nextpnr/common/timing.cc

919 lines
45 KiB
C++
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
2018-08-07 03:14:00 +08:00
* Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "timing.h"
#include <algorithm>
2018-08-07 08:35:23 +08:00
#include <boost/range/adaptor/reversed.hpp>
2018-08-09 17:00:24 +08:00
#include <deque>
#include <map>
#include <unordered_map>
#include <utility>
#include "log.h"
2018-07-21 16:55:20 +08:00
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct ClockEvent
{
IdString clock;
ClockEdge edge;
bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; }
};
struct ClockPair
{
ClockEvent start, end;
bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; }
};
} // namespace
NEXTPNR_NAMESPACE_END
namespace std {
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockEvent &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(obj.clock));
boost::hash_combine(seed, hash<int>()(int(obj.edge)));
return seed;
}
};
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockPair>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockPair &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
return seed;
}
};
} // namespace std
NEXTPNR_NAMESPACE_BEGIN
2018-08-04 14:42:25 +08:00
typedef std::vector<const PortRef *> PortRefVector;
typedef std::map<int, unsigned> DelayFrequency;
2018-07-25 00:20:07 +08:00
struct CriticalPath
{
PortRefVector ports;
delay_t path_delay;
delay_t path_period;
};
typedef std::unordered_map<ClockPair, CriticalPath> CriticalPathMap;
typedef std::unordered_map<IdString, NetCriticalityInfo> NetCriticalityMap;
2018-08-04 13:39:25 +08:00
struct Timing
{
2018-08-04 13:39:25 +08:00
Context *ctx;
bool net_delays;
2018-08-04 13:39:25 +08:00
bool update;
delay_t min_slack;
CriticalPathMap *crit_path;
DelayFrequency *slack_histogram;
IdString async_clock;
NetCriticalityMap *net_crit;
2018-08-07 08:35:23 +08:00
struct TimingData
{
TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
delay_t max_arrival;
unsigned max_path_length = 0;
delay_t min_remaining_budget;
bool false_startpoint = false;
std::vector<delay_t> min_required;
std::unordered_map<ClockEvent, delay_t> arrival_time;
};
Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr,
DelayFrequency *slack_histogram = nullptr, NetCriticalityMap *net_crit = nullptr)
2018-08-06 22:19:32 +08:00
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq),
crit_path(crit_path), slack_histogram(slack_histogram), net_crit(net_crit),
async_clock(ctx->id("$async$"))
2018-08-04 14:42:25 +08:00
{
}
2018-08-04 13:39:25 +08:00
delay_t walk_paths()
{
const auto clk_period = ctx->getDelayFromNS(1.0e9 / ctx->target_freq).maxDelay();
2018-08-04 14:42:25 +08:00
2018-08-08 23:01:24 +08:00
// First, compute the topographical order of nets to walk through the circuit, assuming it is a _acyclic_ graph
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
2018-08-07 08:35:23 +08:00
std::vector<NetInfo *> topographical_order;
std::unordered_map<const NetInfo *, std::unordered_map<ClockEvent, TimingData>> net_data;
2018-08-08 23:01:24 +08:00
// In lieu of deleting edges from the graph, simply count the number of fanins to each output port
2018-08-07 08:35:23 +08:00
std::unordered_map<const PortInfo *, unsigned> port_fanin;
std::vector<IdString> input_ports;
2018-08-07 08:35:23 +08:00
std::vector<const PortInfo *> output_ports;
for (auto &cell : ctx->cells) {
input_ports.clear();
output_ports.clear();
2018-08-07 08:35:23 +08:00
for (auto &port : cell.second->ports) {
if (!port.second.net)
continue;
if (port.second.type == PORT_OUT)
output_ports.push_back(&port.second);
else
input_ports.push_back(port.first);
}
for (auto o : output_ports) {
int clocks = 0;
TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clocks);
// If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing
// start-point
if (portClass == TMG_REGISTER_OUTPUT) {
topographical_order.emplace_back(o->net);
for (int i = 0; i < clocks; i++) {
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(cell.second.get(), o->name, i);
const NetInfo *clknet = get_net_or_empty(cell.second.get(), clkInfo.clock_port);
IdString clksig = clknet ? clknet->name : async_clock;
net_data[o->net][ClockEvent{clksig, clknet ? clkInfo.edge : RISING_EDGE}] =
TimingData{clkInfo.clockToQ.maxDelay()};
}
2018-08-07 08:35:23 +08:00
} else {
if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) {
topographical_order.emplace_back(o->net);
TimingData td;
td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE);
td.max_arrival = 0;
net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
}
// Don't analyse paths from a clock input to other pins - they will be considered by the
// special-case handling register input/output class ports
if (portClass == TMG_CLOCK_INPUT)
continue;
// Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and
// the current output port, increment fanin counter
for (auto i : input_ports) {
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
if (is_path)
port_fanin[o]++;
}
}
}
}
2018-08-07 08:35:23 +08:00
std::deque<NetInfo *> queue(topographical_order.begin(), topographical_order.end());
2018-08-08 23:01:24 +08:00
// Now walk the design, from the start points identified previously, building up a topographical order
while (!queue.empty()) {
const auto net = queue.front();
queue.pop_front();
for (auto &usr : net->users) {
int user_clocks;
TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, user_clocks);
if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT)
continue;
2018-08-07 08:35:23 +08:00
for (auto &port : usr.cell->ports) {
2018-08-07 10:53:42 +08:00
if (port.second.type != PORT_OUT || !port.second.net)
continue;
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, port_clocks);
2018-08-07 10:53:42 +08:00
// Skip if this is a clocked output (but allow non-clocked ones)
if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE ||
portClass == TMG_GEN_CLOCK)
2018-08-07 10:53:42 +08:00
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
// Decrement the fanin count, and only add to topographical order if all its fanins have already
// been visited
2018-08-07 10:53:42 +08:00
auto it = port_fanin.find(&port.second);
NPNR_ASSERT(it != port_fanin.end());
if (--it->second == 0) {
topographical_order.emplace_back(port.second.net);
queue.emplace_back(port.second.net);
port_fanin.erase(it);
}
}
}
}
2018-08-08 23:01:24 +08:00
// Sanity check to ensure that all ports where fanins were recorded were indeed visited
if (!port_fanin.empty()) {
for (auto fanin : port_fanin) {
NetInfo *net = fanin.first->net;
if (net != nullptr) {
log_info(" remaining fanin includes %s (net %s)\n", fanin.first->name.c_str(ctx),
net->name.c_str(ctx));
if (net->driver.cell != nullptr)
log_info(" driver = %s.%s\n", net->driver.cell->name.c_str(ctx),
net->driver.port.c_str(ctx));
for (auto net_user : net->users)
log_info(" user: %s.%s\n", net_user.cell->name.c_str(ctx), net_user.port.c_str(ctx));
} else {
log_info(" remaining fanin includes %s (no net)\n", fanin.first->name.c_str(ctx));
}
}
if (ctx->force)
log_warning("timing analysis failed due to presence of combinatorial loops, incomplete specification "
"of timing ports, etc.\n");
else
log_error("timing analysis failed due to presence of combinatorial loops, incomplete specification of "
"timing ports, etc.\n");
}
2018-08-08 23:01:24 +08:00
// Go forwards topographically to find the maximum arrival time and max path length for each net
for (auto net : topographical_order) {
if (!net_data.count(net))
continue;
auto &nd_map = net_data.at(net);
for (auto &startdomain : nd_map) {
ClockEvent start_clk = startdomain.first;
auto &nd = startdomain.second;
if (nd.false_startpoint)
continue;
const auto net_arrival = nd.max_arrival;
const auto net_length_plus_one = nd.max_path_length + 1;
nd.min_remaining_budget = clk_period;
for (auto &usr : net->users) {
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto usr_arrival = net_arrival + net_delay;
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE ||
portClass == TMG_CLOCK_INPUT) {
// Skip
} else {
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
// Iterate over all output ports on the same cell as the sink
for (auto port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayInfo comb_delay;
// Look up delay through this path
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
auto &data = net_data[port.second.net][start_clk];
auto &arrival = data.max_arrival;
arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
if (!budget_override) { // Do not increment path length if budget overriden since it doesn't
// require a share of the slack
auto &path_length = data.max_path_length;
path_length = std::max(path_length, net_length_plus_one);
}
}
}
}
}
}
std::unordered_map<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets;
2018-08-07 05:14:41 +08:00
// Now go backwards topographically to determine the minimum path slack, and to distribute all path slack evenly
// between all nets on the path
for (auto net : boost::adaptors::reverse(topographical_order)) {
if (!net_data.count(net))
continue;
auto &nd_map = net_data.at(net);
for (auto &startdomain : nd_map) {
auto &nd = startdomain.second;
// Ignore false startpoints
if (nd.false_startpoint)
continue;
const delay_t net_length_plus_one = nd.max_path_length + 1;
auto &net_min_remaining_budget = nd.min_remaining_budget;
for (auto &usr : net->users) {
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
const auto net_arrival = nd.max_arrival;
const auto endpoint_arrival = net_arrival + net_delay + setup;
delay_t period;
// Set default period
if (edge == startdomain.first.edge) {
period = clk_period;
} else {
period = clk_period / 2;
}
if (clksig != async_clock) {
if (ctx->nets.at(clksig)->clkconstr) {
if (edge == startdomain.first.edge) {
// same edge
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
} else if (edge == RISING_EDGE) {
// falling -> rising
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
} else if (edge == FALLING_EDGE) {
// rising -> falling
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
}
}
}
auto path_budget = period - endpoint_arrival;
if (update) {
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget =
std::min(net_min_remaining_budget, path_budget - budget_share);
}
if (path_budget < min_slack)
min_slack = path_budget;
if (slack_histogram) {
int slack_ps = ctx->getDelayNS(path_budget) * 1000;
(*slack_histogram)[slack_ps]++;
}
ClockEvent dest_ev{clksig, edge};
ClockPair clockPair{startdomain.first, dest_ev};
nd.arrival_time[dest_ev] = std::max(nd.arrival_time[dest_ev], endpoint_arrival);
if (crit_path) {
if (!crit_nets.count(clockPair) || crit_nets.at(clockPair).first < endpoint_arrival) {
crit_nets[clockPair] = std::make_pair(endpoint_arrival, net);
(*crit_path)[clockPair].path_delay = endpoint_arrival;
(*crit_path)[clockPair].path_period = period;
(*crit_path)[clockPair].ports.clear();
(*crit_path)[clockPair].ports.push_back(&usr);
}
}
};
if (portClass == TMG_REGISTER_INPUT) {
for (int i = 0; i < port_clocks; i++) {
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, i);
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
IdString clksig = clknet ? clknet->name : async_clock;
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, clkInfo.setup.maxDelay());
}
} else {
process_endpoint(async_clock, RISING_EDGE, 0);
}
} else if (update) {
// Iterate over all output ports on the same cell as the sink
for (const auto &port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
if (net_data.count(port.second.net) &&
net_data.at(port.second.net).count(startdomain.first)) {
auto path_budget =
net_data.at(port.second.net).at(startdomain.first).min_remaining_budget;
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget =
std::min(net_min_remaining_budget, path_budget - budget_share);
}
2018-08-07 05:14:41 +08:00
}
}
}
}
}
2018-08-07 05:14:41 +08:00
if (crit_path) {
// Walk backwards from the most critical net
for (auto crit_pair : crit_nets) {
NetInfo *crit_net = crit_pair.second.second;
auto &cp_ports = (*crit_path)[crit_pair.first].ports;
while (crit_net) {
const PortInfo *crit_ipin = nullptr;
delay_t max_arrival = std::numeric_limits<delay_t>::min();
// Look at all input ports on its driving cell
for (const auto &port : crit_net->driver.cell->ports) {
if (port.second.type != PORT_IN || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path =
ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
if (!is_path)
continue;
// If input port is influenced by a clock, skip
int port_clocks;
TimingPortClass portClass =
ctx->getPortTimingClass(crit_net->driver.cell, port.first, port_clocks);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_CLOCK_INPUT ||
portClass == TMG_ENDPOINT || portClass == TMG_IGNORE)
continue;
2018-08-07 05:14:41 +08:00
// And find the fanin net with the latest arrival time
if (net_data.count(port.second.net) &&
net_data.at(port.second.net).count(crit_pair.first.start)) {
const auto net_arrival = net_data.at(port.second.net).at(crit_pair.first.start).max_arrival;
if (net_arrival > max_arrival) {
max_arrival = net_arrival;
crit_ipin = &port.second;
}
}
2018-08-07 05:14:41 +08:00
}
if (!crit_ipin)
2018-08-07 05:14:41 +08:00
break;
// Now convert PortInfo* into a PortRef*
for (auto &usr : crit_ipin->net->users) {
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
cp_ports.push_back(&usr);
break;
}
2018-08-07 05:14:41 +08:00
}
crit_net = crit_ipin->net;
2018-08-07 05:14:41 +08:00
}
std::reverse(cp_ports.begin(), cp_ports.end());
2018-08-07 05:14:41 +08:00
}
}
if (net_crit) {
NPNR_ASSERT(crit_path);
// Go through in reverse topographical order to set required times
for (auto net : boost::adaptors::reverse(topographical_order)) {
if (!net_data.count(net))
continue;
auto &nd_map = net_data.at(net);
for (auto &startdomain : nd_map) {
auto &nd = startdomain.second;
if (nd.false_startpoint)
continue;
const delay_t net_length_plus_one = nd.max_path_length + 1;
auto &net_min_remaining_budget = nd.min_remaining_budget;
if (nd.min_required.empty())
nd.min_required.resize(net->users.size(), std::numeric_limits<delay_t>::max());
delay_t net_min_required = std::numeric_limits<delay_t>::max();
for (size_t i = 0; i < net->users.size(); i++) {
auto &usr = net->users.at(i);
auto net_delay = ctx->getNetinfoRouteDelay(net, usr);
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
delay_t period;
// Set default period
if (edge == startdomain.first.edge) {
period = clk_period;
} else {
period = clk_period / 2;
}
if (clksig != async_clock) {
if (ctx->nets.at(clksig)->clkconstr) {
if (edge == startdomain.first.edge) {
// same edge
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
} else if (edge == RISING_EDGE) {
// falling -> rising
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
} else if (edge == FALLING_EDGE) {
// rising -> falling
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
}
}
}
nd.min_required.at(i) = std::min(period - setup, nd.min_required.at(i));
};
if (portClass == TMG_REGISTER_INPUT) {
for (int j = 0; j < port_clocks; j++) {
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, j);
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
IdString clksig = clknet ? clknet->name : async_clock;
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE,
clkInfo.setup.maxDelay());
}
} else {
process_endpoint(async_clock, RISING_EDGE, 0);
}
}
net_min_required = std::min(net_min_required, nd.min_required.at(i) - net_delay);
}
PortRef &drv = net->driver;
if (drv.cell == nullptr)
continue;
for (const auto &port : drv.cell->ports) {
if (port.second.type != PORT_IN || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(drv.cell, port.first, drv.port, comb_delay);
if (!is_path)
continue;
NetInfo *sink_net = port.second.net;
if (net_data.count(sink_net) && net_data.at(sink_net).count(startdomain.first)) {
auto &sink_nd = net_data.at(sink_net).at(startdomain.first);
if (sink_nd.min_required.empty())
sink_nd.min_required.resize(sink_net->users.size(),
std::numeric_limits<delay_t>::max());
for (size_t i = 0; i < sink_net->users.size(); i++) {
auto &user = sink_net->users.at(i);
if (user.cell == drv.cell && user.port == port.first) {
sink_nd.min_required.at(i) = net_min_required - comb_delay.maxDelay();
break;
}
}
}
}
}
}
std::unordered_map<ClockEvent, delay_t> worst_slack;
// Assign slack values
for (auto &net_entry : net_data) {
const NetInfo *net = net_entry.first;
for (auto &startdomain : net_entry.second) {
auto &nd = startdomain.second;
if (nd.min_required.empty())
continue;
auto &nc = (*net_crit)[net->name];
if (nc.slack.empty())
nc.slack.resize(net->users.size(), std::numeric_limits<delay_t>::max());
for (size_t i = 0; i < net->users.size(); i++) {
delay_t slack = nd.min_required.at(i) -
(nd.max_arrival + ctx->getNetinfoRouteDelay(net, net->users.at(i)));
if (worst_slack.count(startdomain.first))
worst_slack.at(startdomain.first) = std::min(worst_slack.at(startdomain.first), slack);
else
worst_slack[startdomain.first] = slack;
nc.slack.at(i) = std::min(nc.slack.at(i), slack);
}
}
}
// Assign criticality values
for (auto &net_entry : net_data) {
const NetInfo *net = net_entry.first;
for (auto &startdomain : net_entry.second) {
auto &nd = startdomain.second;
if (nd.min_required.empty())
continue;
auto &nc = (*net_crit)[net->name];
if (nc.slack.empty())
continue;
if (nc.criticality.empty())
nc.criticality.resize(net->users.size(), 0);
// Only consider intra-clock paths for criticality
if (!crit_path->count(ClockPair{startdomain.first, startdomain.first}))
continue;
delay_t dmax = crit_path->at(ClockPair{startdomain.first, startdomain.first}).path_delay;
for (size_t i = 0; i < net->users.size(); i++) {
float criticality = 1.0 - ((nc.slack.at(i) - worst_slack.at(startdomain.first)) / dmax);
nc.criticality.at(i) = std::max(nc.criticality.at(i), criticality);
}
nc.max_path_length = std::max(nc.max_path_length, nd.max_path_length);
nc.cd_worst_slack = std::min(nc.cd_worst_slack, worst_slack.at(startdomain.first));
}
}
}
2018-08-04 13:39:25 +08:00
return min_slack;
}
2018-08-04 13:39:25 +08:00
void assign_budget()
{
// Clear delays to a very high value first
for (auto &net : ctx->nets) {
for (auto &usr : net.second->users) {
usr.budget = std::numeric_limits<delay_t>::max();
}
}
2018-08-04 13:39:25 +08:00
walk_paths();
}
};
void assign_budget(Context *ctx, bool quiet)
{
if (!quiet) {
log_break();
2018-08-06 22:19:32 +08:00
log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n", ctx->target_freq / 1e6);
}
Timing timing(ctx, ctx->slack_redist_iter > 0 /* net_delays */, true /* update */);
2018-08-04 13:39:25 +08:00
timing.assign_budget();
if (!quiet || ctx->verbose) {
2018-07-29 03:50:21 +08:00
for (auto &net : ctx->nets) {
for (auto &user : net.second->users) {
// Post-update check
2018-08-04 10:53:32 +08:00
if (!ctx->auto_freq && user.budget < 0)
log_info("port %s.%s, connected to net '%s', has negative "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
else if (ctx->debug)
log_info("port %s.%s, connected to net '%s', has "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
}
2018-07-21 16:55:20 +08:00
}
}
// For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the
// currently achieved maximum
2018-08-04 10:53:32 +08:00
if (ctx->auto_freq && ctx->slack_redist_iter > 0) {
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq);
ctx->target_freq = 1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack);
2018-08-04 13:39:25 +08:00
if (ctx->verbose)
log_info("minimum slack for this assign = %.2f ns, target Fmax for next "
2018-08-04 14:42:25 +08:00
"update = %.2f MHz\n",
ctx->getDelayNS(timing.min_slack), ctx->target_freq / 1e6);
}
if (!quiet)
log_info("Checksum: 0x%08x\n", ctx->checksum());
2018-07-21 16:55:20 +08:00
}
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure)
{
auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
std::string value;
if (e.clock == ctx->id("$async$"))
value = std::string("<async>");
else
value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
if (int(value.length()) < field_width)
value.insert(value.length(), field_width - int(value.length()), ' ');
return value;
};
CriticalPathMap crit_paths;
DelayFrequency slack_histogram;
2018-08-04 13:39:25 +08:00
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
2018-08-04 14:42:25 +08:00
print_histogram ? &slack_histogram : nullptr);
timing.walk_paths();
std::map<IdString, std::pair<ClockPair, CriticalPath>> clock_reports;
std::map<IdString, double> clock_fmax;
std::vector<ClockPair> xclock_paths;
std::set<IdString> empty_clocks; // set of clocks with no interior paths
if (print_path || print_fmax) {
for (auto path : crit_paths) {
const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end;
empty_clocks.insert(a.clock);
empty_clocks.insert(b.clock);
}
for (auto path : crit_paths) {
const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end;
if (a.clock != b.clock || a.clock == ctx->id("$async$"))
continue;
double Fmax;
empty_clocks.erase(a.clock);
if (a.edge == b.edge)
Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
else
Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) {
clock_reports[a.clock] = path;
clock_fmax[a.clock] = Fmax;
}
}
for (auto &path : crit_paths) {
const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end;
if (a.clock == b.clock && a.clock != ctx->id("$async$"))
continue;
xclock_paths.push_back(path.first);
}
if (clock_reports.empty()) {
log_warning("No clocks found in design");
}
std::sort(xclock_paths.begin(), xclock_paths.end(), [ctx](const ClockPair &a, const ClockPair &b) {
if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
return true;
if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
return false;
if (a.start.edge < b.start.edge)
return true;
if (a.start.edge > b.start.edge)
return false;
if (a.end.clock.str(ctx) < b.end.clock.str(ctx))
return true;
if (a.end.clock.str(ctx) > b.end.clock.str(ctx))
return false;
if (a.end.edge < b.end.edge)
return true;
return false;
});
}
if (print_path) {
auto print_path_report = [ctx](ClockPair &clocks, PortRefVector &crit_path) {
delay_t total = 0, logic_total = 0, route_total = 0;
auto &front = crit_path.front();
auto &front_port = front->cell->ports.at(front->port);
auto &front_driver = front_port.net->driver;
int port_clocks;
auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);
IdString last_port = front_driver.port;
if (portClass == TMG_REGISTER_OUTPUT) {
for (int i = 0; i < port_clocks; i++) {
TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port);
if (clknet != nullptr && clknet->name == clocks.start.clock &&
clockInfo.edge == clocks.start.edge) {
last_port = clockInfo.clock_port;
total += clockInfo.clockToQ.maxDelay();
logic_total += clockInfo.clockToQ.maxDelay();
break;
}
}
}
log_info("curr total\n");
for (auto sink : crit_path) {
auto sink_cell = sink->cell;
auto &port = sink_cell->ports.at(sink->port);
auto net = port.net;
auto &driver = net->driver;
auto driver_cell = driver.cell;
DelayInfo comb_delay;
if (last_port == driver.port) {
// Case where we start with a STARTPOINT etc
comb_delay = ctx->getDelayFromNS(0);
} else {
ctx->getCellDelay(sink_cell, last_port, driver.port, comb_delay);
}
total += comb_delay.maxDelay();
logic_total += comb_delay.maxDelay();
log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total),
driver_cell->name.c_str(ctx), driver.port.c_str(ctx));
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
total += net_delay;
route_total += net_delay;
auto driver_loc = ctx->getBelLocation(driver_cell->bel);
auto sink_loc = ctx->getBelLocation(sink_cell->bel);
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(net_delay),
ctx->getDelayNS(total), net->name.c_str(ctx), ctx->getDelayNS(sink->budget), driver_loc.x,
driver_loc.y, sink_loc.x, sink_loc.y);
log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx));
if (ctx->verbose) {
auto driver_wire = ctx->getNetinfoSourceWire(net);
auto sink_wire = ctx->getNetinfoSinkWire(net, *sink);
log_info(" prediction: %f ns estimate: %f ns\n",
ctx->getDelayNS(ctx->predictDelay(net, *sink)),
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
auto cursor = sink_wire;
delay_t delay;
while (driver_wire != cursor) {
auto it = net->wires.find(cursor);
assert(it != net->wires.end());
auto pip = it->second.pip;
NPNR_ASSERT(pip != PipId());
delay = ctx->getPipDelay(pip).maxDelay();
log_info(" %1.3f %s\n", ctx->getDelayNS(delay),
ctx->getPipName(pip).c_str(ctx));
cursor = ctx->getPipSrcWire(pip);
}
}
last_port = sink->port;
}
int clockCount = 0;
auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount);
if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
delay_t setup = sinkClockInfo.setup.maxDelay();
total += setup;
logic_total += setup;
log_info("%4.1f %4.1f Setup %s.%s\n", ctx->getDelayNS(setup), ctx->getDelayNS(total),
crit_path.back()->cell->name.c_str(ctx), crit_path.back()->port.c_str(ctx));
}
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
};
for (auto &clock : clock_reports) {
log_break();
std::string start =
clock.second.first.start.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
std::string end =
clock.second.first.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
end.c_str());
auto &crit_path = clock.second.second.ports;
print_path_report(clock.second.first, crit_path);
}
for (auto &xclock : xclock_paths) {
log_break();
std::string start = format_event(xclock.start);
std::string end = format_event(xclock.end);
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
auto &crit_path = crit_paths.at(xclock).ports;
print_path_report(xclock, crit_path);
}
}
if (print_fmax) {
log_break();
2018-11-15 10:27:43 +08:00
unsigned max_width = 0;
for (auto &clock : clock_reports)
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
for (auto &clock : clock_reports) {
2018-11-15 10:27:43 +08:00
const auto &clock_name = clock.first.str(ctx);
const int width = max_width - clock_name.size();
float target = ctx->target_freq / 1e6;
if (ctx->nets.at(clock.first)->clkconstr)
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
bool passed = target < clock_fmax[clock.first];
if (!warn_on_failure || passed)
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
}
for (auto &eclock : empty_clocks) {
if (eclock != ctx->id("$async$"))
log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx));
}
log_break();
int start_field_width = 0, end_field_width = 0;
for (auto &xclock : xclock_paths) {
start_field_width = std::max((int)format_event(xclock.start).length(), start_field_width);
end_field_width = std::max((int)format_event(xclock.end).length(), end_field_width);
}
for (auto &xclock : xclock_paths) {
const ClockEvent &a = xclock.start;
const ClockEvent &b = xclock.end;
auto &path = crit_paths.at(xclock);
auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width);
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path.path_delay));
}
log_break();
}
2018-08-04 13:39:25 +08:00
if (print_histogram && slack_histogram.size() > 0) {
unsigned num_bins = 20;
unsigned bar_width = 60;
auto min_slack = slack_histogram.begin()->first;
auto max_slack = slack_histogram.rbegin()->first;
auto bin_size = std::max(1u, (max_slack - min_slack) / num_bins);
num_bins = std::min((max_slack - min_slack) / bin_size, num_bins) + 1;
std::vector<unsigned> bins(num_bins);
unsigned max_freq = 0;
2018-08-04 14:42:25 +08:00
for (const auto &i : slack_histogram) {
auto &bin = bins[(i.first - min_slack) / bin_size];
bin += i.second;
max_freq = std::max(max_freq, bin);
}
bar_width = std::min(bar_width, max_freq);
log_break();
log_info("Slack histogram:\n");
log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
for (unsigned i = 0; i < num_bins; ++i)
log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1),
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
}
}
void get_criticalities(Context *ctx, NetCriticalityMap *net_crit) {
CriticalPathMap crit_paths;
net_crit->clear();
Timing timing(ctx, true, true, &crit_paths, nullptr, net_crit);
timing.walk_paths();
}
NEXTPNR_NAMESPACE_END