2018-06-20 17:44:28 +08:00
|
|
|
/*
|
|
|
|
* nextpnr -- Next Generation Place and Route
|
|
|
|
*
|
|
|
|
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
|
2018-08-07 03:14:00 +08:00
|
|
|
* Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca>
|
2018-06-20 17:44:28 +08:00
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "timing.h"
|
2018-06-20 17:53:49 +08:00
|
|
|
#include <algorithm>
|
2018-08-07 08:35:23 +08:00
|
|
|
#include <boost/range/adaptor/reversed.hpp>
|
2018-08-09 17:00:24 +08:00
|
|
|
#include <deque>
|
2018-11-03 00:56:53 +08:00
|
|
|
#include <map>
|
2018-06-20 17:44:28 +08:00
|
|
|
#include <unordered_map>
|
|
|
|
#include <utility>
|
2018-06-20 17:53:49 +08:00
|
|
|
#include "log.h"
|
2018-07-21 16:55:20 +08:00
|
|
|
#include "util.h"
|
2018-06-20 17:44:28 +08:00
|
|
|
|
2018-06-20 17:53:49 +08:00
|
|
|
NEXTPNR_NAMESPACE_BEGIN
|
|
|
|
|
2021-02-26 19:25:07 +08:00
|
|
|
void TimingAnalyser::setup()
|
|
|
|
{
|
|
|
|
init_ports();
|
|
|
|
get_cell_delays();
|
2021-03-02 19:00:34 +08:00
|
|
|
get_route_delays();
|
2021-03-01 18:36:23 +08:00
|
|
|
topo_sort();
|
2021-03-01 19:25:28 +08:00
|
|
|
setup_port_domains();
|
2021-03-01 23:18:58 +08:00
|
|
|
reset_times();
|
|
|
|
walk_forward();
|
2021-03-02 18:39:26 +08:00
|
|
|
walk_backward();
|
2021-03-03 18:39:03 +08:00
|
|
|
compute_slack();
|
|
|
|
compute_criticality();
|
2021-03-02 18:54:33 +08:00
|
|
|
print_fmax();
|
2021-03-03 21:01:54 +08:00
|
|
|
print_report();
|
2021-02-26 19:25:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void TimingAnalyser::init_ports()
|
|
|
|
{
|
|
|
|
// Per cell port structures
|
|
|
|
for (auto cell : sorted(ctx->cells)) {
|
|
|
|
CellInfo *ci = cell.second;
|
|
|
|
for (auto port : sorted_ref(ci->ports)) {
|
|
|
|
auto &data = ports[CellPortKey(ci->name, port.first)];
|
2021-03-01 18:36:23 +08:00
|
|
|
data.type = port.second.type;
|
2021-02-26 19:25:07 +08:00
|
|
|
data.cell_port = CellPortKey(ci->name, port.first);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Cell port to net port mapping
|
|
|
|
for (auto net : sorted(ctx->nets)) {
|
|
|
|
NetInfo *ni = net.second;
|
|
|
|
if (ni->driver.cell != nullptr)
|
|
|
|
ports[CellPortKey(ni->driver)].net_port = NetPortKey(ni->name);
|
|
|
|
for (size_t i = 0; i < ni->users.size(); i++)
|
|
|
|
ports[CellPortKey(ni->users.at(i))].net_port = NetPortKey(ni->name, i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void TimingAnalyser::get_cell_delays()
|
|
|
|
{
|
|
|
|
for (auto &port : ports) {
|
|
|
|
CellInfo *ci = cell_info(port.first);
|
|
|
|
auto &pi = port_info(port.first);
|
|
|
|
auto &pd = port.second;
|
|
|
|
|
|
|
|
IdString name = port.first.port;
|
|
|
|
// Ignore dangling ports altogether for timing purposes
|
|
|
|
if (pd.net_port.net == IdString())
|
|
|
|
continue;
|
|
|
|
pd.cell_arcs.clear();
|
|
|
|
int clkInfoCount = 0;
|
|
|
|
TimingPortClass cls = ctx->getPortTimingClass(ci, name, clkInfoCount);
|
|
|
|
if (cls == TMG_STARTPOINT || cls == TMG_ENDPOINT || cls == TMG_CLOCK_INPUT || cls == TMG_GEN_CLOCK ||
|
|
|
|
cls == TMG_IGNORE)
|
|
|
|
continue;
|
|
|
|
if (pi.type == PORT_IN) {
|
|
|
|
// Input ports might have setup/hold relationships
|
|
|
|
if (cls == TMG_REGISTER_INPUT) {
|
|
|
|
for (int i = 0; i < clkInfoCount; i++) {
|
|
|
|
auto info = ctx->getPortClockingInfo(ci, name, i);
|
2021-03-01 19:25:28 +08:00
|
|
|
if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
|
|
|
|
continue;
|
2021-02-26 19:25:07 +08:00
|
|
|
pd.cell_arcs.emplace_back(CellArc::SETUP, info.clock_port, DelayQuad(info.setup, info.setup),
|
|
|
|
info.edge);
|
|
|
|
pd.cell_arcs.emplace_back(CellArc::HOLD, info.clock_port, DelayQuad(info.hold, info.hold),
|
|
|
|
info.edge);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Combinational delays through cell
|
|
|
|
for (auto &other_port : ci->ports) {
|
|
|
|
auto &op = other_port.second;
|
|
|
|
// ignore dangling ports and non-outputs
|
|
|
|
if (op.net == nullptr || op.type != PORT_OUT)
|
|
|
|
continue;
|
|
|
|
DelayQuad delay;
|
|
|
|
bool is_path = ctx->getCellDelay(ci, name, other_port.first, delay);
|
|
|
|
if (is_path)
|
|
|
|
pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
|
|
|
|
}
|
|
|
|
} else if (pi.type == PORT_OUT) {
|
|
|
|
// Output ports might have clk-to-q relationships
|
|
|
|
if (cls == TMG_REGISTER_OUTPUT) {
|
|
|
|
for (int i = 0; i < clkInfoCount; i++) {
|
|
|
|
auto info = ctx->getPortClockingInfo(ci, name, i);
|
2021-03-01 19:25:28 +08:00
|
|
|
if (!ci->ports.count(info.clock_port) || ci->ports.at(info.clock_port).net == nullptr)
|
|
|
|
continue;
|
2021-02-26 19:25:07 +08:00
|
|
|
pd.cell_arcs.emplace_back(CellArc::CLK_TO_Q, info.clock_port, info.clockToQ, info.edge);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Combinational delays through cell
|
|
|
|
for (auto &other_port : ci->ports) {
|
|
|
|
auto &op = other_port.second;
|
|
|
|
// ignore dangling ports and non-inputs
|
|
|
|
if (op.net == nullptr || op.type != PORT_IN)
|
|
|
|
continue;
|
|
|
|
DelayQuad delay;
|
|
|
|
bool is_path = ctx->getCellDelay(ci, other_port.first, name, delay);
|
|
|
|
if (is_path)
|
|
|
|
pd.cell_arcs.emplace_back(CellArc::COMBINATIONAL, other_port.first, delay);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-02 19:00:34 +08:00
|
|
|
void TimingAnalyser::get_route_delays()
|
|
|
|
{
|
|
|
|
for (auto net : sorted(ctx->nets)) {
|
|
|
|
NetInfo *ni = net.second;
|
|
|
|
for (auto &usr : ni->users)
|
|
|
|
ports.at(CellPortKey(usr)).route_delay = DelayPair(ctx->getNetinfoRouteDelay(ni, usr));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-01 18:36:23 +08:00
|
|
|
void TimingAnalyser::topo_sort()
|
|
|
|
{
|
|
|
|
TopoSort<CellPortKey> topo;
|
|
|
|
for (auto &port : ports) {
|
|
|
|
auto &pd = port.second;
|
|
|
|
// All ports are nodes
|
|
|
|
topo.node(port.first);
|
|
|
|
if (pd.type == PORT_IN) {
|
|
|
|
// inputs: combinational arcs through the cell are edges
|
|
|
|
for (auto &arc : pd.cell_arcs) {
|
|
|
|
if (arc.type != CellArc::COMBINATIONAL)
|
|
|
|
continue;
|
|
|
|
topo.edge(port.first, CellPortKey(port.first.cell, arc.other_port));
|
|
|
|
}
|
|
|
|
} else if (pd.type == PORT_OUT) {
|
|
|
|
// output: routing arcs are edges
|
|
|
|
const NetInfo *pn = port_info(port.first).net;
|
|
|
|
if (pn != nullptr) {
|
|
|
|
for (auto &usr : pn->users)
|
|
|
|
topo.edge(port.first, CellPortKey(usr));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bool no_loops = topo.sort();
|
|
|
|
if (!no_loops) {
|
|
|
|
log_info("Found %d combinational loops:\n", int(topo.loops.size()));
|
|
|
|
int i = 0;
|
|
|
|
for (auto &loop : topo.loops) {
|
|
|
|
log_info(" loop %d:\n", ++i);
|
|
|
|
for (auto &port : loop) {
|
|
|
|
log_info(" %s.%s (%s)\n", ctx->nameOf(port.cell), ctx->nameOf(port.port),
|
|
|
|
ctx->nameOf(port_info(port).net));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::swap(topological_order, topo.sorted);
|
|
|
|
}
|
|
|
|
|
2021-03-01 19:25:28 +08:00
|
|
|
void TimingAnalyser::setup_port_domains()
|
|
|
|
{
|
|
|
|
for (auto &d : domains) {
|
|
|
|
d.startpoints.clear();
|
|
|
|
d.endpoints.clear();
|
|
|
|
}
|
|
|
|
// Go forward through the topological order (domains from the PoV of arrival time)
|
|
|
|
for (auto port : topological_order) {
|
|
|
|
auto &pd = ports.at(port);
|
|
|
|
auto &pi = port_info(port);
|
|
|
|
if (pi.type == PORT_OUT) {
|
|
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
|
|
if (fanin.type != CellArc::CLK_TO_Q)
|
|
|
|
continue;
|
|
|
|
// registered outputs are startpoints
|
|
|
|
auto dom = domain_id(port.cell, fanin.other_port, fanin.edge);
|
|
|
|
// create per-domain data
|
2021-03-01 22:50:00 +08:00
|
|
|
pd.arrival[dom];
|
2021-03-01 19:25:28 +08:00
|
|
|
domains.at(dom).startpoints.emplace_back(port, fanin.other_port);
|
|
|
|
}
|
|
|
|
// copy domains across routing
|
|
|
|
if (pi.net != nullptr)
|
|
|
|
for (auto &usr : pi.net->users)
|
|
|
|
copy_domains(port, CellPortKey(usr), false);
|
|
|
|
} else {
|
|
|
|
// copy domains from input to output
|
|
|
|
for (auto &fanout : pd.cell_arcs) {
|
|
|
|
if (fanout.type != CellArc::COMBINATIONAL)
|
|
|
|
continue;
|
|
|
|
copy_domains(port, CellPortKey(port.cell, fanout.other_port), false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Go backward through the topological order (domains from the PoV of required time)
|
|
|
|
for (auto port : reversed_range(topological_order)) {
|
|
|
|
auto &pd = ports.at(port);
|
|
|
|
auto &pi = port_info(port);
|
|
|
|
if (pi.type == PORT_OUT) {
|
|
|
|
// copy domains from output to input
|
|
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
|
|
if (fanin.type != CellArc::COMBINATIONAL)
|
|
|
|
continue;
|
|
|
|
copy_domains(port, CellPortKey(port.cell, fanin.other_port), true);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (auto &fanout : pd.cell_arcs) {
|
|
|
|
if (fanout.type != CellArc::SETUP)
|
|
|
|
continue;
|
|
|
|
// registered inputs are startpoints
|
|
|
|
auto dom = domain_id(port.cell, fanout.other_port, fanout.edge);
|
|
|
|
// create per-domain data
|
2021-03-01 22:50:00 +08:00
|
|
|
pd.required[dom];
|
2021-03-02 18:39:26 +08:00
|
|
|
domains.at(dom).endpoints.emplace_back(port, fanout.other_port);
|
2021-03-01 19:25:28 +08:00
|
|
|
}
|
|
|
|
// copy port to driver
|
|
|
|
if (pi.net != nullptr && pi.net->driver.cell != nullptr)
|
|
|
|
copy_domains(port, CellPortKey(pi.net->driver), true);
|
|
|
|
}
|
|
|
|
}
|
2021-03-01 22:50:00 +08:00
|
|
|
// Iterate over ports and find domain paris
|
|
|
|
for (auto port : topological_order) {
|
|
|
|
auto &pd = ports.at(port);
|
|
|
|
for (auto &arr : pd.arrival)
|
|
|
|
for (auto &req : pd.required) {
|
|
|
|
pd.domain_pairs[domain_pair_id(arr.first, req.first)];
|
|
|
|
}
|
|
|
|
}
|
2021-03-01 19:25:28 +08:00
|
|
|
}
|
|
|
|
|
2021-03-01 23:18:58 +08:00
|
|
|
void TimingAnalyser::reset_times()
|
|
|
|
{
|
|
|
|
for (auto &port : ports) {
|
|
|
|
auto do_reset = [&](std::unordered_map<domain_id_t, ArrivReqTime> ×) {
|
|
|
|
for (auto &t : times) {
|
|
|
|
t.second.value = init_delay;
|
|
|
|
t.second.path_length = 0;
|
|
|
|
t.second.bwd_min = CellPortKey();
|
|
|
|
t.second.bwd_max = CellPortKey();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
do_reset(port.second.arrival);
|
|
|
|
do_reset(port.second.required);
|
|
|
|
for (auto &dp : port.second.domain_pairs) {
|
|
|
|
dp.second.setup_slack = std::numeric_limits<delay_t>::max();
|
|
|
|
dp.second.hold_slack = std::numeric_limits<delay_t>::max();
|
|
|
|
dp.second.max_path_length = 0;
|
|
|
|
dp.second.criticality = 0;
|
|
|
|
dp.second.budget = 0;
|
|
|
|
}
|
2021-03-03 18:39:03 +08:00
|
|
|
port.second.worst_crit = 0;
|
2021-03-01 23:18:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void TimingAnalyser::set_arrival_time(CellPortKey target, domain_id_t domain, DelayPair arrival, int path_length,
|
|
|
|
CellPortKey prev)
|
|
|
|
{
|
|
|
|
auto &arr = ports.at(target).arrival.at(domain);
|
|
|
|
if (arrival.max_delay > arr.value.max_delay) {
|
|
|
|
arr.value.max_delay = arrival.max_delay;
|
|
|
|
arr.bwd_max = prev;
|
|
|
|
}
|
|
|
|
if (!setup_only && (arrival.min_delay < arr.value.min_delay)) {
|
|
|
|
arr.value.min_delay = arrival.min_delay;
|
|
|
|
arr.bwd_min = prev;
|
|
|
|
}
|
|
|
|
arr.path_length = std::max(arr.path_length, path_length);
|
|
|
|
}
|
|
|
|
|
2021-03-02 18:39:26 +08:00
|
|
|
void TimingAnalyser::set_required_time(CellPortKey target, domain_id_t domain, DelayPair required, int path_length,
|
|
|
|
CellPortKey prev)
|
|
|
|
{
|
|
|
|
auto &req = ports.at(target).required.at(domain);
|
|
|
|
if (required.min_delay < req.value.min_delay) {
|
|
|
|
req.value.min_delay = required.min_delay;
|
|
|
|
req.bwd_min = prev;
|
|
|
|
}
|
|
|
|
if (!setup_only && (required.max_delay > req.value.max_delay)) {
|
|
|
|
req.value.max_delay = required.max_delay;
|
|
|
|
req.bwd_max = prev;
|
|
|
|
}
|
|
|
|
req.path_length = std::max(req.path_length, path_length);
|
|
|
|
}
|
|
|
|
|
2021-03-01 23:18:58 +08:00
|
|
|
void TimingAnalyser::walk_forward()
|
|
|
|
{
|
|
|
|
// Assign initial arrival time to domain startpoints
|
|
|
|
for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
|
|
|
|
auto &dom = domains.at(dom_id);
|
|
|
|
for (auto &sp : dom.startpoints) {
|
|
|
|
auto &pd = ports.at(sp.first);
|
|
|
|
DelayPair init_arrival(0);
|
|
|
|
CellPortKey clock_key;
|
|
|
|
// TODO: clock routing delay, if analysis of that is enabled
|
|
|
|
if (sp.second != IdString()) {
|
|
|
|
// clocked startpoints have a clock-to-out time
|
|
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
|
|
if (fanin.type == CellArc::CLK_TO_Q && fanin.other_port == sp.second) {
|
|
|
|
init_arrival = init_arrival + fanin.value.delayPair();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
clock_key = CellPortKey(sp.first.cell, sp.second);
|
|
|
|
}
|
|
|
|
set_arrival_time(sp.first, dom_id, init_arrival, 1, clock_key);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Walk forward in topological order
|
|
|
|
for (auto p : topological_order) {
|
|
|
|
auto &pd = ports.at(p);
|
|
|
|
for (auto &arr : pd.arrival) {
|
|
|
|
if (pd.type == PORT_OUT) {
|
|
|
|
// Output port: propagate delay through net, adding route delay
|
|
|
|
NetInfo *net = port_info(p).net;
|
|
|
|
if (net != nullptr)
|
|
|
|
for (auto &usr : net->users) {
|
|
|
|
CellPortKey usr_key(usr);
|
|
|
|
auto &usr_pd = ports.at(usr_key);
|
|
|
|
set_arrival_time(usr_key, arr.first, arr.second.value + usr_pd.route_delay,
|
|
|
|
arr.second.path_length, p);
|
|
|
|
}
|
|
|
|
} else if (pd.type == PORT_IN) {
|
|
|
|
// Input port; propagate delay through cell, adding combinational delay
|
|
|
|
for (auto &fanout : pd.cell_arcs) {
|
|
|
|
if (fanout.type != CellArc::COMBINATIONAL)
|
|
|
|
continue;
|
|
|
|
set_arrival_time(CellPortKey(p.cell, fanout.other_port), arr.first,
|
|
|
|
arr.second.value + fanout.value.delayPair(), arr.second.path_length + 1, p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-02 18:39:26 +08:00
|
|
|
void TimingAnalyser::walk_backward()
|
|
|
|
{
|
|
|
|
// Assign initial required time to domain endpoints
|
|
|
|
// Note that clock frequency will be considered later in the analysis for, for now all required times are normalised
|
|
|
|
// to 0ns
|
|
|
|
for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
|
|
|
|
auto &dom = domains.at(dom_id);
|
|
|
|
for (auto &ep : dom.endpoints) {
|
|
|
|
auto &pd = ports.at(ep.first);
|
|
|
|
DelayPair init_setuphold(0);
|
|
|
|
CellPortKey clock_key;
|
|
|
|
// TODO: clock routing delay, if analysis of that is enabled
|
|
|
|
if (ep.second != IdString()) {
|
|
|
|
// Add setup/hold time, if this endpoint is clocked
|
|
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
|
|
if (fanin.type == CellArc::SETUP && fanin.other_port == ep.second)
|
|
|
|
init_setuphold.min_delay -= fanin.value.maxDelay();
|
|
|
|
if (fanin.type == CellArc::HOLD && fanin.other_port == ep.second)
|
|
|
|
init_setuphold.max_delay -= fanin.value.maxDelay();
|
|
|
|
}
|
|
|
|
clock_key = CellPortKey(ep.first.cell, ep.second);
|
|
|
|
}
|
|
|
|
set_required_time(ep.first, dom_id, init_setuphold, 1, clock_key);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Walk backwards in topological order
|
|
|
|
for (auto p : reversed_range(topological_order)) {
|
|
|
|
auto &pd = ports.at(p);
|
|
|
|
for (auto &req : pd.required) {
|
|
|
|
if (pd.type == PORT_IN) {
|
|
|
|
// Input port: propagate delay back through net, subtracting route delay
|
|
|
|
NetInfo *net = port_info(p).net;
|
|
|
|
if (net != nullptr && net->driver.cell != nullptr)
|
|
|
|
set_required_time(CellPortKey(net->driver), req.first, req.second.value - pd.route_delay,
|
|
|
|
req.second.path_length, p);
|
|
|
|
} else if (pd.type == PORT_OUT) {
|
|
|
|
// Output port : propagate delay back through cell, subtracting combinational delay
|
|
|
|
for (auto &fanin : pd.cell_arcs) {
|
|
|
|
if (fanin.type != CellArc::COMBINATIONAL)
|
|
|
|
continue;
|
|
|
|
set_required_time(CellPortKey(p.cell, fanin.other_port), req.first,
|
|
|
|
req.second.value - fanin.value.delayPair(), req.second.path_length + 1, p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-02 18:54:33 +08:00
|
|
|
void TimingAnalyser::print_fmax()
|
|
|
|
{
|
|
|
|
// Temporary testing code for comparison only
|
|
|
|
std::unordered_map<int, double> domain_fmax;
|
|
|
|
for (auto p : topological_order) {
|
|
|
|
auto &pd = ports.at(p);
|
|
|
|
for (auto &req : pd.required) {
|
|
|
|
if (pd.arrival.count(req.first)) {
|
|
|
|
auto &arr = pd.arrival.at(req.first);
|
2021-03-02 19:00:34 +08:00
|
|
|
double fmax = 1000.0 / ctx->getDelayNS(arr.value.maxDelay() - req.second.value.minDelay());
|
2021-03-02 18:54:33 +08:00
|
|
|
if (!domain_fmax.count(req.first) || domain_fmax.at(req.first) > fmax)
|
|
|
|
domain_fmax[req.first] = fmax;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto &fm : domain_fmax) {
|
|
|
|
log_info("Domain %s Worst Fmax %.02f\n", ctx->nameOf(domains.at(fm.first).key.clock), fm.second);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-03 18:39:03 +08:00
|
|
|
void TimingAnalyser::compute_slack()
|
|
|
|
{
|
|
|
|
for (auto &dp : domain_pairs) {
|
|
|
|
dp.worst_setup_slack = std::numeric_limits<delay_t>::max();
|
|
|
|
dp.worst_hold_slack = std::numeric_limits<delay_t>::max();
|
|
|
|
}
|
|
|
|
for (auto p : topological_order) {
|
|
|
|
auto &pd = ports.at(p);
|
|
|
|
for (auto &pdp : pd.domain_pairs) {
|
|
|
|
auto &dp = domain_pairs.at(pdp.first);
|
|
|
|
auto &arr = pd.arrival.at(dp.key.launch);
|
|
|
|
auto &req = pd.required.at(dp.key.capture);
|
|
|
|
pdp.second.setup_slack = dp.period.minDelay() - (arr.value.maxDelay() - req.value.minDelay());
|
|
|
|
if (!setup_only)
|
|
|
|
pdp.second.hold_slack = arr.value.minDelay() - req.value.maxDelay();
|
|
|
|
pdp.second.max_path_length = arr.path_length + req.path_length;
|
|
|
|
dp.worst_setup_slack = std::min(dp.worst_setup_slack, pdp.second.setup_slack);
|
|
|
|
if (!setup_only)
|
|
|
|
dp.worst_hold_slack = std::min(dp.worst_hold_slack, pdp.second.hold_slack);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void TimingAnalyser::compute_criticality()
|
|
|
|
{
|
|
|
|
for (auto p : topological_order) {
|
|
|
|
auto &pd = ports.at(p);
|
|
|
|
for (auto &pdp : pd.domain_pairs) {
|
|
|
|
auto &dp = domain_pairs.at(pdp.first);
|
|
|
|
pdp.second.criticality =
|
|
|
|
1.0f - (float(pdp.second.setup_slack) - float(dp.worst_setup_slack)) / float(-dp.worst_setup_slack);
|
|
|
|
NPNR_ASSERT(pdp.second.criticality >= -0.00001f && pdp.second.criticality <= 1.00001f);
|
|
|
|
pd.worst_crit = std::max(pd.worst_crit, pdp.second.criticality);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-03 21:01:54 +08:00
|
|
|
std::vector<CellPortKey> TimingAnalyser::get_failing_eps(domain_id_t domain_pair, int count)
|
|
|
|
{
|
|
|
|
std::vector<CellPortKey> failing_eps;
|
|
|
|
delay_t last_slack = std::numeric_limits<delay_t>::min();
|
|
|
|
auto &dp = domain_pairs.at(domain_pair);
|
|
|
|
auto &cap_d = domains.at(dp.key.capture);
|
|
|
|
while (int(failing_eps.size()) < count) {
|
|
|
|
CellPortKey next;
|
|
|
|
delay_t next_slack = std::numeric_limits<delay_t>::max();
|
|
|
|
for (auto ep : cap_d.endpoints) {
|
|
|
|
auto &pd = ports.at(ep.first);
|
|
|
|
if (!pd.domain_pairs.count(domain_pair))
|
|
|
|
continue;
|
|
|
|
delay_t ep_slack = pd.domain_pairs.at(domain_pair).setup_slack;
|
|
|
|
if (ep_slack < next_slack && ep_slack > last_slack) {
|
|
|
|
next = ep.first;
|
|
|
|
next_slack = ep_slack;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (next == CellPortKey())
|
|
|
|
break;
|
|
|
|
failing_eps.push_back(next);
|
|
|
|
last_slack = next_slack;
|
|
|
|
}
|
|
|
|
return failing_eps;
|
|
|
|
}
|
|
|
|
|
|
|
|
void TimingAnalyser::print_critical_path(CellPortKey endpoint, domain_id_t domain_pair)
|
|
|
|
{
|
|
|
|
CellPortKey cursor = endpoint;
|
|
|
|
auto &dp = domain_pairs.at(domain_pair);
|
|
|
|
log(" endpoint %s.%s (slack %.02fns):\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port),
|
|
|
|
ctx->getDelayNS(ports.at(cursor).domain_pairs.at(domain_pair).setup_slack));
|
|
|
|
while (cursor != CellPortKey()) {
|
|
|
|
log(" %s.%s (net %s)\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port),
|
|
|
|
ctx->nameOf(get_net_or_empty(ctx->cells.at(cursor.cell).get(), cursor.port)));
|
|
|
|
if (!ports.at(cursor).arrival.count(dp.key.launch))
|
|
|
|
break;
|
|
|
|
cursor = ports.at(cursor).arrival.at(dp.key.launch).bwd_max;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
const char *edge_name(ClockEdge edge) { return (edge == FALLING_EDGE) ? "negedge" : "posedge"; }
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
void TimingAnalyser::print_report()
|
|
|
|
{
|
|
|
|
for (int i = 0; i < int(domain_pairs.size()); i++) {
|
|
|
|
auto &dp = domain_pairs.at(i);
|
|
|
|
auto &launch = domains.at(dp.key.launch);
|
|
|
|
auto &capture = domains.at(dp.key.capture);
|
|
|
|
log("Worst endpoints for %s %s -> %s %s\n", edge_name(launch.key.edge), ctx->nameOf(launch.key.clock),
|
|
|
|
edge_name(capture.key.edge), ctx->nameOf(capture.key.clock));
|
|
|
|
auto failing_eps = get_failing_eps(i, 5);
|
|
|
|
for (auto &ep : failing_eps)
|
|
|
|
print_critical_path(ep, i);
|
|
|
|
log_break();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-01 22:50:00 +08:00
|
|
|
domain_id_t TimingAnalyser::domain_id(IdString cell, IdString clock_port, ClockEdge edge)
|
2021-03-01 19:25:28 +08:00
|
|
|
{
|
|
|
|
return domain_id(ctx->cells.at(cell)->ports.at(clock_port).net, edge);
|
|
|
|
}
|
2021-03-01 22:50:00 +08:00
|
|
|
domain_id_t TimingAnalyser::domain_id(const NetInfo *net, ClockEdge edge)
|
2021-03-01 19:25:28 +08:00
|
|
|
{
|
|
|
|
NPNR_ASSERT(net != nullptr);
|
|
|
|
ClockDomainKey key{net->name, edge};
|
2021-03-01 22:50:00 +08:00
|
|
|
auto inserted = domain_to_id.emplace(key, domains.size());
|
2021-03-01 19:25:28 +08:00
|
|
|
if (inserted.second) {
|
|
|
|
domains.emplace_back(key);
|
|
|
|
}
|
|
|
|
return inserted.first->second;
|
|
|
|
}
|
2021-03-01 22:50:00 +08:00
|
|
|
domain_id_t TimingAnalyser::domain_pair_id(domain_id_t launch, domain_id_t capture)
|
|
|
|
{
|
|
|
|
ClockDomainPairKey key{launch, capture};
|
|
|
|
auto inserted = pair_to_id.emplace(key, domain_pairs.size());
|
|
|
|
if (inserted.second) {
|
|
|
|
domain_pairs.emplace_back(key);
|
|
|
|
}
|
|
|
|
return inserted.first->second;
|
|
|
|
}
|
|
|
|
|
2021-03-01 19:25:28 +08:00
|
|
|
void TimingAnalyser::copy_domains(const CellPortKey &from, const CellPortKey &to, bool backward)
|
|
|
|
{
|
|
|
|
auto &f = ports.at(from), &t = ports.at(to);
|
2021-03-01 22:50:00 +08:00
|
|
|
for (auto &dom : (backward ? f.required : f.arrival))
|
|
|
|
(backward ? t.required : t.arrival)[dom.first];
|
2021-03-01 19:25:28 +08:00
|
|
|
}
|
|
|
|
|
2021-02-26 19:25:07 +08:00
|
|
|
CellInfo *TimingAnalyser::cell_info(const CellPortKey &key) { return ctx->cells.at(key.cell).get(); }
|
|
|
|
|
|
|
|
PortInfo &TimingAnalyser::port_info(const CellPortKey &key) { return ctx->cells.at(key.cell)->ports.at(key.port); }
|
|
|
|
|
|
|
|
/** LEGACY CODE BEGIN **/
|
|
|
|
|
2018-10-30 18:07:37 +08:00
|
|
|
namespace {
|
2018-11-03 00:56:53 +08:00
|
|
|
struct ClockEvent
|
|
|
|
{
|
|
|
|
IdString clock;
|
|
|
|
ClockEdge edge;
|
2018-11-03 01:26:14 +08:00
|
|
|
|
|
|
|
bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; }
|
2018-11-03 00:56:53 +08:00
|
|
|
};
|
2018-10-30 18:07:37 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
struct ClockPair
|
|
|
|
{
|
|
|
|
ClockEvent start, end;
|
2018-11-03 01:26:14 +08:00
|
|
|
|
|
|
|
bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; }
|
2018-11-03 00:56:53 +08:00
|
|
|
};
|
|
|
|
} // namespace
|
2018-10-30 18:07:37 +08:00
|
|
|
|
|
|
|
NEXTPNR_NAMESPACE_END
|
|
|
|
namespace std {
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>
|
|
|
|
{
|
|
|
|
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockEvent &obj) const noexcept
|
|
|
|
{
|
|
|
|
std::size_t seed = 0;
|
|
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(obj.clock));
|
|
|
|
boost::hash_combine(seed, hash<int>()(int(obj.edge)));
|
|
|
|
return seed;
|
|
|
|
}
|
|
|
|
};
|
2018-10-30 18:07:37 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockPair>
|
|
|
|
{
|
|
|
|
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockPair &obj) const noexcept
|
|
|
|
{
|
|
|
|
std::size_t seed = 0;
|
|
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
|
|
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
|
|
|
|
return seed;
|
|
|
|
}
|
|
|
|
};
|
2018-10-30 18:07:37 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
} // namespace std
|
2018-10-30 18:07:37 +08:00
|
|
|
NEXTPNR_NAMESPACE_BEGIN
|
|
|
|
|
2018-08-04 14:42:25 +08:00
|
|
|
typedef std::vector<const PortRef *> PortRefVector;
|
2018-08-05 09:55:03 +08:00
|
|
|
typedef std::map<int, unsigned> DelayFrequency;
|
2018-07-25 00:20:07 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
struct CriticalPath
|
|
|
|
{
|
|
|
|
PortRefVector ports;
|
|
|
|
delay_t path_delay;
|
|
|
|
delay_t path_period;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef std::unordered_map<ClockPair, CriticalPath> CriticalPathMap;
|
2018-12-01 19:54:26 +08:00
|
|
|
typedef std::unordered_map<IdString, NetCriticalityInfo> NetCriticalityMap;
|
2018-11-03 00:56:53 +08:00
|
|
|
|
2018-08-04 13:39:25 +08:00
|
|
|
struct Timing
|
2018-06-20 17:44:28 +08:00
|
|
|
{
|
2018-08-04 13:39:25 +08:00
|
|
|
Context *ctx;
|
2018-08-06 22:18:06 +08:00
|
|
|
bool net_delays;
|
2018-08-04 13:39:25 +08:00
|
|
|
bool update;
|
|
|
|
delay_t min_slack;
|
2018-11-03 00:56:53 +08:00
|
|
|
CriticalPathMap *crit_path;
|
2018-08-04 14:39:42 +08:00
|
|
|
DelayFrequency *slack_histogram;
|
2018-12-01 19:54:26 +08:00
|
|
|
NetCriticalityMap *net_crit;
|
2018-12-05 20:31:35 +08:00
|
|
|
IdString async_clock;
|
2018-10-30 18:07:37 +08:00
|
|
|
|
2018-08-07 08:35:23 +08:00
|
|
|
struct TimingData
|
|
|
|
{
|
2018-08-06 13:38:54 +08:00
|
|
|
TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
|
2018-11-03 00:56:53 +08:00
|
|
|
TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
|
|
|
|
delay_t max_arrival;
|
2018-08-06 13:38:54 +08:00
|
|
|
unsigned max_path_length = 0;
|
|
|
|
delay_t min_remaining_budget;
|
2018-09-16 06:17:37 +08:00
|
|
|
bool false_startpoint = false;
|
2018-12-01 19:54:26 +08:00
|
|
|
std::vector<delay_t> min_required;
|
2018-11-03 00:56:53 +08:00
|
|
|
std::unordered_map<ClockEvent, delay_t> arrival_time;
|
2018-08-06 13:38:54 +08:00
|
|
|
};
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr,
|
2018-12-01 19:54:26 +08:00
|
|
|
DelayFrequency *slack_histogram = nullptr, NetCriticalityMap *net_crit = nullptr)
|
2019-06-15 21:23:51 +08:00
|
|
|
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->setting<float>("target_freq")),
|
2018-12-01 19:54:26 +08:00
|
|
|
crit_path(crit_path), slack_histogram(slack_histogram), net_crit(net_crit),
|
|
|
|
async_clock(ctx->id("$async$"))
|
2018-08-04 14:42:25 +08:00
|
|
|
{
|
|
|
|
}
|
2018-08-04 13:39:25 +08:00
|
|
|
|
|
|
|
delay_t walk_paths()
|
|
|
|
{
|
2021-02-19 18:39:57 +08:00
|
|
|
const auto clk_period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
|
2018-08-04 14:42:25 +08:00
|
|
|
|
2020-05-14 23:55:28 +08:00
|
|
|
// First, compute the topological order of nets to walk through the circuit, assuming it is a _acyclic_ graph
|
2018-08-08 23:01:24 +08:00
|
|
|
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
|
2020-05-14 23:55:28 +08:00
|
|
|
std::vector<NetInfo *> topological_order;
|
2018-10-30 18:07:37 +08:00
|
|
|
std::unordered_map<const NetInfo *, std::unordered_map<ClockEvent, TimingData>> net_data;
|
2018-08-08 23:01:24 +08:00
|
|
|
// In lieu of deleting edges from the graph, simply count the number of fanins to each output port
|
2018-08-07 08:35:23 +08:00
|
|
|
std::unordered_map<const PortInfo *, unsigned> port_fanin;
|
2018-08-06 13:38:54 +08:00
|
|
|
|
|
|
|
std::vector<IdString> input_ports;
|
2018-08-07 08:35:23 +08:00
|
|
|
std::vector<const PortInfo *> output_ports;
|
2020-08-12 17:42:26 +08:00
|
|
|
|
|
|
|
std::unordered_set<IdString> ooc_port_nets;
|
|
|
|
|
|
|
|
// In out-of-context mode, top-level inputs look floating but aren't
|
|
|
|
if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
|
|
|
|
for (auto &p : ctx->ports) {
|
|
|
|
if (p.second.type != PORT_IN || p.second.net == nullptr)
|
|
|
|
continue;
|
|
|
|
ooc_port_nets.insert(p.second.net->name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-08-06 13:38:54 +08:00
|
|
|
for (auto &cell : ctx->cells) {
|
|
|
|
input_ports.clear();
|
|
|
|
output_ports.clear();
|
2018-08-07 08:35:23 +08:00
|
|
|
for (auto &port : cell.second->ports) {
|
|
|
|
if (!port.second.net)
|
|
|
|
continue;
|
2018-08-06 13:38:54 +08:00
|
|
|
if (port.second.type == PORT_OUT)
|
|
|
|
output_ports.push_back(&port.second);
|
|
|
|
else
|
|
|
|
input_ports.push_back(port.first);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto o : output_ports) {
|
2018-11-03 00:56:53 +08:00
|
|
|
int clocks = 0;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clocks);
|
2018-08-08 23:07:20 +08:00
|
|
|
// If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing
|
|
|
|
// start-point
|
2018-08-08 20:58:43 +08:00
|
|
|
if (portClass == TMG_REGISTER_OUTPUT) {
|
2020-05-14 23:55:28 +08:00
|
|
|
topological_order.emplace_back(o->net);
|
2018-11-03 00:56:53 +08:00
|
|
|
for (int i = 0; i < clocks; i++) {
|
|
|
|
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(cell.second.get(), o->name, i);
|
|
|
|
const NetInfo *clknet = get_net_or_empty(cell.second.get(), clkInfo.clock_port);
|
|
|
|
IdString clksig = clknet ? clknet->name : async_clock;
|
|
|
|
net_data[o->net][ClockEvent{clksig, clknet ? clkInfo.edge : RISING_EDGE}] =
|
|
|
|
TimingData{clkInfo.clockToQ.maxDelay()};
|
|
|
|
}
|
|
|
|
|
2018-08-07 08:35:23 +08:00
|
|
|
} else {
|
2018-08-08 22:49:07 +08:00
|
|
|
if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) {
|
2020-05-14 23:55:28 +08:00
|
|
|
topological_order.emplace_back(o->net);
|
2018-09-16 06:17:37 +08:00
|
|
|
TimingData td;
|
|
|
|
td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE);
|
2018-11-03 22:09:27 +08:00
|
|
|
td.max_arrival = 0;
|
2018-11-03 00:56:53 +08:00
|
|
|
net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
|
2018-08-06 13:38:54 +08:00
|
|
|
}
|
2018-11-03 22:09:27 +08:00
|
|
|
|
|
|
|
// Don't analyse paths from a clock input to other pins - they will be considered by the
|
|
|
|
// special-case handling register input/output class ports
|
|
|
|
if (portClass == TMG_CLOCK_INPUT)
|
|
|
|
continue;
|
|
|
|
|
2018-08-08 23:07:20 +08:00
|
|
|
// Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and
|
|
|
|
// the current output port, increment fanin counter
|
2018-08-06 13:38:54 +08:00
|
|
|
for (auto i : input_ports) {
|
2021-02-19 18:39:57 +08:00
|
|
|
DelayQuad comb_delay;
|
2020-08-12 17:42:26 +08:00
|
|
|
NetInfo *i_net = cell.second->ports[i].net;
|
|
|
|
if (i_net->driver.cell == nullptr && !ooc_port_nets.count(i_net->name))
|
2020-03-17 18:07:21 +08:00
|
|
|
continue;
|
2018-08-06 13:38:54 +08:00
|
|
|
bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
|
|
|
|
if (is_path)
|
|
|
|
port_fanin[o]++;
|
|
|
|
}
|
2020-03-17 18:07:21 +08:00
|
|
|
// If there is no fanin, add the port as a false startpoint
|
|
|
|
if (!port_fanin.count(o) && !net_data.count(o->net)) {
|
2020-05-14 23:55:28 +08:00
|
|
|
topological_order.emplace_back(o->net);
|
2020-03-17 18:07:21 +08:00
|
|
|
TimingData td;
|
|
|
|
td.false_startpoint = true;
|
|
|
|
td.max_arrival = 0;
|
|
|
|
net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
|
|
|
|
}
|
2018-08-06 13:38:54 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-08-07 23:51:29 +08:00
|
|
|
// In out-of-context mode, handle top-level ports correctly
|
|
|
|
if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) {
|
|
|
|
for (auto &p : ctx->ports) {
|
|
|
|
if (p.second.type != PORT_IN || p.second.net == nullptr)
|
|
|
|
continue;
|
2020-05-14 23:55:28 +08:00
|
|
|
topological_order.emplace_back(p.second.net);
|
2019-08-07 23:51:29 +08:00
|
|
|
}
|
|
|
|
}
|
2018-08-06 13:38:54 +08:00
|
|
|
|
2020-05-14 23:55:28 +08:00
|
|
|
std::deque<NetInfo *> queue(topological_order.begin(), topological_order.end());
|
|
|
|
// Now walk the design, from the start points identified previously, building up a topological order
|
2018-08-06 13:38:54 +08:00
|
|
|
while (!queue.empty()) {
|
|
|
|
const auto net = queue.front();
|
|
|
|
queue.pop_front();
|
|
|
|
|
|
|
|
for (auto &usr : net->users) {
|
2018-11-03 00:56:53 +08:00
|
|
|
int user_clocks;
|
|
|
|
TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, user_clocks);
|
2018-08-08 21:07:41 +08:00
|
|
|
if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT)
|
|
|
|
continue;
|
2018-08-07 08:35:23 +08:00
|
|
|
for (auto &port : usr.cell->ports) {
|
2018-08-07 10:53:42 +08:00
|
|
|
if (port.second.type != PORT_OUT || !port.second.net)
|
|
|
|
continue;
|
2018-11-03 00:56:53 +08:00
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, port_clocks);
|
2018-08-08 21:07:41 +08:00
|
|
|
|
2018-08-07 10:53:42 +08:00
|
|
|
// Skip if this is a clocked output (but allow non-clocked ones)
|
2018-08-08 21:07:41 +08:00
|
|
|
if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE ||
|
|
|
|
portClass == TMG_GEN_CLOCK)
|
2018-08-07 10:53:42 +08:00
|
|
|
continue;
|
2021-02-19 18:39:57 +08:00
|
|
|
DelayQuad comb_delay;
|
2018-08-07 10:53:42 +08:00
|
|
|
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
2020-05-14 23:55:28 +08:00
|
|
|
// Decrement the fanin count, and only add to topological order if all its fanins have already
|
2018-08-08 23:07:20 +08:00
|
|
|
// been visited
|
2018-08-07 10:53:42 +08:00
|
|
|
auto it = port_fanin.find(&port.second);
|
2020-08-12 17:42:26 +08:00
|
|
|
if (it == port_fanin.end())
|
2020-08-20 16:46:49 +08:00
|
|
|
log_error("Timing counted negative fanin count for port %s.%s (net %s), please report this "
|
|
|
|
"error.\n",
|
2020-08-12 17:42:26 +08:00
|
|
|
ctx->nameOf(usr.cell), ctx->nameOf(port.first), ctx->nameOf(port.second.net));
|
2018-08-07 10:53:42 +08:00
|
|
|
if (--it->second == 0) {
|
2020-05-14 23:55:28 +08:00
|
|
|
topological_order.emplace_back(port.second.net);
|
2018-08-07 10:53:42 +08:00
|
|
|
queue.emplace_back(port.second.net);
|
|
|
|
port_fanin.erase(it);
|
2018-08-06 13:38:54 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-08-08 23:01:24 +08:00
|
|
|
// Sanity check to ensure that all ports where fanins were recorded were indeed visited
|
2018-12-14 21:06:00 +08:00
|
|
|
if (!port_fanin.empty() && !bool_or_default(ctx->settings, ctx->id("timing/ignoreLoops"), false)) {
|
2018-10-02 00:45:35 +08:00
|
|
|
for (auto fanin : port_fanin) {
|
|
|
|
NetInfo *net = fanin.first->net;
|
|
|
|
if (net != nullptr) {
|
|
|
|
log_info(" remaining fanin includes %s (net %s)\n", fanin.first->name.c_str(ctx),
|
|
|
|
net->name.c_str(ctx));
|
|
|
|
if (net->driver.cell != nullptr)
|
|
|
|
log_info(" driver = %s.%s\n", net->driver.cell->name.c_str(ctx),
|
|
|
|
net->driver.port.c_str(ctx));
|
|
|
|
for (auto net_user : net->users)
|
2018-10-02 01:20:14 +08:00
|
|
|
log_info(" user: %s.%s\n", net_user.cell->name.c_str(ctx), net_user.port.c_str(ctx));
|
2018-10-02 00:45:35 +08:00
|
|
|
} else {
|
|
|
|
log_info(" remaining fanin includes %s (no net)\n", fanin.first->name.c_str(ctx));
|
|
|
|
}
|
|
|
|
}
|
2018-11-12 05:19:50 +08:00
|
|
|
if (ctx->force)
|
2018-11-16 21:25:51 +08:00
|
|
|
log_warning("timing analysis failed due to presence of combinatorial loops, incomplete specification "
|
|
|
|
"of timing ports, etc.\n");
|
2018-11-12 05:19:50 +08:00
|
|
|
else
|
2018-11-16 21:25:51 +08:00
|
|
|
log_error("timing analysis failed due to presence of combinatorial loops, incomplete specification of "
|
|
|
|
"timing ports, etc.\n");
|
2018-10-02 00:45:35 +08:00
|
|
|
}
|
2018-08-07 03:03:58 +08:00
|
|
|
|
2020-05-14 23:55:28 +08:00
|
|
|
// Go forwards topologically to find the maximum arrival time and max path length for each net
|
|
|
|
for (auto net : topological_order) {
|
2018-11-03 03:13:50 +08:00
|
|
|
if (!net_data.count(net))
|
|
|
|
continue;
|
2018-10-30 18:07:37 +08:00
|
|
|
auto &nd_map = net_data.at(net);
|
|
|
|
for (auto &startdomain : nd_map) {
|
|
|
|
ClockEvent start_clk = startdomain.first;
|
|
|
|
auto &nd = startdomain.second;
|
2018-11-03 03:13:50 +08:00
|
|
|
if (nd.false_startpoint)
|
|
|
|
continue;
|
2018-10-30 18:07:37 +08:00
|
|
|
const auto net_arrival = nd.max_arrival;
|
|
|
|
const auto net_length_plus_one = nd.max_path_length + 1;
|
|
|
|
nd.min_remaining_budget = clk_period;
|
|
|
|
for (auto &usr : net->users) {
|
2018-11-03 00:56:53 +08:00
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
|
|
|
|
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
|
|
|
|
auto usr_arrival = net_arrival + net_delay;
|
|
|
|
|
2019-01-21 19:58:49 +08:00
|
|
|
if (portClass == TMG_ENDPOINT || portClass == TMG_IGNORE || portClass == TMG_CLOCK_INPUT) {
|
2018-11-03 00:56:53 +08:00
|
|
|
// Skip
|
2018-10-30 18:07:37 +08:00
|
|
|
} else {
|
|
|
|
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
|
|
|
|
// Iterate over all output ports on the same cell as the sink
|
|
|
|
for (auto port : usr.cell->ports) {
|
|
|
|
if (port.second.type != PORT_OUT || !port.second.net)
|
|
|
|
continue;
|
2021-02-19 18:39:57 +08:00
|
|
|
DelayQuad comb_delay;
|
2018-10-30 18:07:37 +08:00
|
|
|
// Look up delay through this path
|
|
|
|
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
|
|
|
auto &data = net_data[port.second.net][start_clk];
|
|
|
|
auto &arrival = data.max_arrival;
|
|
|
|
arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
|
2021-01-28 23:19:06 +08:00
|
|
|
if (!budget_override) { // Do not increment path length if budget overridden since it
|
|
|
|
// doesn't
|
2018-10-30 18:07:37 +08:00
|
|
|
// require a share of the slack
|
|
|
|
auto &path_length = data.max_path_length;
|
|
|
|
path_length = std::max(path_length, net_length_plus_one);
|
|
|
|
}
|
2018-08-06 13:38:54 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
std::unordered_map<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets;
|
2018-08-07 05:14:41 +08:00
|
|
|
|
2020-05-14 23:55:28 +08:00
|
|
|
// Now go backwards topologically to determine the minimum path slack, and to distribute all path slack evenly
|
2018-08-08 23:07:20 +08:00
|
|
|
// between all nets on the path
|
2020-05-14 23:55:28 +08:00
|
|
|
for (auto net : boost::adaptors::reverse(topological_order)) {
|
2018-11-03 03:13:50 +08:00
|
|
|
if (!net_data.count(net))
|
|
|
|
continue;
|
2018-11-03 00:56:53 +08:00
|
|
|
auto &nd_map = net_data.at(net);
|
|
|
|
for (auto &startdomain : nd_map) {
|
|
|
|
auto &nd = startdomain.second;
|
|
|
|
// Ignore false startpoints
|
|
|
|
if (nd.false_startpoint)
|
|
|
|
continue;
|
|
|
|
const delay_t net_length_plus_one = nd.max_path_length + 1;
|
|
|
|
auto &net_min_remaining_budget = nd.min_remaining_budget;
|
|
|
|
for (auto &usr : net->users) {
|
|
|
|
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
|
|
|
|
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
|
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
|
|
|
|
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
|
|
|
|
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
|
|
|
|
const auto net_arrival = nd.max_arrival;
|
|
|
|
const auto endpoint_arrival = net_arrival + net_delay + setup;
|
|
|
|
delay_t period;
|
2018-11-12 21:42:25 +08:00
|
|
|
// Set default period
|
2018-11-03 00:56:53 +08:00
|
|
|
if (edge == startdomain.first.edge) {
|
|
|
|
period = clk_period;
|
|
|
|
} else {
|
|
|
|
period = clk_period / 2;
|
|
|
|
}
|
2018-11-12 21:42:25 +08:00
|
|
|
if (clksig != async_clock) {
|
|
|
|
if (ctx->nets.at(clksig)->clkconstr) {
|
|
|
|
if (edge == startdomain.first.edge) {
|
|
|
|
// same edge
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
|
|
|
|
} else if (edge == RISING_EDGE) {
|
|
|
|
// falling -> rising
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
|
|
|
|
} else if (edge == FALLING_EDGE) {
|
|
|
|
// rising -> falling
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-11-14 16:46:10 +08:00
|
|
|
auto path_budget = period - endpoint_arrival;
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
if (update) {
|
|
|
|
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
|
|
|
|
usr.budget = std::min(usr.budget, net_delay + budget_share);
|
|
|
|
net_min_remaining_budget =
|
|
|
|
std::min(net_min_remaining_budget, path_budget - budget_share);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (path_budget < min_slack)
|
|
|
|
min_slack = path_budget;
|
|
|
|
|
|
|
|
if (slack_histogram) {
|
|
|
|
int slack_ps = ctx->getDelayNS(path_budget) * 1000;
|
|
|
|
(*slack_histogram)[slack_ps]++;
|
|
|
|
}
|
|
|
|
ClockEvent dest_ev{clksig, edge};
|
|
|
|
ClockPair clockPair{startdomain.first, dest_ev};
|
|
|
|
nd.arrival_time[dest_ev] = std::max(nd.arrival_time[dest_ev], endpoint_arrival);
|
|
|
|
|
|
|
|
if (crit_path) {
|
|
|
|
if (!crit_nets.count(clockPair) || crit_nets.at(clockPair).first < endpoint_arrival) {
|
|
|
|
crit_nets[clockPair] = std::make_pair(endpoint_arrival, net);
|
|
|
|
(*crit_path)[clockPair].path_delay = endpoint_arrival;
|
2018-11-04 22:03:33 +08:00
|
|
|
(*crit_path)[clockPair].path_period = period;
|
2018-11-03 00:56:53 +08:00
|
|
|
(*crit_path)[clockPair].ports.clear();
|
|
|
|
(*crit_path)[clockPair].ports.push_back(&usr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
if (portClass == TMG_REGISTER_INPUT) {
|
|
|
|
for (int i = 0; i < port_clocks; i++) {
|
|
|
|
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, i);
|
|
|
|
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
|
|
|
|
IdString clksig = clknet ? clknet->name : async_clock;
|
2018-11-03 22:09:27 +08:00
|
|
|
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, clkInfo.setup.maxDelay());
|
2018-11-03 00:56:53 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
process_endpoint(async_clock, RISING_EDGE, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (update) {
|
2018-08-06 13:38:54 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
// Iterate over all output ports on the same cell as the sink
|
|
|
|
for (const auto &port : usr.cell->ports) {
|
|
|
|
if (port.second.type != PORT_OUT || !port.second.net)
|
|
|
|
continue;
|
2021-02-19 18:39:57 +08:00
|
|
|
DelayQuad comb_delay;
|
2018-11-03 00:56:53 +08:00
|
|
|
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
2018-11-03 01:26:14 +08:00
|
|
|
if (net_data.count(port.second.net) &&
|
|
|
|
net_data.at(port.second.net).count(startdomain.first)) {
|
|
|
|
auto path_budget =
|
|
|
|
net_data.at(port.second.net).at(startdomain.first).min_remaining_budget;
|
|
|
|
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
|
|
|
|
usr.budget = std::min(usr.budget, net_delay + budget_share);
|
|
|
|
net_min_remaining_budget =
|
|
|
|
std::min(net_min_remaining_budget, path_budget - budget_share);
|
|
|
|
}
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
|
|
|
}
|
2018-08-06 13:38:54 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-08-07 05:14:41 +08:00
|
|
|
|
|
|
|
if (crit_path) {
|
|
|
|
// Walk backwards from the most critical net
|
2018-11-03 00:56:53 +08:00
|
|
|
for (auto crit_pair : crit_nets) {
|
|
|
|
NetInfo *crit_net = crit_pair.second.second;
|
|
|
|
auto &cp_ports = (*crit_path)[crit_pair.first].ports;
|
|
|
|
while (crit_net) {
|
|
|
|
const PortInfo *crit_ipin = nullptr;
|
|
|
|
delay_t max_arrival = std::numeric_limits<delay_t>::min();
|
|
|
|
// Look at all input ports on its driving cell
|
|
|
|
for (const auto &port : crit_net->driver.cell->ports) {
|
|
|
|
if (port.second.type != PORT_IN || !port.second.net)
|
|
|
|
continue;
|
2021-02-19 18:39:57 +08:00
|
|
|
DelayQuad comb_delay;
|
2018-11-03 00:56:53 +08:00
|
|
|
bool is_path =
|
|
|
|
ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
|
|
|
// If input port is influenced by a clock, skip
|
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass =
|
|
|
|
ctx->getPortTimingClass(crit_net->driver.cell, port.first, port_clocks);
|
2019-11-19 05:34:32 +08:00
|
|
|
if (portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE)
|
2018-11-03 00:56:53 +08:00
|
|
|
continue;
|
|
|
|
// And find the fanin net with the latest arrival time
|
2018-11-03 22:09:27 +08:00
|
|
|
if (net_data.count(port.second.net) &&
|
|
|
|
net_data.at(port.second.net).count(crit_pair.first.start)) {
|
2018-12-13 20:10:18 +08:00
|
|
|
auto net_arrival = net_data.at(port.second.net).at(crit_pair.first.start).max_arrival;
|
|
|
|
if (net_delays) {
|
|
|
|
for (auto &user : port.second.net->users)
|
|
|
|
if (user.port == port.first && user.cell == crit_net->driver.cell) {
|
|
|
|
net_arrival += ctx->getNetinfoRouteDelay(port.second.net, user);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
net_arrival += comb_delay.maxDelay();
|
2018-11-03 01:26:14 +08:00
|
|
|
if (net_arrival > max_arrival) {
|
|
|
|
max_arrival = net_arrival;
|
|
|
|
crit_ipin = &port.second;
|
|
|
|
}
|
2018-11-03 00:56:53 +08:00
|
|
|
}
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
if (!crit_ipin)
|
2018-08-07 05:14:41 +08:00
|
|
|
break;
|
2018-11-03 00:56:53 +08:00
|
|
|
// Now convert PortInfo* into a PortRef*
|
|
|
|
for (auto &usr : crit_ipin->net->users) {
|
|
|
|
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
|
|
|
|
cp_ports.push_back(&usr);
|
|
|
|
break;
|
|
|
|
}
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
2018-11-03 00:56:53 +08:00
|
|
|
crit_net = crit_ipin->net;
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
2018-11-03 00:56:53 +08:00
|
|
|
std::reverse(cp_ports.begin(), cp_ports.end());
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
|
|
|
}
|
2018-12-01 19:54:26 +08:00
|
|
|
|
|
|
|
if (net_crit) {
|
|
|
|
NPNR_ASSERT(crit_path);
|
2020-05-14 23:55:28 +08:00
|
|
|
// Go through in reverse topological order to set required times
|
|
|
|
for (auto net : boost::adaptors::reverse(topological_order)) {
|
2018-12-01 19:54:26 +08:00
|
|
|
if (!net_data.count(net))
|
|
|
|
continue;
|
|
|
|
auto &nd_map = net_data.at(net);
|
|
|
|
for (auto &startdomain : nd_map) {
|
|
|
|
auto &nd = startdomain.second;
|
|
|
|
if (nd.false_startpoint)
|
|
|
|
continue;
|
2018-12-02 20:23:18 +08:00
|
|
|
if (startdomain.first.clock == async_clock)
|
|
|
|
continue;
|
2018-12-01 19:54:26 +08:00
|
|
|
if (nd.min_required.empty())
|
|
|
|
nd.min_required.resize(net->users.size(), std::numeric_limits<delay_t>::max());
|
|
|
|
delay_t net_min_required = std::numeric_limits<delay_t>::max();
|
|
|
|
for (size_t i = 0; i < net->users.size(); i++) {
|
|
|
|
auto &usr = net->users.at(i);
|
|
|
|
auto net_delay = ctx->getNetinfoRouteDelay(net, usr);
|
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
|
|
|
|
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
|
|
|
|
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
|
|
|
|
delay_t period;
|
|
|
|
// Set default period
|
|
|
|
if (edge == startdomain.first.edge) {
|
|
|
|
period = clk_period;
|
|
|
|
} else {
|
|
|
|
period = clk_period / 2;
|
|
|
|
}
|
|
|
|
if (clksig != async_clock) {
|
|
|
|
if (ctx->nets.at(clksig)->clkconstr) {
|
|
|
|
if (edge == startdomain.first.edge) {
|
|
|
|
// same edge
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
|
|
|
|
} else if (edge == RISING_EDGE) {
|
|
|
|
// falling -> rising
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
|
|
|
|
} else if (edge == FALLING_EDGE) {
|
|
|
|
// rising -> falling
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
nd.min_required.at(i) = std::min(period - setup, nd.min_required.at(i));
|
|
|
|
};
|
|
|
|
if (portClass == TMG_REGISTER_INPUT) {
|
|
|
|
for (int j = 0; j < port_clocks; j++) {
|
|
|
|
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, j);
|
|
|
|
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
|
|
|
|
IdString clksig = clknet ? clknet->name : async_clock;
|
|
|
|
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE,
|
|
|
|
clkInfo.setup.maxDelay());
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
process_endpoint(async_clock, RISING_EDGE, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
net_min_required = std::min(net_min_required, nd.min_required.at(i) - net_delay);
|
|
|
|
}
|
|
|
|
PortRef &drv = net->driver;
|
|
|
|
if (drv.cell == nullptr)
|
|
|
|
continue;
|
|
|
|
for (const auto &port : drv.cell->ports) {
|
|
|
|
if (port.second.type != PORT_IN || !port.second.net)
|
|
|
|
continue;
|
2021-02-19 18:39:57 +08:00
|
|
|
DelayQuad comb_delay;
|
2018-12-01 19:54:26 +08:00
|
|
|
bool is_path = ctx->getCellDelay(drv.cell, port.first, drv.port, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
2018-12-02 22:14:44 +08:00
|
|
|
int cc;
|
|
|
|
auto pclass = ctx->getPortTimingClass(drv.cell, port.first, cc);
|
|
|
|
if (pclass != TMG_COMB_INPUT)
|
|
|
|
continue;
|
2018-12-01 19:54:26 +08:00
|
|
|
NetInfo *sink_net = port.second.net;
|
|
|
|
if (net_data.count(sink_net) && net_data.at(sink_net).count(startdomain.first)) {
|
|
|
|
auto &sink_nd = net_data.at(sink_net).at(startdomain.first);
|
|
|
|
if (sink_nd.min_required.empty())
|
|
|
|
sink_nd.min_required.resize(sink_net->users.size(),
|
|
|
|
std::numeric_limits<delay_t>::max());
|
|
|
|
for (size_t i = 0; i < sink_net->users.size(); i++) {
|
|
|
|
auto &user = sink_net->users.at(i);
|
|
|
|
if (user.cell == drv.cell && user.port == port.first) {
|
2019-06-24 18:43:01 +08:00
|
|
|
sink_nd.min_required.at(i) = std::min(sink_nd.min_required.at(i),
|
|
|
|
net_min_required - comb_delay.maxDelay());
|
2018-12-01 19:54:26 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::unordered_map<ClockEvent, delay_t> worst_slack;
|
|
|
|
|
|
|
|
// Assign slack values
|
|
|
|
for (auto &net_entry : net_data) {
|
|
|
|
const NetInfo *net = net_entry.first;
|
|
|
|
for (auto &startdomain : net_entry.second) {
|
|
|
|
auto &nd = startdomain.second;
|
2018-12-02 20:23:18 +08:00
|
|
|
if (startdomain.first.clock == async_clock)
|
|
|
|
continue;
|
2018-12-01 19:54:26 +08:00
|
|
|
if (nd.min_required.empty())
|
|
|
|
continue;
|
|
|
|
auto &nc = (*net_crit)[net->name];
|
|
|
|
if (nc.slack.empty())
|
|
|
|
nc.slack.resize(net->users.size(), std::numeric_limits<delay_t>::max());
|
2021-01-28 22:59:13 +08:00
|
|
|
|
2018-12-01 19:54:26 +08:00
|
|
|
for (size_t i = 0; i < net->users.size(); i++) {
|
|
|
|
delay_t slack = nd.min_required.at(i) -
|
|
|
|
(nd.max_arrival + ctx->getNetinfoRouteDelay(net, net->users.at(i)));
|
2021-01-28 22:59:13 +08:00
|
|
|
|
2018-12-01 19:54:26 +08:00
|
|
|
if (worst_slack.count(startdomain.first))
|
|
|
|
worst_slack.at(startdomain.first) = std::min(worst_slack.at(startdomain.first), slack);
|
|
|
|
else
|
|
|
|
worst_slack[startdomain.first] = slack;
|
2018-12-05 20:31:35 +08:00
|
|
|
nc.slack.at(i) = slack;
|
2018-12-01 19:54:26 +08:00
|
|
|
}
|
2018-12-02 22:14:44 +08:00
|
|
|
if (ctx->debug)
|
|
|
|
log_break();
|
2018-12-01 19:54:26 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
// Assign criticality values
|
|
|
|
for (auto &net_entry : net_data) {
|
|
|
|
const NetInfo *net = net_entry.first;
|
|
|
|
for (auto &startdomain : net_entry.second) {
|
2018-12-02 20:23:18 +08:00
|
|
|
if (startdomain.first.clock == async_clock)
|
|
|
|
continue;
|
2018-12-01 19:54:26 +08:00
|
|
|
auto &nd = startdomain.second;
|
|
|
|
if (nd.min_required.empty())
|
|
|
|
continue;
|
|
|
|
auto &nc = (*net_crit)[net->name];
|
|
|
|
if (nc.slack.empty())
|
|
|
|
continue;
|
|
|
|
if (nc.criticality.empty())
|
|
|
|
nc.criticality.resize(net->users.size(), 0);
|
|
|
|
// Only consider intra-clock paths for criticality
|
|
|
|
if (!crit_path->count(ClockPair{startdomain.first, startdomain.first}))
|
|
|
|
continue;
|
|
|
|
delay_t dmax = crit_path->at(ClockPair{startdomain.first, startdomain.first}).path_delay;
|
|
|
|
for (size_t i = 0; i < net->users.size(); i++) {
|
2019-02-25 20:48:01 +08:00
|
|
|
float criticality =
|
|
|
|
1.0f - ((float(nc.slack.at(i)) - float(worst_slack.at(startdomain.first))) / dmax);
|
2019-02-25 19:03:59 +08:00
|
|
|
nc.criticality.at(i) = std::min<double>(1.0, std::max<double>(0.0, criticality));
|
2018-12-01 19:54:26 +08:00
|
|
|
}
|
2018-12-05 20:31:35 +08:00
|
|
|
nc.max_path_length = nd.max_path_length;
|
|
|
|
nc.cd_worst_slack = worst_slack.at(startdomain.first);
|
2018-12-01 19:54:26 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-08-04 13:39:25 +08:00
|
|
|
return min_slack;
|
2018-06-20 17:53:49 +08:00
|
|
|
}
|
2018-06-20 17:44:28 +08:00
|
|
|
|
2018-08-04 13:39:25 +08:00
|
|
|
void assign_budget()
|
|
|
|
{
|
|
|
|
// Clear delays to a very high value first
|
|
|
|
for (auto &net : ctx->nets) {
|
|
|
|
for (auto &usr : net.second->users) {
|
2018-08-06 13:38:54 +08:00
|
|
|
usr.budget = std::numeric_limits<delay_t>::max();
|
2018-06-20 18:21:56 +08:00
|
|
|
}
|
|
|
|
}
|
2018-06-20 23:08:57 +08:00
|
|
|
|
2018-08-04 13:39:25 +08:00
|
|
|
walk_paths();
|
|
|
|
}
|
|
|
|
};
|
2018-07-26 09:21:39 +08:00
|
|
|
|
2018-07-29 05:10:48 +08:00
|
|
|
void assign_budget(Context *ctx, bool quiet)
|
2018-07-26 09:21:39 +08:00
|
|
|
{
|
2018-07-29 05:10:48 +08:00
|
|
|
if (!quiet) {
|
|
|
|
log_break();
|
2019-06-26 00:19:25 +08:00
|
|
|
log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n",
|
|
|
|
ctx->setting<float>("target_freq") / 1e6);
|
2018-07-29 05:10:48 +08:00
|
|
|
}
|
|
|
|
|
2019-06-26 00:19:25 +08:00
|
|
|
Timing timing(ctx, ctx->setting<int>("slack_redist_iter") > 0 /* net_delays */, true /* update */);
|
2018-08-04 13:39:25 +08:00
|
|
|
timing.assign_budget();
|
2018-07-26 09:21:39 +08:00
|
|
|
|
2018-07-29 05:10:48 +08:00
|
|
|
if (!quiet || ctx->verbose) {
|
2018-07-29 03:50:21 +08:00
|
|
|
for (auto &net : ctx->nets) {
|
|
|
|
for (auto &user : net.second->users) {
|
|
|
|
// Post-update check
|
2019-06-15 21:23:51 +08:00
|
|
|
if (!ctx->setting<bool>("auto_freq") && user.budget < 0)
|
2018-11-22 01:13:53 +08:00
|
|
|
log_info("port %s.%s, connected to net '%s', has negative "
|
|
|
|
"timing budget of %fns\n",
|
|
|
|
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
|
|
|
|
ctx->getDelayNS(user.budget));
|
|
|
|
else if (ctx->debug)
|
2018-07-22 03:47:09 +08:00
|
|
|
log_info("port %s.%s, connected to net '%s', has "
|
|
|
|
"timing budget of %fns\n",
|
|
|
|
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
|
|
|
|
ctx->getDelayNS(user.budget));
|
|
|
|
}
|
2018-07-21 16:55:20 +08:00
|
|
|
}
|
|
|
|
}
|
2018-07-27 12:35:37 +08:00
|
|
|
|
2018-08-08 23:07:20 +08:00
|
|
|
// For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the
|
|
|
|
// currently achieved maximum
|
2019-06-15 21:23:51 +08:00
|
|
|
if (ctx->setting<bool>("auto_freq") && ctx->setting<int>("slack_redist_iter") > 0) {
|
|
|
|
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->setting<float>("target_freq"));
|
2019-06-26 00:19:25 +08:00
|
|
|
ctx->settings[ctx->id("target_freq")] =
|
|
|
|
std::to_string(1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack));
|
2018-08-04 13:39:25 +08:00
|
|
|
if (ctx->verbose)
|
2018-08-08 23:54:25 +08:00
|
|
|
log_info("minimum slack for this assign = %.2f ns, target Fmax for next "
|
2018-08-04 14:42:25 +08:00
|
|
|
"update = %.2f MHz\n",
|
2019-06-26 00:19:25 +08:00
|
|
|
ctx->getDelayNS(timing.min_slack), ctx->setting<float>("target_freq") / 1e6);
|
2018-07-27 12:35:37 +08:00
|
|
|
}
|
2018-07-29 05:10:48 +08:00
|
|
|
|
|
|
|
if (!quiet)
|
|
|
|
log_info("Checksum: 0x%08x\n", ctx->checksum());
|
2018-07-21 16:55:20 +08:00
|
|
|
}
|
|
|
|
|
2018-11-22 01:13:53 +08:00
|
|
|
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure)
|
2018-07-26 09:21:39 +08:00
|
|
|
{
|
2018-11-03 02:59:04 +08:00
|
|
|
auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
|
|
|
|
std::string value;
|
|
|
|
if (e.clock == ctx->id("$async$"))
|
|
|
|
value = std::string("<async>");
|
|
|
|
else
|
|
|
|
value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
|
|
|
|
if (int(value.length()) < field_width)
|
|
|
|
value.insert(value.length(), field_width - int(value.length()), ' ');
|
|
|
|
return value;
|
|
|
|
};
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
CriticalPathMap crit_paths;
|
2018-08-04 14:39:42 +08:00
|
|
|
DelayFrequency slack_histogram;
|
2018-08-04 13:39:25 +08:00
|
|
|
|
2018-11-03 02:59:04 +08:00
|
|
|
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
|
2018-08-04 14:42:25 +08:00
|
|
|
print_histogram ? &slack_histogram : nullptr);
|
2018-11-12 22:00:08 +08:00
|
|
|
timing.walk_paths();
|
2018-11-03 02:59:04 +08:00
|
|
|
std::map<IdString, std::pair<ClockPair, CriticalPath>> clock_reports;
|
2018-11-04 22:26:16 +08:00
|
|
|
std::map<IdString, double> clock_fmax;
|
2018-11-03 02:59:04 +08:00
|
|
|
std::vector<ClockPair> xclock_paths;
|
2018-11-14 16:46:10 +08:00
|
|
|
std::set<IdString> empty_clocks; // set of clocks with no interior paths
|
2018-11-03 02:59:04 +08:00
|
|
|
if (print_path || print_fmax) {
|
2018-11-14 16:46:10 +08:00
|
|
|
for (auto path : crit_paths) {
|
|
|
|
const ClockEvent &a = path.first.start;
|
|
|
|
const ClockEvent &b = path.first.end;
|
|
|
|
empty_clocks.insert(a.clock);
|
|
|
|
empty_clocks.insert(b.clock);
|
|
|
|
}
|
2018-11-03 00:56:53 +08:00
|
|
|
for (auto path : crit_paths) {
|
|
|
|
const ClockEvent &a = path.first.start;
|
|
|
|
const ClockEvent &b = path.first.end;
|
|
|
|
if (a.clock != b.clock || a.clock == ctx->id("$async$"))
|
|
|
|
continue;
|
2018-11-04 22:26:16 +08:00
|
|
|
double Fmax;
|
2018-11-14 16:46:10 +08:00
|
|
|
empty_clocks.erase(a.clock);
|
2018-11-04 22:26:16 +08:00
|
|
|
if (a.edge == b.edge)
|
|
|
|
Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
|
|
|
|
else
|
|
|
|
Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
|
2018-11-04 22:51:48 +08:00
|
|
|
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) {
|
2018-11-03 00:56:53 +08:00
|
|
|
clock_reports[a.clock] = path;
|
2018-11-04 22:26:16 +08:00
|
|
|
clock_fmax[a.clock] = Fmax;
|
2018-11-03 00:56:53 +08:00
|
|
|
}
|
|
|
|
}
|
2018-11-03 02:59:04 +08:00
|
|
|
|
|
|
|
for (auto &path : crit_paths) {
|
|
|
|
const ClockEvent &a = path.first.start;
|
|
|
|
const ClockEvent &b = path.first.end;
|
|
|
|
if (a.clock == b.clock && a.clock != ctx->id("$async$"))
|
|
|
|
continue;
|
|
|
|
xclock_paths.push_back(path.first);
|
|
|
|
}
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
if (clock_reports.empty()) {
|
2021-02-21 04:15:52 +08:00
|
|
|
log_info("No Fmax available; no interior timing paths found in design.\n");
|
2018-11-03 02:59:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
std::sort(xclock_paths.begin(), xclock_paths.end(), [ctx](const ClockPair &a, const ClockPair &b) {
|
|
|
|
if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
|
|
|
|
return true;
|
|
|
|
if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
|
|
|
|
return false;
|
|
|
|
if (a.start.edge < b.start.edge)
|
|
|
|
return true;
|
|
|
|
if (a.start.edge > b.start.edge)
|
|
|
|
return false;
|
|
|
|
if (a.end.clock.str(ctx) < b.end.clock.str(ctx))
|
|
|
|
return true;
|
|
|
|
if (a.end.clock.str(ctx) > b.end.clock.str(ctx))
|
|
|
|
return false;
|
|
|
|
if (a.end.edge < b.end.edge)
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
if (print_path) {
|
2020-08-31 05:43:29 +08:00
|
|
|
static auto print_net_source = [](Context *ctx, NetInfo *net) {
|
2020-08-31 06:19:41 +08:00
|
|
|
// Check if this net is annotated with a source list
|
2020-08-31 05:43:29 +08:00
|
|
|
auto sources = net->attrs.find(ctx->id("src"));
|
|
|
|
if (sources == net->attrs.end()) {
|
|
|
|
// No sources for this net, can't print anything
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2020-08-31 06:19:41 +08:00
|
|
|
// Sources are separated by pipe characters.
|
|
|
|
// There is no guaranteed ordering on sources, so we just print all
|
2020-08-31 05:43:29 +08:00
|
|
|
auto sourcelist = sources->second.as_string();
|
|
|
|
std::vector<std::string> source_entries;
|
|
|
|
size_t current = 0, prev = 0;
|
|
|
|
while ((current = sourcelist.find("|", prev)) != std::string::npos) {
|
|
|
|
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
|
|
|
|
prev = current + 1;
|
|
|
|
}
|
|
|
|
// Ensure we emplace the final entry
|
|
|
|
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
|
|
|
|
|
2020-08-31 06:19:41 +08:00
|
|
|
// Iterate and print our source list at the correct indentation level
|
2020-08-31 05:43:29 +08:00
|
|
|
log_info(" Defined in:\n");
|
2020-08-31 06:19:41 +08:00
|
|
|
for (auto entry : source_entries) {
|
|
|
|
log_info(" %s\n", entry.c_str());
|
2020-08-31 05:43:29 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-11-03 22:09:27 +08:00
|
|
|
auto print_path_report = [ctx](ClockPair &clocks, PortRefVector &crit_path) {
|
2018-11-17 00:24:06 +08:00
|
|
|
delay_t total = 0, logic_total = 0, route_total = 0;
|
2018-11-03 02:59:04 +08:00
|
|
|
auto &front = crit_path.front();
|
|
|
|
auto &front_port = front->cell->ports.at(front->port);
|
|
|
|
auto &front_driver = front_port.net->driver;
|
|
|
|
|
|
|
|
int port_clocks;
|
|
|
|
auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);
|
|
|
|
IdString last_port = front_driver.port;
|
2018-12-13 20:10:18 +08:00
|
|
|
int clock_start = -1;
|
2018-11-03 02:59:04 +08:00
|
|
|
if (portClass == TMG_REGISTER_OUTPUT) {
|
2018-11-03 00:56:53 +08:00
|
|
|
for (int i = 0; i < port_clocks; i++) {
|
|
|
|
TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
|
|
|
|
const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port);
|
2018-11-03 02:59:04 +08:00
|
|
|
if (clknet != nullptr && clknet->name == clocks.start.clock &&
|
|
|
|
clockInfo.edge == clocks.start.edge) {
|
2018-11-04 22:26:16 +08:00
|
|
|
last_port = clockInfo.clock_port;
|
2018-12-13 20:10:18 +08:00
|
|
|
clock_start = i;
|
2018-11-16 20:59:27 +08:00
|
|
|
break;
|
2018-11-03 00:56:53 +08:00
|
|
|
}
|
|
|
|
}
|
2018-11-03 01:26:14 +08:00
|
|
|
}
|
|
|
|
|
2018-11-14 06:14:51 +08:00
|
|
|
log_info("curr total\n");
|
2018-11-03 02:59:04 +08:00
|
|
|
for (auto sink : crit_path) {
|
|
|
|
auto sink_cell = sink->cell;
|
|
|
|
auto &port = sink_cell->ports.at(sink->port);
|
|
|
|
auto net = port.net;
|
|
|
|
auto &driver = net->driver;
|
|
|
|
auto driver_cell = driver.cell;
|
2021-02-19 18:39:57 +08:00
|
|
|
DelayQuad comb_delay;
|
2018-12-13 20:10:18 +08:00
|
|
|
if (clock_start != -1) {
|
|
|
|
auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start);
|
|
|
|
comb_delay = clockInfo.clockToQ;
|
|
|
|
clock_start = -1;
|
|
|
|
} else if (last_port == driver.port) {
|
2018-11-03 02:59:04 +08:00
|
|
|
// Case where we start with a STARTPOINT etc
|
2021-02-19 18:39:57 +08:00
|
|
|
comb_delay = DelayQuad(0);
|
2018-11-17 00:24:06 +08:00
|
|
|
} else {
|
2018-12-13 20:10:18 +08:00
|
|
|
ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
|
2018-11-03 02:59:04 +08:00
|
|
|
}
|
|
|
|
total += comb_delay.maxDelay();
|
2018-11-17 00:24:06 +08:00
|
|
|
logic_total += comb_delay.maxDelay();
|
2018-11-03 22:09:27 +08:00
|
|
|
log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total),
|
|
|
|
driver_cell->name.c_str(ctx), driver.port.c_str(ctx));
|
2018-11-03 02:59:04 +08:00
|
|
|
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
|
|
|
|
total += net_delay;
|
2018-11-17 00:24:06 +08:00
|
|
|
route_total += net_delay;
|
2018-11-03 02:59:04 +08:00
|
|
|
auto driver_loc = ctx->getBelLocation(driver_cell->bel);
|
|
|
|
auto sink_loc = ctx->getBelLocation(sink_cell->bel);
|
|
|
|
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(net_delay),
|
2018-11-03 22:09:27 +08:00
|
|
|
ctx->getDelayNS(total), net->name.c_str(ctx), ctx->getDelayNS(sink->budget), driver_loc.x,
|
|
|
|
driver_loc.y, sink_loc.x, sink_loc.y);
|
2018-11-14 08:32:06 +08:00
|
|
|
log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx));
|
|
|
|
if (ctx->verbose) {
|
|
|
|
auto driver_wire = ctx->getNetinfoSourceWire(net);
|
2021-02-10 20:28:40 +08:00
|
|
|
auto sink_wire = ctx->getNetinfoSinkWire(net, *sink, 0);
|
2018-11-14 08:32:06 +08:00
|
|
|
log_info(" prediction: %f ns estimate: %f ns\n",
|
2018-11-16 21:25:51 +08:00
|
|
|
ctx->getDelayNS(ctx->predictDelay(net, *sink)),
|
|
|
|
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
|
2018-11-14 08:32:06 +08:00
|
|
|
auto cursor = sink_wire;
|
|
|
|
delay_t delay;
|
|
|
|
while (driver_wire != cursor) {
|
2019-02-08 03:19:15 +08:00
|
|
|
#ifdef ARCH_ECP5
|
|
|
|
if (net->is_global)
|
|
|
|
break;
|
|
|
|
#endif
|
2018-11-14 08:32:06 +08:00
|
|
|
auto it = net->wires.find(cursor);
|
|
|
|
assert(it != net->wires.end());
|
|
|
|
auto pip = it->second.pip;
|
|
|
|
NPNR_ASSERT(pip != PipId());
|
|
|
|
delay = ctx->getPipDelay(pip).maxDelay();
|
2021-01-29 20:58:41 +08:00
|
|
|
log_info(" %1.3f %s\n", ctx->getDelayNS(delay), ctx->nameOfPip(pip));
|
2018-11-14 08:32:06 +08:00
|
|
|
cursor = ctx->getPipSrcWire(pip);
|
|
|
|
}
|
|
|
|
}
|
2020-08-31 06:19:41 +08:00
|
|
|
if (!ctx->disable_critical_path_source_print) {
|
2020-08-31 05:43:29 +08:00
|
|
|
print_net_source(ctx, net);
|
|
|
|
}
|
2018-11-03 02:59:04 +08:00
|
|
|
last_port = sink->port;
|
2018-08-01 17:23:11 +08:00
|
|
|
}
|
2018-11-16 20:59:27 +08:00
|
|
|
int clockCount = 0;
|
|
|
|
auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount);
|
|
|
|
if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
|
|
|
|
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
|
|
|
|
delay_t setup = sinkClockInfo.setup.maxDelay();
|
|
|
|
total += setup;
|
2018-11-17 00:24:06 +08:00
|
|
|
logic_total += setup;
|
2018-11-16 20:59:27 +08:00
|
|
|
log_info("%4.1f %4.1f Setup %s.%s\n", ctx->getDelayNS(setup), ctx->getDelayNS(total),
|
|
|
|
crit_path.back()->cell->name.c_str(ctx), crit_path.back()->port.c_str(ctx));
|
|
|
|
}
|
2018-11-17 00:24:06 +08:00
|
|
|
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
|
2018-11-03 02:59:04 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
for (auto &clock : clock_reports) {
|
|
|
|
log_break();
|
2018-11-16 21:25:51 +08:00
|
|
|
std::string start =
|
|
|
|
clock.second.first.start.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
|
|
|
|
std::string end =
|
|
|
|
clock.second.first.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
|
|
|
|
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
|
|
|
|
end.c_str());
|
2018-11-03 02:59:04 +08:00
|
|
|
auto &crit_path = clock.second.second.ports;
|
|
|
|
print_path_report(clock.second.first, crit_path);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &xclock : xclock_paths) {
|
2018-11-03 01:26:14 +08:00
|
|
|
log_break();
|
2018-11-03 02:59:04 +08:00
|
|
|
std::string start = format_event(xclock.start);
|
|
|
|
std::string end = format_event(xclock.end);
|
|
|
|
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
|
|
|
|
auto &crit_path = crit_paths.at(xclock).ports;
|
|
|
|
print_path_report(xclock, crit_path);
|
2018-07-26 13:10:26 +08:00
|
|
|
}
|
|
|
|
}
|
2018-11-03 02:59:04 +08:00
|
|
|
if (print_fmax) {
|
|
|
|
log_break();
|
2018-11-15 10:27:43 +08:00
|
|
|
unsigned max_width = 0;
|
|
|
|
for (auto &clock : clock_reports)
|
|
|
|
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
|
2018-11-03 02:59:04 +08:00
|
|
|
for (auto &clock : clock_reports) {
|
2018-11-15 10:27:43 +08:00
|
|
|
const auto &clock_name = clock.first.str(ctx);
|
|
|
|
const int width = max_width - clock_name.size();
|
2019-06-15 21:23:51 +08:00
|
|
|
float target = ctx->setting<float>("target_freq") / 1e6;
|
2018-11-22 01:13:53 +08:00
|
|
|
if (ctx->nets.at(clock.first)->clkconstr)
|
|
|
|
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
|
|
|
|
|
|
|
|
bool passed = target < clock_fmax[clock.first];
|
|
|
|
if (!warn_on_failure || passed)
|
2018-11-16 21:25:51 +08:00
|
|
|
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
2018-11-22 01:13:53 +08:00
|
|
|
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
|
2019-03-22 18:39:05 +08:00
|
|
|
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false))
|
2019-03-04 19:29:19 +08:00
|
|
|
log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
2019-03-22 18:39:05 +08:00
|
|
|
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
|
2018-11-22 01:13:53 +08:00
|
|
|
else
|
2018-11-26 17:22:42 +08:00
|
|
|
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
2018-11-26 17:37:39 +08:00
|
|
|
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
|
2018-11-03 02:59:04 +08:00
|
|
|
}
|
2018-11-14 16:46:10 +08:00
|
|
|
for (auto &eclock : empty_clocks) {
|
|
|
|
if (eclock != ctx->id("$async$"))
|
|
|
|
log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx));
|
|
|
|
}
|
2018-11-03 02:59:04 +08:00
|
|
|
log_break();
|
|
|
|
|
|
|
|
int start_field_width = 0, end_field_width = 0;
|
|
|
|
for (auto &xclock : xclock_paths) {
|
|
|
|
start_field_width = std::max((int)format_event(xclock.start).length(), start_field_width);
|
|
|
|
end_field_width = std::max((int)format_event(xclock.end).length(), end_field_width);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &xclock : xclock_paths) {
|
|
|
|
const ClockEvent &a = xclock.start;
|
|
|
|
const ClockEvent &b = xclock.end;
|
|
|
|
auto &path = crit_paths.at(xclock);
|
|
|
|
auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width);
|
|
|
|
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path.path_delay));
|
|
|
|
}
|
|
|
|
log_break();
|
|
|
|
}
|
2018-08-04 13:39:25 +08:00
|
|
|
|
2018-08-05 22:36:35 +08:00
|
|
|
if (print_histogram && slack_histogram.size() > 0) {
|
2018-08-23 00:24:30 +08:00
|
|
|
unsigned num_bins = 20;
|
2018-08-04 14:39:42 +08:00
|
|
|
unsigned bar_width = 60;
|
2018-08-05 09:54:23 +08:00
|
|
|
auto min_slack = slack_histogram.begin()->first;
|
|
|
|
auto max_slack = slack_histogram.rbegin()->first;
|
2019-02-12 00:32:01 +08:00
|
|
|
auto bin_size = std::max<unsigned>(1, ceil((max_slack - min_slack + 1) / float(num_bins)));
|
2018-08-23 00:24:30 +08:00
|
|
|
std::vector<unsigned> bins(num_bins);
|
2018-08-04 14:39:42 +08:00
|
|
|
unsigned max_freq = 0;
|
2018-08-04 14:42:25 +08:00
|
|
|
for (const auto &i : slack_histogram) {
|
|
|
|
auto &bin = bins[(i.first - min_slack) / bin_size];
|
2018-08-04 14:39:42 +08:00
|
|
|
bin += i.second;
|
|
|
|
max_freq = std::max(max_freq, bin);
|
|
|
|
}
|
|
|
|
bar_width = std::min(bar_width, max_freq);
|
|
|
|
|
|
|
|
log_break();
|
|
|
|
log_info("Slack histogram:\n");
|
|
|
|
log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
|
2018-08-06 22:29:42 +08:00
|
|
|
log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
|
2018-08-23 00:24:30 +08:00
|
|
|
for (unsigned i = 0; i < num_bins; ++i)
|
2018-08-06 22:29:42 +08:00
|
|
|
log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1),
|
|
|
|
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
|
|
|
|
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
|
2018-08-04 14:39:42 +08:00
|
|
|
}
|
2018-07-26 09:21:39 +08:00
|
|
|
}
|
|
|
|
|
2018-12-02 21:15:39 +08:00
|
|
|
void get_criticalities(Context *ctx, NetCriticalityMap *net_crit)
|
|
|
|
{
|
2018-12-01 21:43:12 +08:00
|
|
|
CriticalPathMap crit_paths;
|
|
|
|
net_crit->clear();
|
|
|
|
Timing timing(ctx, true, true, &crit_paths, nullptr, net_crit);
|
|
|
|
timing.walk_paths();
|
2021-02-26 19:25:07 +08:00
|
|
|
|
|
|
|
// Test the new timing analyser, too
|
|
|
|
TimingAnalyser sta_v2(ctx);
|
|
|
|
sta_v2.setup();
|
2018-12-01 21:43:12 +08:00
|
|
|
}
|
|
|
|
|
2018-06-20 17:53:49 +08:00
|
|
|
NEXTPNR_NAMESPACE_END
|