdString> &;
using BelBucketRangeT = const std::vector<BelBucketId> &;
using BucketBelRangeT = const std::vector<BelId> &;
};
template <typename R> struct BaseArch : ArchAPI<R>
{
// --------------------------------------------------------------
// Default, trivial, implementations of Arch API functions for arches that don't need complex behaviours
// Basic config
virtual IdString archId() const override { return this->id(NPNR_STRINGIFY(ARCHNAME)); }
virtual IdString archArgsToId(typename R::ArchArgsT args) const override { return IdString(); }
virtual int getTilePipDimZ(int x, int y) const override { return 1; }
virtual char getNameDelimiter() const override { return ' '; }
// Bel methods
virtual uint32_t getBelChecksum(BelId bel) const override { return bel.hash(); }
virtual void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) override
{
NPNR_ASSERT(bel != BelId());
auto &entry = base_bel2cell[bel];
NPNR_ASSERT(entry == nullptr);
cell->bel = bel;
cell->belStrength = strength;
entry = cell;
this->refreshUiBel(bel);
}
virtual void unbindBel(BelId bel) override
{
NPNR_ASSERT(bel != BelId());
auto &entry = base_bel2cell[bel];
NPNR_ASSERT(entry != nullptr);
entry->bel = BelId();
entry->belStrength = STRENGTH_NONE;
entry = nullptr;
this->refreshUiBel(bel);
}
virtual bool getBelHidden(BelId bel) const override { return false; }
virtual bool getBelGlobalBuf(BelId bel) const override { return false; }
virtual bool checkBelAvail(BelId bel) const override { return getBoundBelCell(bel) == nullptr; };
virtual CellInfo *getBoundBelCell(BelId bel) const override
{
auto fnd = base_bel2cell.find(bel);
return fnd == base_bel2cell.end() ? nullptr : fnd->second;
}
virtual CellInfo *getConflictingBelCell(BelId bel) const override { return getBoundBelCell(bel); }
virtual typename R::BelAttrsRangeT getBelAttrs(BelId bel) const override
{
return empty_if_possible<typename R::BelAttrsRangeT>();
}
virtual typename R::CellBelPinRangeT getBelPinsForCellPin(const CellInfo *cell_info, IdString pin) const override
{
return return_if_match<std::array<IdString, 1>, typename R::CellBelPinRangeT>({pin});
}
// Wire methods
virtual IdString getWireType(WireId wire) const override { return IdString(); }
virtual typename R::WireAttrsRangeT getWireAttrs(WireId) const override
{
return empty_if_possible<typename R::WireAttrsRangeT>();
}
virtual uint32_t getWireChecksum(WireId wire) const override { return wire.hash(); }
virtual void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) override
{
NPNR_ASSERT(wire != WireId());
auto &w2n_entry = base_wire2net[wire];
NPNR_ASSERT(w2n_entry == nullptr);
net->wires[wire].pip = PipId();
net->wires[wire].strength = strength;
w2n_entry = net;
this->refreshUiWire(wire);
}
virtual void unbindWire(WireId wire) override
{
NPNR_ASSERT(wire != WireId());
auto &w2n_entry = base_wire2net[wire];
NPNR_ASSERT(w2n_entry != nullptr);
auto &net_wires = w2n_entry->wires;
auto it = net_wires.find(wire);
NPNR_ASSERT(it != net_wires.end());
auto pip = it->second.pip;
if (pip != PipId()) {
base_pip2net[pip] = nullptr;
}
net_wires.erase(it);
base_wire2net[wire] = nullptr;
w2n_entry = nullptr;
this->refreshUiWire(wire);
}
virtual bool checkWireAvail(WireId wire) const override { return getBoundWireNet(wire) == nullptr; }
virtual NetInfo *getBoundWireNet(WireId wire) const override
{
auto fnd = base_wire2net.find(wire);
return fnd == base_wire2net.end() ? nullptr : fnd->second;
}
virtual WireId getConflictingWireWire(WireId wire) const override { return wire; };
virtual NetInfo *getConflictingWireNet(WireId wire) const override { return getBoundWireNet(wire); }
// Pip methods
virtual IdString getPipType(PipId pip) const override { return IdString(); }
virtual typename R::PipAttrsRangeT getPipAttrs(PipId) const override
{
return empty_if_possible<typename R::PipAttrsRangeT>();
}
virtual uint32_t getPipChecksum(PipId pip) const override { return pip.hash(); }
virtual void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) override
{
NPNR_ASSERT(pip != PipId());
auto &p2n_entry = base_pip2net[pip];
NPNR_ASSERT(p2n_entry == nullptr);
p2n_entry = net;
WireId dst = this->getPipDstWire(pip);
auto &w2n_entry = base_wire2net[dst];
NPNR_ASSERT(w2n_entry == nullptr);
w2n_entry = net;
net->wires[dst].pip = pip;
net->wires[dst].strength = strength;
}
virtual void unbindPip(PipId pip) override
{
NPNR_ASSERT(pip != PipId());
auto &p2n_entry = base_pip2net[pip];
NPNR_ASSERT(p2n_entry != nullptr);
WireId dst = this->getPipDstWire(pip);
auto &w2n_entry = base_wire2net[dst];
NPNR_ASSERT(w2n_entry != nullptr);
w2n_entry = nullptr;
p2n_entry->wires.erase(dst);
p2n_entry = nullptr;
}
virtual bool checkPipAvail(PipId pip) const override { return getBoundPipNet(pip) == nullptr; }
virtual bool checkPipAvailForNet(PipId pip, const NetInfo *net) const override
{
NetInfo *bound_net = getBoundPipNet(pip);
return bound_net == nullptr || bound_net == net;
}
virtual NetInfo *getBoundPipNet(PipId pip) const override
{
auto fnd = base_pip2net.find(pip);
return fnd == base_pip2net.end() ? nullptr : fnd->second;
}
virtual WireId getConflictingPipWire(PipId pip) const override { return WireId(); }
virtual NetInfo *getConflictingPipNet(PipId pip) const override { return getBoundPipNet(pip); }
// Group methods
virtual GroupId getGroupByName(IdStringList name) const override { return GroupId(); };
virtual IdStringList getGroupName(GroupId group) const override { return IdStringList(); };
virtual typename R::AllGroupsRangeT getGroups() const override
{
return empty_if_possible<typename R::AllGroupsRangeT>();
}
// Default implementation of these assumes no groups so never called
virtual typename R::GroupBelsRangeT getGroupBels(GroupId group) const override
{
NPNR_ASSERT_FALSE("unreachable");
};
virtual typename R::GroupWiresRangeT getGroupWires(GroupId group) const override
{
NPNR_ASSERT_FALSE("unreachable");
};
virtual typename R::GroupPipsRangeT getGroupPips(GroupId group) const override
{
NPNR_ASSERT_FALSE("unreachable");
};
virtual typename R::GroupGroupsRangeT getGroupGroups(GroupId group) const override
{
NPNR_ASSERT_FALSE("unreachable");
};
// Delay methods
virtual bool getArcDelayOverride(const NetInfo *net_info, const PortRef &sink, DelayQuad &delay) const override
{
return false;
}
// Decal methods
virtual typename R::DecalGfxRangeT getDecalGraphics(DecalId decal) const override
{
return empty_if_possible<typename R::DecalGfxRangeT>();
};
virtual DecalXY getBelDecal(BelId bel) const override { return DecalXY(); }
virtual DecalXY getWireDecal(WireId wire) const override { return DecalXY(); }
virtual DecalXY getPipDecal(PipId pip) const override { return DecalXY(); }
virtual DecalXY getGroupDecal(GroupId group) const override { return DecalXY(); }
// Cell timing methods
virtual bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const override
{
return false;
}
virtual TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const override
{
return TMG_IGNORE;
}
virtual TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const override
{
NPNR_ASSERT_FALSE("unreachable");
}
// Placement validity checks
virtual bool isValidBelForCellType(IdString cell_type, BelId bel) const override
{
return cell_type == this->getBelType(bel);
}
virtual IdString getBelBucketName(BelBucketId bucket) const override { return bbid_to_name<BelBucketId>(bucket); }
virtual BelBucketId getBelBucketByName(IdString name) const override { return bbid_from_name<BelBucketId>(name); }
virtual BelBucketId getBelBucketForBel(BelId bel) const override
{
return getBelBucketForCellType(this->getBelType(bel));
};
virtual BelBucketId getBelBucketForCellType(IdString cell_type) const override
{
return getBelBucketByName(cell_type);
};
virtual bool isBelLocationValid(BelId bel, bool explain_invalid = false) const override { return true; }
virtual typename R::CellTypeRangeT getCellTypes() const override
{
NPNR_ASSERT(cell_types_initialised);
return return_if_match<const std::vector<IdString> &, typename R::CellTypeRangeT>(cell_types);
}
virtual typename R::BelBucketRangeT getBelBuckets() const override
{
NPNR_ASSERT(bel_buckets_initialised);
return return_if_match<const std::vector<BelBucketId> &, typename R::BelBucketRangeT>(bel_buckets);
}
virtual typename R::BucketBelRangeT getBelsInBucket(BelBucketId bucket) const override
{
NPNR_ASSERT(bel_buckets_initialised);
return return_if_match<const std::vector<BelId> &, typename R::BucketBelRangeT>(bucket_bels.at(bucket));
}
// Cluster methods
virtual CellInfo *getClusterRootCell(ClusterId cluster) const override { return get_cluster_root(this, cluster); }
virtual BoundingBox getClusterBounds(ClusterId cluster) const override
{
return if_using_basecluster<BoundingBox>(get_cluster_root(this, cluster), [](const BaseClusterInfo *cluster) {
BoundingBox bounds(0, 0, 0, 0);
for (auto child : cluster->constr_children) {
if_using_basecluster<void>(child, [&](const BaseClusterInfo *child) {
bounds.x0 = std::min(bounds.x0, child->constr_x);
bounds.y0 = std::min(bounds.y0, child->constr_y);
bounds.x1 = std::max(bounds.x1, child->constr_x);
bounds.y1 = std::max(bounds.y1, child->constr_y);
});
}
return bounds;
});
}
virtual Loc getClusterOffset(const CellInfo *cell) const override
{
return if_using_basecluster<Loc>(cell,
[](const BaseClusterInfo *c) { return Loc(c->constr_x, c->constr_y, 0); });
}
virtual bool isClusterStrict(const CellInfo *cell) const override { return true; }
virtual bool getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const override
{
CellInfo *root_cell = get_cluster_root(this, cluster);
return if_using_basecluster<bool>(root_cell, [&](const BaseClusterInfo *cluster) -> bool {
placement.clear();
NPNR_ASSERT(root_bel != BelId());
Loc root_loc = this->getBelLocation(root_bel);
if (cluster->constr_abs_z) {
// Coerce root to absolute z constraint
root_loc.z = cluster->constr_z;
root_bel = this->getBelByLocation(root_loc);
if (root_bel == BelId() || !this->isValidBelForCellType(root_cell->type, root_bel))
return false;
}
placement.emplace_back(root_cell, root_bel);
for (auto child : cluster->constr_children) {
Loc child_loc = if_using_basecluster<Loc>(child, [&](const BaseClusterInfo *child) {
Loc result;
result.x = root_loc.x + child->constr_x;
result.y = root_loc.y + child->constr_y;
result.z = child->constr_abs_z ? child->constr_z : (root_loc.z + child->constr_z);
return result;
});
BelId child_bel = this->getBelByLocation(child_loc);
if (child_bel == BelId() || !this->isValidBelForCellType(child->type, child_bel))
return false;
placement.emplace_back(child, child_bel);
}
return true;
});
}
// Flow methods
virtual void assignArchInfo() override{};
// --------------------------------------------------------------
// These structures are used to provide default implementations of bel/wire/pip binding. Arches might want to
// replace them with their own, for example to use faster access structures than dict. Arches might also
// want to add extra checks around these functions
dict<BelId, CellInfo *> base_bel2cell;
dict<WireId, NetInfo *> base_wire2net;
dict<PipId, NetInfo *> base_pip2net;
// For the default cell/bel bucket implementations
std::vector<IdString> cell_types;
std::vector<BelBucketId> bel_buckets;
dict<BelBucketId, std::vector<BelId>> bucket_bels;
// Arches that want to use the default cell types and bel buckets *must* call these functions in their constructor
bool cell_types_initialised = false;
bool bel_buckets_initialised = false;
void init_cell_types()
{
pool<IdString> bel_types;
for (auto bel : this->getBels())
bel_types.insert(this->getBelType(bel));
std::copy(bel_types.begin(), bel_types.end(), std::back_inserter(cell_types));
std::sort(cell_types.begin(), cell_types.end());
cell_types_initialised = true;
}
void init_bel_buckets()
{
for (auto cell_type : this->getCellTypes()) {
auto bucket = this->getBelBucketForCellType(cell_type);
bucket_bels[bucket]; // create empty bucket
}
for (auto bel : this->getBels()) {
auto bucket = this->getBelBucketForBel(bel);
bucket_bels[bucket].push_back(bel);
}
for (auto &b : bucket_bels)
bel_buckets.push_back(b.first);
std::sort(bel_buckets.begin(), bel_buckets.end());
bel_buckets_initialised = true;
}
};
NEXTPNR_NAMESPACE_END
#endif /* BASE_ARCH_H */