nextpnr/fpga_interchange/arch.cc

840 lines
28 KiB
C++
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Claire Wolf <claire@symbioticeda.com>
* Copyright (C) 2018-19 David Shah <david@symbioticeda.com>
* Copyright (C) 2021 Symbiflow Authors
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <algorithm>
#include <boost/algorithm/string.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <cmath>
#include <cstring>
#include <queue>
#include "constraints.impl.h"
#include "fpga_interchange.h"
#include "log.h"
#include "nextpnr.h"
#include "placer1.h"
#include "placer_heap.h"
#include "router1.h"
#include "router2.h"
#include "timing.h"
#include "util.h"
#include "xdc.h"
NEXTPNR_NAMESPACE_BEGIN
struct SiteBelPair
{
std::string site;
IdString bel;
SiteBelPair() {}
SiteBelPair(std::string site, IdString bel) : site(site), bel(bel) {}
bool operator==(const SiteBelPair &other) const { return site == other.site && bel == other.bel; }
};
NEXTPNR_NAMESPACE_END
template <> struct std::hash<NEXTPNR_NAMESPACE_PREFIX SiteBelPair>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX SiteBelPair &site_bel) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, std::hash<std::string>()(site_bel.site));
boost::hash_combine(seed, std::hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(site_bel.bel));
return seed;
}
};
NEXTPNR_NAMESPACE_BEGIN
static std::pair<std::string, std::string> split_identifier_name_dot(const std::string &name)
{
size_t first_dot = name.find('.');
NPNR_ASSERT(first_dot != std::string::npos);
return std::make_pair(name.substr(0, first_dot), name.substr(first_dot + 1));
};
// -----------------------------------------------------------------------
void IdString::initialize_arch(const BaseCtx *ctx) {}
// -----------------------------------------------------------------------
static const ChipInfoPOD *get_chip_info(const RelPtr<ChipInfoPOD> *ptr) { return ptr->get(); }
Arch::Arch(ArchArgs args) : args(args)
{
try {
blob_file.open(args.chipdb);
if (args.chipdb.empty() || !blob_file.is_open())
log_error("Unable to read chipdb %s\n", args.chipdb.c_str());
const char *blob = reinterpret_cast<const char *>(blob_file.data());
chip_info = get_chip_info(reinterpret_cast<const RelPtr<ChipInfoPOD> *>(blob));
} catch (...) {
log_error("Unable to read chipdb %s\n", args.chipdb.c_str());
}
// Read strings from constids into IdString database, checking that list
// is unique and matches expected constid value.
const RelSlice<RelPtr<char>> &constids = *chip_info->constids;
for (size_t i = 0; i < constids.size(); ++i) {
IdString::initialize_add(this, constids[i].get(), i + 1);
}
// Sanity check cell name ids.
const CellMapPOD &cell_map = *chip_info->cell_map;
int32_t first_cell_id = cell_map.cell_names[0];
for (int32_t i = 0; i < cell_map.cell_names.ssize(); ++i) {
log_assert(cell_map.cell_names[i] == i + first_cell_id);
}
io_port_types.emplace(this->id("$nextpnr_ibuf"));
io_port_types.emplace(this->id("$nextpnr_obuf"));
io_port_types.emplace(this->id("$nextpnr_iobuf"));
if (!this->args.package.empty()) {
IdString package = this->id(this->args.package);
package_index = -1;
for (size_t i = 0; i < chip_info->packages.size(); ++i) {
if (IdString(chip_info->packages[i].package) == package) {
NPNR_ASSERT(package_index == -1);
package_index = i;
}
}
if (package_index == -1) {
log_error("Could not find package '%s' in chipdb.\n", this->args.package.c_str());
}
} else {
// Default to first package.
NPNR_ASSERT(chip_info->packages.size() > 0);
if (chip_info->packages.size() == 1) {
IdString package_name(chip_info->packages[0].package);
this->args.package = package_name.str(this);
package_index = 0;
} else {
log_info(
"Package must be specified (with --package arg) when multiple packages are available, packages:\n");
for (const auto &package : chip_info->packages) {
log_info(" - %s\n", IdString(package.package).c_str(this));
}
log_error("--package is required!\n");
}
}
std::unordered_set<SiteBelPair> site_bel_pads;
for (const auto &package_pin : chip_info->packages[package_index].pins) {
IdString site(package_pin.site);
IdString bel(package_pin.bel);
site_bel_pads.emplace(SiteBelPair(site.str(this), bel));
}
for (BelId bel : getBels()) {
auto &bel_data = bel_info(chip_info, bel);
const SiteInstInfoPOD &site = chip_info->sites[chip_info->tiles[bel.tile].sites[bel_data.site]];
auto iter = site_bel_pads.find(SiteBelPair(site.site_name.get(), IdString(bel_data.name)));
if (iter != site_bel_pads.end()) {
pads.emplace(bel);
}
}
explain_constraints = false;
int tile_type_index = 0;
size_t max_tag_count = 0;
for (const TileTypeInfoPOD &tile_type : chip_info->tile_types) {
max_tag_count = std::max(max_tag_count, tile_type.tags.size());
auto &type_definition = constraints.definitions[tile_type_index++];
for (const ConstraintTagPOD &tag : tile_type.tags) {
type_definition.emplace_back();
auto &definition = type_definition.back();
definition.prefix = IdString(tag.tag_prefix);
definition.default_state = IdString(tag.default_state);
NPNR_ASSERT(tag.states.size() < kMaxState);
definition.states.reserve(tag.states.size());
for (auto state : tag.states) {
definition.states.push_back(IdString(state));
}
}
}
default_tags.resize(max_tag_count);
}
// -----------------------------------------------------------------------
std::string Arch::getChipName() const { return chip_info->name.get(); }
// -----------------------------------------------------------------------
IdString Arch::archArgsToId(ArchArgs args) const { return IdString(); }
// -----------------------------------------------------------------------
void Arch::setup_byname() const
{
if (tile_by_name.empty()) {
for (int i = 0; i < chip_info->tiles.ssize(); i++) {
tile_by_name[id(chip_info->tiles[i].name.get())] = i;
}
}
if (site_by_name.empty()) {
for (int i = 0; i < chip_info->tiles.ssize(); i++) {
auto &tile = chip_info->tiles[i];
auto &tile_type = chip_info->tile_types[tile.type];
for (int j = 0; j < tile_type.number_sites; j++) {
auto &site = chip_info->sites[tile.sites[j]];
site_by_name[id(site.name.get())] = std::make_pair(i, j);
}
}
}
}
BelId Arch::getBelByName(IdStringList name) const
{
BelId ret;
if (name.ids.size() != 2) {
return BelId();
}
setup_byname();
int tile, site;
std::tie(tile, site) = site_by_name.at(name.ids[0]);
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
IdString belname = name.ids[1];
for (int i = 0; i < tile_info.bel_data.ssize(); i++) {
if (tile_info.bel_data[i].site == site && tile_info.bel_data[i].name == belname.index) {
ret.tile = tile;
ret.index = i;
break;
}
}
return ret;
}
BelRange Arch::getBelsByTile(int x, int y) const
{
BelRange br;
br.b.cursor_tile = get_tile_index(x, y);
br.e.cursor_tile = br.b.cursor_tile;
br.b.cursor_index = 0;
br.e.cursor_index = chip_info->tile_types[chip_info->tiles[br.b.cursor_tile].type].bel_data.size();
br.b.chip = chip_info;
br.e.chip = chip_info;
if (br.b != br.e) {
++br.e;
}
return br;
}
WireId Arch::getBelPinWire(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
int pin_index = get_bel_pin_index(bel, pin);
auto &bel_data = bel_info(chip_info, bel);
NPNR_ASSERT(pin_index >= 0 && pin_index < bel_data.num_bel_wires);
const int32_t *wires = bel_data.wires.get();
int32_t wire_index = wires[pin_index];
if (wire_index < 0) {
// This BEL pin is not connected.
return WireId();
} else {
return canonical_wire(chip_info, bel.tile, wire_index);
}
}
PortType Arch::getBelPinType(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
int pin_index = get_bel_pin_index(bel, pin);
auto &bel_data = bel_info(chip_info, bel);
NPNR_ASSERT(pin_index >= 0 && pin_index < bel_data.num_bel_wires);
const int32_t *types = bel_data.types.get();
return PortType(types[pin_index]);
}
// -----------------------------------------------------------------------
WireId Arch::getWireByName(IdStringList name) const
{
WireId ret;
if (name.ids.size() != 2) {
return WireId();
}
setup_byname();
auto iter = site_by_name.find(name.ids[0]);
if (iter != site_by_name.end()) {
int tile;
int site;
std::tie(tile, site) = iter->second;
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
IdString wirename = name.ids[1];
for (int i = 0; i < tile_info.wire_data.ssize(); i++) {
if (tile_info.wire_data[i].site == site && tile_info.wire_data[i].name == wirename.index) {
ret.tile = tile;
ret.index = i;
break;
}
}
} else {
int tile = tile_by_name.at(name.ids[0]);
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
IdString wirename = name.ids[1];
for (int i = 0; i < tile_info.wire_data.ssize(); i++) {
if (tile_info.wire_data[i].site == -1 && tile_info.wire_data[i].name == wirename.index) {
int32_t node = chip_info->tiles[tile].tile_wire_to_node[i];
if (node == -1) {
// Not a nodal wire
ret.tile = tile;
ret.index = i;
} else {
// Is a nodal wire, set tile to -1
ret.tile = -1;
ret.index = node;
}
break;
}
}
}
return ret;
}
IdString Arch::getWireType(WireId wire) const { return id(""); }
std::vector<std::pair<IdString, std::string>> Arch::getWireAttrs(WireId wire) const { return {}; }
// -----------------------------------------------------------------------
PipId Arch::getPipByName(IdStringList name) const
{
// PIP name structure:
// Tile PIP: <tile name>/<source wire name>.<destination wire name>
// Site PIP: <site name>/<bel name>/<input bel pin name>
// Site pin: <site name>/<bel name>
// Psuedo site PIP: <site name>/<source wire name>.<destination wire name>
setup_byname();
if (name.ids.size() == 3) {
// This is a Site PIP.
IdString site_name = name.ids[0];
IdString belname = name.ids[1];
IdString pinname = name.ids[2];
int tile;
int site;
std::tie(tile, site) = site_by_name.at(site_name);
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
std::array<IdString, 2> ids{name.ids[0], belname};
BelId bel = getBelByName(IdStringList(ids));
NPNR_ASSERT(bel != BelId());
int pin_index = get_bel_pin_index(bel, pinname);
NPNR_ASSERT(pin_index >= 0);
for (int i = 0; i < tile_info.pip_data.ssize(); i++) {
if (tile_info.pip_data[i].site == site && tile_info.pip_data[i].bel == bel.index &&
tile_info.pip_data[i].extra_data == pin_index) {
PipId ret;
ret.tile = tile;
ret.index = i;
return ret;
}
}
} else {
auto iter = site_by_name.find(name.ids[0]);
if (iter != site_by_name.end()) {
// This is either a site pin or a psuedo site pip.
// psuedo site pips are <site>/<src site wire>.<dst site wire>
// site pins are <site>/<bel>
int tile;
int site;
std::tie(tile, site) = iter->second;
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
std::string pip_second = name.ids[1].str(this);
auto split = pip_second.find('.');
if (split == std::string::npos) {
// This is a site pin!
BelId bel = getBelByName(name);
NPNR_ASSERT(bel != BelId());
for (int i = 0; i < tile_info.pip_data.ssize(); i++) {
if (tile_info.pip_data[i].site == site && tile_info.pip_data[i].bel == bel.index) {
PipId ret;
ret.tile = tile;
ret.index = i;
return ret;
}
}
} else {
// This is a psuedo site pip!
IdString src_site_wire = id(pip_second.substr(0, split));
IdString dst_site_wire = id(pip_second.substr(split + 1));
int32_t src_index = -1;
int32_t dst_index = -1;
for (int i = 0; i < tile_info.wire_data.ssize(); i++) {
if (tile_info.wire_data[i].site == site && tile_info.wire_data[i].name == src_site_wire.index) {
src_index = i;
if (dst_index != -1) {
break;
}
}
if (tile_info.wire_data[i].site == site && tile_info.wire_data[i].name == dst_site_wire.index) {
dst_index = i;
if (src_index != -1) {
break;
}
}
}
NPNR_ASSERT(src_index != -1);
NPNR_ASSERT(dst_index != -1);
for (int i = 0; i < tile_info.pip_data.ssize(); i++) {
if (tile_info.pip_data[i].site == site && tile_info.pip_data[i].src_index == src_index &&
tile_info.pip_data[i].dst_index == dst_index) {
PipId ret;
ret.tile = tile;
ret.index = i;
return ret;
}
}
}
} else {
int tile = tile_by_name.at(name.ids[0]);
auto &tile_info = chip_info->tile_types[chip_info->tiles[tile].type];
std::string pip_second = name.ids[1].str(this);
auto spn = split_identifier_name_dot(pip_second);
auto src_wire_name = id(spn.first);
auto dst_wire_name = id(spn.second);
int32_t src_index = -1;
int32_t dst_index = -1;
for (int i = 0; i < tile_info.wire_data.ssize(); i++) {
if (tile_info.wire_data[i].site == -1 && tile_info.wire_data[i].name == src_wire_name.index) {
src_index = i;
if (dst_index != -1) {
break;
}
}
if (tile_info.wire_data[i].site == -1 && tile_info.wire_data[i].name == dst_wire_name.index) {
dst_index = i;
if (src_index != -1) {
break;
}
}
}
NPNR_ASSERT(src_index != -1);
NPNR_ASSERT(dst_index != -1);
for (int i = 0; i < tile_info.pip_data.ssize(); i++) {
if (tile_info.pip_data[i].src_index == src_index && tile_info.pip_data[i].dst_index == dst_index) {
PipId ret;
ret.tile = tile;
ret.index = i;
return ret;
}
}
}
}
return PipId();
}
IdStringList Arch::getPipName(PipId pip) const
{
// PIP name structure:
// Tile PIP: <tile name>/<source wire name>.<destination wire name>
// Psuedo site PIP: <site name>/<input site wire>.<output site wire>
// Site PIP: <site name>/<bel name>/<input bel pin name>
// Site pin: <site name>/<bel name>
NPNR_ASSERT(pip != PipId());
auto &tile = chip_info->tiles[pip.tile];
auto &tile_type = loc_info(chip_info, pip);
auto &pip_info = tile_type.pip_data[pip.index];
if (pip_info.site != -1) {
// This is either a site pin or a site pip.
auto &site = chip_info->sites[tile.sites[pip_info.site]];
auto &bel = tile_type.bel_data[pip_info.bel];
IdString bel_name(bel.name);
if (bel.category == BEL_CATEGORY_LOGIC) {
// This is a psuedo pip
IdString src_wire_name = IdString(tile_type.wire_data[pip_info.src_index].name);
IdString dst_wire_name = IdString(tile_type.wire_data[pip_info.dst_index].name);
IdString pip = id(src_wire_name.str(this) + "." + dst_wire_name.str(this));
std::array<IdString, 2> ids{id(site.name.get()), pip};
return IdStringList(ids);
} else if (bel.category == BEL_CATEGORY_ROUTING) {
// This is a site pip.
IdString pin_name(bel.ports[pip_info.extra_data]);
std::array<IdString, 3> ids{id(site.name.get()), bel_name, pin_name};
return IdStringList(ids);
} else {
NPNR_ASSERT(bel.category == BEL_CATEGORY_SITE_PORT);
// This is a site pin, just the name of the BEL is a unique identifier.
std::array<IdString, 2> ids{id(site.name.get()), bel_name};
return IdStringList(ids);
}
} else {
// This is a tile pip.
IdString src_wire_name = IdString(tile_type.wire_data[pip_info.src_index].name);
IdString dst_wire_name = IdString(tile_type.wire_data[pip_info.dst_index].name);
IdString pip = id(src_wire_name.str(this) + "." + dst_wire_name.str(this));
std::array<IdString, 2> ids{id(std::string(tile.name.get())), pip};
return IdStringList(ids);
}
}
IdString Arch::getPipType(PipId pip) const { return id("PIP"); }
std::vector<std::pair<IdString, std::string>> Arch::getPipAttrs(PipId pip) const { return {}; }
// -----------------------------------------------------------------------
BelId Arch::getBelByLocation(Loc loc) const
{
BelId bi;
if (loc.x >= chip_info->width || loc.y >= chip_info->height)
return BelId();
bi.tile = get_tile_index(loc);
auto &li = loc_info(chip_info, bi);
if (loc.z >= li.bel_data.ssize()) {
return BelId();
} else {
bi.index = loc.z;
return bi;
}
}
std::vector<std::pair<IdString, std::string>> Arch::getBelAttrs(BelId bel) const { return {}; }
// -----------------------------------------------------------------------
ArcBounds Arch::getRouteBoundingBox(WireId src, WireId dst) const
{
int dst_tile = dst.tile == -1 ? chip_info->nodes[dst.index].tile_wires[0].tile : dst.tile;
int src_tile = src.tile == -1 ? chip_info->nodes[src.index].tile_wires[0].tile : src.tile;
int x0, x1, y0, y1;
x0 = src_tile % chip_info->width;
x1 = x0;
y0 = src_tile / chip_info->width;
y1 = y0;
auto expand = [&](int x, int y) {
x0 = std::min(x0, x);
x1 = std::max(x1, x);
y0 = std::min(y0, y);
y1 = std::max(y1, y);
};
expand(dst_tile % chip_info->width, dst_tile / chip_info->width);
if (source_locs.count(src))
expand(source_locs.at(src).x, source_locs.at(src).y);
if (sink_locs.count(dst)) {
expand(sink_locs.at(dst).x, sink_locs.at(dst).y);
}
return {x0, y0, x1, y1};
}
bool Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const { return false; }
// -----------------------------------------------------------------------
bool Arch::pack()
{
pack_ports();
return true;
}
bool Arch::place()
{
std::string placer = str_or_default(settings, id("placer"), defaultPlacer);
if (placer == "heap") {
PlacerHeapCfg cfg(getCtx());
cfg.criticalityExponent = 7;
cfg.alpha = 0.08;
cfg.beta = 0.4;
cfg.placeAllAtOnce = true;
cfg.hpwl_scale_x = 1;
cfg.hpwl_scale_y = 2;
cfg.spread_scale_x = 2;
cfg.spread_scale_y = 1;
cfg.solverTolerance = 0.6e-6;
if (!placer_heap(getCtx(), cfg))
return false;
} else if (placer == "sa") {
if (!placer1(getCtx(), Placer1Cfg(getCtx())))
return false;
} else {
log_error("FPGA interchange architecture does not support placer '%s'\n", placer.c_str());
}
getCtx()->attrs[getCtx()->id("step")] = std::string("place");
archInfoToAttributes();
return true;
}
bool Arch::route()
{
std::string router = str_or_default(settings, id("router"), defaultRouter);
bool result;
if (router == "router1") {
result = router1(getCtx(), Router1Cfg(getCtx()));
} else if (router == "router2") {
router2(getCtx(), Router2Cfg(getCtx()));
result = true;
} else {
log_error("FPGA interchange architecture does not support router '%s'\n", router.c_str());
}
getCtx()->attrs[getCtx()->id("step")] = std::string("route");
archInfoToAttributes();
return result;
}
// -----------------------------------------------------------------------
std::vector<GraphicElement> Arch::getDecalGraphics(DecalId decal) const { return {}; }
DecalXY Arch::getBelDecal(BelId bel) const
{
DecalXY decalxy;
return decalxy;
}
DecalXY Arch::getWireDecal(WireId wire) const
{
DecalXY decalxy;
return decalxy;
}
DecalXY Arch::getPipDecal(PipId pip) const { return {}; };
DecalXY Arch::getGroupDecal(GroupId pip) const { return {}; };
// -----------------------------------------------------------------------
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
// FIXME: Implement something to push the A* router in the right direction.
return 0;
}
delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
{
// FIXME: Implement when adding timing-driven place and route.
return 0;
}
bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const
{
// FIXME: Implement when adding timing-driven place and route.
return false;
}
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const
{
// FIXME: Implement when adding timing-driven place and route.
return TMG_IGNORE;
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const
{
// FIXME: Implement when adding timing-driven place and route.
TimingClockingInfo info;
return info;
}
// -----------------------------------------------------------------------
void Arch::read_logical_netlist(const std::string &filename)
{
FpgaInterchange::read_logical_netlist(getCtx(), filename);
}
void Arch::write_physical_netlist(const std::string &filename) const
{
FpgaInterchange::write_physical_netlist(getCtx(), filename);
}
void Arch::parse_xdc(const std::string &filename)
{
TclInterp interp(getCtx());
auto result = Tcl_EvalFile(interp.interp, filename.c_str());
if (result != TCL_OK) {
log_error("Error in %s:%d => %s\n", filename.c_str(), Tcl_GetErrorLine(interp.interp),
Tcl_GetStringResult(interp.interp));
}
}
std::string Arch::get_part() const
{
// FIXME: Need a map between device / package / speed grade and part.
return chip_info->name.get() + args.package + "-1";
}
// -----------------------------------------------------------------------
#ifdef WITH_HEAP
const std::string Arch::defaultPlacer = "heap";
#else
const std::string Arch::defaultPlacer = "sa";
#endif
const std::vector<std::string> Arch::availablePlacers = {"sa",
#ifdef WITH_HEAP
"heap"
#endif
};
const std::string Arch::defaultRouter = "router2";
const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
void Arch::map_cell_pins(CellInfo *cell, int32_t mapping) const
{
cell->cell_mapping = mapping;
cell->cell_bel_pins.clear();
const CellBelMapPOD &cell_pin_map = chip_info->cell_map->cell_bel_map[mapping];
for (const auto &pin_map : cell_pin_map.common_pins) {
IdString cell_pin(pin_map.cell_pin);
IdString bel_pin(pin_map.bel_pin);
if (cell_pin.str(this) == "GND") {
// FIXME: Tie this pin to the GND net
continue;
}
if (cell_pin.str(this) == "VCC") {
// FIXME: Tie this pin to the VCC net
continue;
}
cell->cell_bel_pins[cell_pin].push_back(bel_pin);
}
for (const auto &parameter_pin_map : cell_pin_map.parameter_pins) {
IdString param_key(parameter_pin_map.key);
std::string param_value = IdString(parameter_pin_map.value).c_str(this);
auto iter = cell->params.find(param_key);
if (iter == cell->params.end()) {
continue;
}
if (param_value != iter->second.as_string()) {
continue;
}
for (const auto &pin_map : parameter_pin_map.pins) {
IdString cell_pin(pin_map.cell_pin);
IdString bel_pin(pin_map.bel_pin);
if (cell_pin.str(this) == "GND") {
// FIXME: Tie this pin to the GND net
continue;
}
if (cell_pin.str(this) == "VCC") {
// FIXME: Tie this pin to the VCC net
continue;
}
cell->cell_bel_pins[cell_pin].push_back(bel_pin);
}
}
}
void Arch::map_port_pins(BelId bel, CellInfo *cell) const
{
IdStringRange pins = getBelPins(bel);
NPNR_ASSERT(pins.begin() != pins.end());
auto b = pins.begin();
IdString pin = *b;
++b;
NPNR_ASSERT(b == pins.end());
NPNR_ASSERT(cell->ports.size() == 1);
cell->cell_bel_pins[cell->ports.begin()->first].clear();
cell->cell_bel_pins[cell->ports.begin()->first].push_back(pin);
}
bool Arch::is_net_within_site(const NetInfo &net) const
{
if (net.driver.cell == nullptr || net.driver.cell->bel == BelId()) {
return false;
}
BelId driver = net.driver.cell->bel;
int32_t site = bel_info(chip_info, driver).site;
NPNR_ASSERT(site >= 0);
for (const auto &user : net.users) {
if (user.cell == nullptr || user.cell->bel == BelId()) {
return false;
}
BelId user_bel = user.cell->bel;
if (user_bel.tile != driver.tile) {
return false;
}
if (bel_info(chip_info, user_bel).site != site) {
return false;
}
}
return true;
}
// Instance constraint templates.
template void Arch::ArchConstraints::bindBel(Arch::ArchConstraints::TagState *, const Arch::ConstraintRange);
template void Arch::ArchConstraints::unbindBel(Arch::ArchConstraints::TagState *, const Arch::ConstraintRange);
template bool Arch::ArchConstraints::isValidBelForCellType(const Context *, uint32_t,
const Arch::ArchConstraints::TagState *,
const Arch::ConstraintRange, IdString, IdString, BelId,
bool) const;
NEXTPNR_NAMESPACE_END