nextpnr/common/place_sa.cc

443 lines
15 KiB
C++
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@clifford.at>
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Simulated annealing implementation based on arachne-pnr
* Copyright (C) 2015-2018 Cotton Seed
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "place_sa.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include "arch_place.h"
#include "log.h"
NEXTPNR_NAMESPACE_BEGIN
struct rnd_state
{
uint32_t state;
};
/* The state word must be initialized to non-zero */
static uint32_t xorshift32(rnd_state &rnd)
{
/* Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" */
uint32_t x = rnd.state;
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
rnd.state = x;
return x;
}
static float random_float_upto(rnd_state &rnd, float limit)
{
return xorshift32(rnd) / (4294967296 / limit);
}
static int random_int_between(rnd_state &rnd, int a, int b)
{
return a + int(random_float_upto(rnd, b - a) - 0.00001);
}
// Initial random placement
static void place_initial(Design *design, CellInfo *cell, rnd_state &rnd)
{
bool all_placed = false;
int iters = 25;
while (!all_placed) {
BelId best_bel = BelId();
float best_score = std::numeric_limits<float>::infinity(),
best_ripup_score = std::numeric_limits<float>::infinity();
Chip &chip = design->chip;
CellInfo *ripup_target = nullptr;
BelId ripup_bel = BelId();
if (cell->bel != BelId()) {
chip.unbindBel(cell->bel);
cell->bel = BelId();
}
BelType targetType = belTypeFromId(cell->type);
for (auto bel : chip.getBels()) {
if (chip.getBelType(bel) == targetType &&
isValidBelForCell(design, cell, bel)) {
if (chip.checkBelAvail(bel)) {
float score = random_float_upto(rnd, 1.0);
if (score <= best_score) {
best_score = score;
best_bel = bel;
}
} else {
float score = random_float_upto(rnd, 1.0);
if (score <= best_ripup_score) {
best_ripup_score = score;
ripup_target =
design->cells.at(chip.getBelCell(bel, true));
ripup_bel = bel;
}
}
}
}
if (best_bel == BelId()) {
if (iters == 0 || ripup_bel == BelId())
log_error("failed to place cell '%s' of type '%s'\n",
cell->name.c_str(), cell->type.c_str());
--iters;
chip.unbindBel(ripup_target->bel);
ripup_target->bel = BelId();
best_bel = ripup_bel;
} else {
all_placed = true;
}
cell->bel = best_bel;
chip.bindBel(cell->bel, cell->name);
// Back annotate location
cell->attrs["BEL"] = chip.getBelName(cell->bel).str();
cell = ripup_target;
}
}
// Stores the state of the SA placer
struct SAState
{
std::unordered_map<NetInfo *, float> wirelengths;
float curr_wirelength = std::numeric_limits<float>::infinity();
float temp = 1000;
bool improved = false;
int n_move, n_accept;
int diameter = 35;
std::vector<std::vector<std::vector<std::vector<BelId>>>> fast_bels;
std::unordered_set<BelId> locked_bels;
};
// Get the total estimated wirelength for a net
static float get_wirelength(Chip *chip, NetInfo *net)
{
float wirelength = 0;
int driver_x = 0, driver_y = 0;
bool consider_driver = false;
CellInfo *driver_cell = net->driver.cell;
if (!driver_cell)
return 0;
if (driver_cell->bel == BelId())
return 0;
consider_driver =
chip->estimatePosition(driver_cell->bel, driver_x, driver_y);
WireId drv_wire = chip->getWireBelPin(driver_cell->bel,
portPinFromId(net->driver.port));
if (!consider_driver)
return 0;
for (auto load : net->users) {
if (load.cell == nullptr)
continue;
CellInfo *load_cell = load.cell;
int load_x = 0, load_y = 0;
if (load_cell->bel == BelId())
continue;
// chip->estimatePosition(load_cell->bel, load_x, load_y);
WireId user_wire =
chip->getWireBelPin(load_cell->bel, portPinFromId(load.port));
// wirelength += std::abs(load_x - driver_x) + std::abs(load_y -
// driver_y);
wirelength += chip->estimateDelay(drv_wire, user_wire);
}
return wirelength;
}
// Attempt a SA position swap, return true on success or false on failure
static bool try_swap_position(Design *design, CellInfo *cell, BelId newBel,
rnd_state &rnd, SAState &state)
{
static std::unordered_set<NetInfo *> update;
static std::vector<std::pair<NetInfo *, float>> new_lengths;
new_lengths.clear();
update.clear();
Chip &chip = design->chip;
BelId oldBel = cell->bel;
IdString other = chip.getBelCell(newBel, true);
CellInfo *other_cell = nullptr;
float new_wirelength = 0, delta;
chip.unbindBel(oldBel);
if (other != IdString()) {
other_cell = design->cells[other];
chip.unbindBel(newBel);
}
for (const auto &port : cell->ports)
if (port.second.net != nullptr)
update.insert(port.second.net);
if (other != IdString()) {
for (const auto &port : other_cell->ports)
if (port.second.net != nullptr)
update.insert(port.second.net);
}
chip.bindBel(newBel, cell->name);
if (other != IdString()) {
chip.bindBel(oldBel, other_cell->name);
}
if (!isBelLocationValid(design, newBel) ||
((other != IdString() && !isBelLocationValid(design, oldBel)))) {
chip.unbindBel(newBel);
if (other != IdString())
chip.unbindBel(oldBel);
goto swap_fail;
}
cell->bel = newBel;
if (other != IdString())
other_cell->bel = oldBel;
new_wirelength = state.curr_wirelength;
// Recalculate wirelengths for all nets touched by the peturbation
for (auto net : update) {
new_wirelength -= state.wirelengths.at(net);
float net_new_wl = get_wirelength(&chip, net);
new_wirelength += net_new_wl;
new_lengths.push_back(std::make_pair(net, net_new_wl));
}
delta = new_wirelength - state.curr_wirelength;
state.n_move++;
// SA acceptance criterea
if (delta < 0 ||
(state.temp > 1e-6 &&
random_float_upto(rnd, 1.0) <= std::exp(-delta / state.temp))) {
state.n_accept++;
if (delta < 0)
state.improved = true;
} else {
if (other != IdString())
chip.unbindBel(oldBel);
chip.unbindBel(newBel);
goto swap_fail;
}
state.curr_wirelength = new_wirelength;
for (auto new_wl : new_lengths)
state.wirelengths.at(new_wl.first) = new_wl.second;
return true;
swap_fail:
chip.bindBel(oldBel, cell->name);
cell->bel = oldBel;
if (other != IdString()) {
chip.bindBel(newBel, other);
other_cell->bel = newBel;
}
return false;
}
// Find a random Bel of the correct type for a cell, within the specified
// diameter
BelId random_bel_for_cell(Design *design, CellInfo *cell, SAState &state,
rnd_state &rnd)
{
BelId best_bel = BelId();
Chip &chip = design->chip;
BelType targetType = belTypeFromId(cell->type);
assert(int(targetType) < state.fast_bels.size());
int x = 0, y = 0;
chip.estimatePosition(cell->bel, x, y);
while (true) {
int nx = random_int_between(rnd, std::max(int(x) - state.diameter, 0),
int(x) + state.diameter + 1);
int ny = random_int_between(rnd, std::max(int(y) - state.diameter, 0),
int(y) + state.diameter + 1);
if (nx >= state.fast_bels.at(int(targetType)).size())
continue;
if (ny >= state.fast_bels.at(int(targetType)).at(nx).size())
continue;
const auto &fb = state.fast_bels.at(int(targetType)).at(nx).at(ny);
if (fb.size() == 0)
continue;
BelId bel = fb.at(random_int_between(rnd, 0, fb.size()));
if (state.locked_bels.find(bel) != state.locked_bels.end())
continue;
return bel;
}
}
void place_design_sa(Design *design, int seed)
{
SAState state;
size_t total_cells = design->cells.size(), placed_cells = 0;
std::queue<CellInfo *> visit_cells;
// Initial constraints placer
for (auto cell_entry : design->cells) {
CellInfo *cell = cell_entry.second;
auto loc = cell->attrs.find("BEL");
if (loc != cell->attrs.end()) {
std::string loc_name = loc->second;
BelId bel = design->chip.getBelByName(IdString(loc_name));
if (bel == BelId()) {
log_error("No Bel named \'%s\' located for "
"this chip (processing BEL attribute on \'%s\')\n",
loc_name.c_str(), cell->name.c_str());
}
BelType bel_type = design->chip.getBelType(bel);
if (bel_type != belTypeFromId(cell->type)) {
log_error("Bel \'%s\' of type \'%s\' does not match cell "
"\'%s\' of type \'%s\'",
loc_name.c_str(), belTypeToId(bel_type).c_str(),
cell->name.c_str(), cell->type.c_str());
}
cell->bel = bel;
design->chip.bindBel(bel, cell->name);
state.locked_bels.insert(bel);
placed_cells++;
visit_cells.push(cell);
}
}
log_info("place_constraints placed %d\n", int(placed_cells));
rnd_state rnd;
rnd.state = seed;
std::vector<CellInfo *> autoplaced;
// Sort to-place cells for deterministic initial placement
for (auto cell : design->cells) {
CellInfo *ci = cell.second;
if (ci->bel == BelId()) {
autoplaced.push_back(cell.second);
}
}
std::sort(autoplaced.begin(), autoplaced.end(),
[](CellInfo *a, CellInfo *b) { return a->name < b->name; });
// Place cells randomly initially
for (auto cell : autoplaced) {
place_initial(design, cell, rnd);
placed_cells++;
}
// Build up a fast position/type to Bel lookup table
int max_x = 0, max_y = 0;
for (auto bel : design->chip.getBels()) {
int x, y;
design->chip.estimatePosition(bel, x, y);
BelType type = design->chip.getBelType(bel);
if (state.fast_bels.size() < int(type) + 1)
state.fast_bels.resize(int(type) + 1);
if (state.fast_bels.at(int(type)).size() < int(x) + 1)
state.fast_bels.at(int(type)).resize(int(x) + 1);
if (state.fast_bels.at(int(type)).at(int(x)).size() < int(y) + 1)
state.fast_bels.at(int(type)).at(int(x)).resize(int(y) + 1);
max_x = std::max(max_x, int(x));
max_y = std::max(max_y, int(y));
state.fast_bels.at(int(type)).at(int(x)).at(int((y))).push_back(bel);
}
state.diameter = std::max(max_x, max_y) + 1;
// Calculate wirelength after initial placement
state.curr_wirelength = 0;
for (auto net : design->nets) {
float wl = get_wirelength(&design->chip, net.second);
state.wirelengths[net.second] = wl;
state.curr_wirelength += wl;
}
int n_no_progress = 0;
double avg_wirelength = state.curr_wirelength;
state.temp = 10000;
// Main simulated annealing loop
for (int iter = 1;; iter++) {
state.n_move = state.n_accept = 0;
state.improved = false;
if (iter % 5 == 0)
log(" at iteration #%d: temp = %f, wire length = %f\n", iter,
state.temp, state.curr_wirelength);
for (int m = 0; m < 15; ++m) {
// Loop through all automatically placed cells
for (auto cell : autoplaced) {
// Find another random Bel for this cell
BelId try_bel = random_bel_for_cell(design, cell, state, rnd);
// If valid, try and swap to a new position and see if
// the new position is valid/worthwhile
if (try_bel != BelId() && try_bel != cell->bel)
try_swap_position(design, cell, try_bel, rnd, state);
}
}
// Heuristic to improve placement on the 8k
if (state.improved) {
n_no_progress = 0;
// std::cout << "improved\n";
} else
++n_no_progress;
if (state.temp <= 1e-3 && n_no_progress >= 5)
break;
double Raccept = (double)state.n_accept / (double)state.n_move;
int M = std::max(max_x, max_y) + 1;
double upper = 0.6, lower = 0.4;
if (state.curr_wirelength < 0.95 * avg_wirelength)
avg_wirelength = 0.8 * avg_wirelength + 0.2 * state.curr_wirelength;
else {
if (Raccept >= 0.8) {
state.temp *= 0.7;
} else if (Raccept > upper) {
if (state.diameter < M)
++state.diameter;
else
state.temp *= 0.9;
} else if (Raccept > lower) {
state.temp *= 0.95;
} else {
// Raccept < 0.3
if (state.diameter > 1)
--state.diameter;
else
state.temp *= 0.8;
}
}
}
for (auto bel : design->chip.getBels()) {
if (!isBelLocationValid(design, bel)) {
std::string cell_text = "no cell";
IdString cell = design->chip.getBelCell(bel, false);
if (cell != IdString())
cell_text = std::string("cell '") + cell.str() + "'";
log_error("post-placement validity check failed for Bel '%s' (%s)",
design->chip.getBelName(bel).c_str(), cell_text.c_str());
}
}
}
NEXTPNR_NAMESPACE_END