nextpnr/fpga_interchange/arch.h

1191 lines
40 KiB
C
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Claire Xenia Wolf <claire@yosyshq.com>
* Copyright (C) 2018-19 gatecat <gatecat@ds0.me>
* Copyright (C) 2021 Symbiflow Authors
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef FPGA_INTERCHANGE_ARCH_H
#define FPGA_INTERCHANGE_ARCH_H
#include <boost/iostreams/device/mapped_file.hpp>
#include <iostream>
#include <regex>
#include "PhysicalNetlist.capnp.h"
#include "arch_api.h"
#include "constraints.h"
#include "nextpnr_types.h"
#include "relptr.h"
#include "arch_iterators.h"
#include "cell_parameters.h"
#include "chipdb.h"
#include "dedicated_interconnect.h"
#include "lookahead.h"
#include "pseudo_pip_model.h"
#include "site_lut_mapping_cache.h"
#include "site_router.h"
#include "site_routing_cache.h"
NEXTPNR_NAMESPACE_BEGIN
struct ArchArgs
{
std::string chipdb;
std::string package;
bool rebuild_lookahead;
bool dont_write_lookahead;
bool disable_lut_mapping_cache;
};
struct ArchRanges
{
using ArchArgsT = ArchArgs;
// Bels
using AllBelsRangeT = BelRange;
using TileBelsRangeT = BelRange;
using BelAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
using BelPinsRangeT = IdStringRange;
using CellBelPinRangeT = const std::vector<IdString> &;
// Wires
using AllWiresRangeT = WireRange;
using DownhillPipRangeT = DownhillPipRange;
using UphillPipRangeT = UphillPipRange;
using WireBelPinRangeT = BelPinRange;
using WireAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
// Pips
using AllPipsRangeT = AllPipRange;
using PipAttrsRangeT = std::vector<std::pair<IdString, std::string>>;
// Groups
using AllGroupsRangeT = std::vector<GroupId>;
using GroupBelsRangeT = std::vector<BelId>;
using GroupWiresRangeT = std::vector<WireId>;
using GroupPipsRangeT = std::vector<PipId>;
using GroupGroupsRangeT = std::vector<GroupId>;
// Decals
using DecalGfxRangeT = std::vector<GraphicElement>;
// Placement validity
using CellTypeRangeT = const IdStringRange;
using BelBucketRangeT = const BelBucketRange;
using BucketBelRangeT = FilteredBelRange;
};
static constexpr size_t kMaxState = 8;
struct TileStatus
{
std::vector<ExclusiveStateGroup<kMaxState>> tags;
std::vector<CellInfo *> boundcells;
std::vector<SiteRouter> sites;
PseudoPipModel pseudo_pip_model;
};
struct Cluster
{
uint32_t index;
CellInfo *root;
std::vector<CellInfo *> cluster_nodes;
dict<IdString, IdString> cell_cluster_node_map;
dict<IdString, std::vector<std::pair<IdString, CellInfo *>>> cluster_node_cells;
};
struct Arch : ArchAPI<ArchRanges>
{
boost::iostreams::mapped_file_source blob_file;
const ChipInfoPOD *chip_info;
int32_t package_index;
// Guard initialization of "by_name" maps if accessed from multiple
// threads on a "const Context *".
mutable std::mutex by_name_mutex;
mutable dict<IdString, int> tile_by_name;
mutable dict<IdString, std::pair<int, int>> site_by_name;
dict<WireId, NetInfo *> wire_to_net;
dict<PipId, NetInfo *> pip_to_net;
DedicatedInterconnect dedicated_interconnect;
dict<int32_t, TileStatus> tileStatus;
PseudoPipData pseudo_pip_data;
ArchArgs args;
Arch(ArchArgs args);
virtual ~Arch();
void init();
std::string getChipName() const final;
IdString archId() const final { return id(chip_info->name.get()); }
ArchArgs archArgs() const final { return args; }
IdString archArgsToId(ArchArgs args) const final;
// -------------------------------------------------
uint32_t get_tile_index(int x, int y) const { return (y * chip_info->width + x); }
uint32_t get_tile_index(Loc loc) const { return get_tile_index(loc.x, loc.y); }
template <typename TileIndex, typename CoordIndex>
void get_tile_x_y(TileIndex tile_index, CoordIndex *x, CoordIndex *y) const
{
*x = tile_index % chip_info->width;
*y = tile_index / chip_info->width;
}
template <typename TileIndex> void get_tile_loc(TileIndex tile_index, Loc *loc) const
{
get_tile_x_y(tile_index, &loc->x, &loc->y);
}
int getGridDimX() const final { return chip_info->width; }
int getGridDimY() const final { return chip_info->height; }
int getTileBelDimZ(int x, int y) const final
{
return chip_info->tile_types[chip_info->tiles[get_tile_index(x, y)].type].bel_data.size();
}
int getTilePipDimZ(int x, int y) const final
{
return chip_info->tile_types[chip_info->tiles[get_tile_index(x, y)].type].site_types.size();
}
char getNameDelimiter() const final { return '/'; }
std::string get_part() const;
// -------------------------------------------------
void setup_byname() const;
BelId getBelByName(IdStringList name) const final;
IdStringList getBelName(BelId bel) const final
{
NPNR_ASSERT(bel != BelId());
const SiteInstInfoPOD &site = get_site_inst(bel);
std::array<IdString, 2> ids{id(site.name.get()), IdString(bel_info(chip_info, bel).name)};
return IdStringList(ids);
}
uint32_t getBelChecksum(BelId bel) const final { return bel.index; }
void map_cell_pins(CellInfo *cell, int32_t mapping, bool bind_constants);
void map_port_pins(BelId bel, CellInfo *cell) const;
TileStatus &get_tile_status(int32_t tile)
{
auto result = tileStatus.emplace(tile, TileStatus());
if (result.second) {
auto &tile_type = chip_info->tile_types[chip_info->tiles[tile].type];
result.first->second.boundcells.resize(tile_type.bel_data.size(), nullptr);
result.first->second.tags.resize(default_tags.size());
result.first->second.sites.reserve(tile_type.site_types.size());
for (size_t i = 0; i < tile_type.site_types.size(); ++i) {
result.first->second.sites.push_back(SiteRouter(i));
}
result.first->second.pseudo_pip_model.init(getCtx(), tile);
}
return result.first->second;
}
const SiteRouter &get_site_status(const TileStatus &tile_status, const BelInfoPOD &bel_data) const
{
return tile_status.sites.at(bel_data.site);
}
SiteRouter &get_site_status(TileStatus &tile_status, const BelInfoPOD &bel_data)
{
return tile_status.sites.at(bel_data.site);
}
BelId get_vcc_bel() const
{
auto &constants = *chip_info->constants;
BelId bel;
bel.tile = constants.vcc_bel_tile;
bel.index = constants.vcc_bel_index;
return bel;
}
BelId get_gnd_bel() const
{
auto &constants = *chip_info->constants;
BelId bel;
bel.tile = constants.gnd_bel_tile;
bel.index = constants.gnd_bel_index;
return bel;
}
PhysicalNetlist::PhysNetlist::NetType get_net_type(NetInfo *net) const
{
NPNR_ASSERT(net != nullptr);
IdString gnd_cell_name(chip_info->constants->gnd_cell_name);
IdString gnd_cell_port(chip_info->constants->gnd_cell_port);
IdString vcc_cell_name(chip_info->constants->vcc_cell_name);
IdString vcc_cell_port(chip_info->constants->vcc_cell_port);
if (net->driver.cell->type == gnd_cell_name && net->driver.port == gnd_cell_port) {
return PhysicalNetlist::PhysNetlist::NetType::GND;
} else if (net->driver.cell->type == vcc_cell_name && net->driver.port == vcc_cell_port) {
return PhysicalNetlist::PhysNetlist::NetType::VCC;
} else {
return PhysicalNetlist::PhysNetlist::NetType::SIGNAL;
}
}
void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength) final
{
NPNR_ASSERT(bel != BelId());
TileStatus &tile_status = get_tile_status(bel.tile);
NPNR_ASSERT(tile_status.boundcells[bel.index] == nullptr);
const auto &bel_data = bel_info(chip_info, bel);
NPNR_ASSERT(bel_data.category == BEL_CATEGORY_LOGIC);
if (io_port_types.count(cell->type) == 0) {
int32_t mapping = bel_info(chip_info, bel).pin_map[get_cell_type_index(cell->type)];
if (mapping < 0) {
report_invalid_bel(bel, cell);
}
NPNR_ASSERT(mapping >= 0);
if (cell->cell_mapping != mapping) {
map_cell_pins(cell, mapping, /*bind_constants=*/false);
}
constraints.bindBel(tile_status.tags.data(), get_cell_constraints(bel, cell->type));
// Clean previous cell placement in tile
if (cell->bel != BelId()) {
TileStatus &prev_tile_status = get_tile_status(cell->bel.tile);
NPNR_ASSERT(prev_tile_status.boundcells[cell->bel.index] != nullptr);
const auto &prev_bel_data = bel_info(chip_info, cell->bel);
NPNR_ASSERT(prev_bel_data.category == BEL_CATEGORY_LOGIC);
get_site_status(prev_tile_status, prev_bel_data).unbindBel(cell);
prev_tile_status.boundcells[cell->bel.index] = nullptr;
constraints.unbindBel(prev_tile_status.tags.data(), get_cell_constraints(cell->bel, cell->type));
}
} else {
map_port_pins(bel, cell);
// FIXME: Probably need to actually constraint io port cell/bel,
// but the current BBA emission doesn't support that. This only
// really matters if the placer can choose IO port locations.
}
get_site_status(tile_status, bel_data).bindBel(cell);
tile_status.boundcells[bel.index] = cell;
cell->bel = bel;
cell->belStrength = strength;
refreshUiBel(bel);
}
void unbindBel(BelId bel) final
{
NPNR_ASSERT(bel != BelId());
TileStatus &tile_status = get_tile_status(bel.tile);
NPNR_ASSERT(tile_status.boundcells[bel.index] != nullptr);
CellInfo *cell = tile_status.boundcells[bel.index];
tile_status.boundcells[bel.index] = nullptr;
cell->bel = BelId();
cell->belStrength = STRENGTH_NONE;
// FIXME: Probably need to actually constraint io port cell/bel,
// but the current BBA emission doesn't support that. This only
// really matters if the placer can choose IO port locations.
if (io_port_types.count(cell->type) == 0) {
constraints.unbindBel(tile_status.tags.data(), get_cell_constraints(bel, cell->type));
}
const auto &bel_data = bel_info(chip_info, bel);
get_site_status(tile_status, bel_data).unbindBel(cell);
refreshUiBel(bel);
}
bool checkBelAvail(BelId bel) const final
{
// FIXME: This could consult the constraint system to see if this BEL
// is blocked (e.g. site type is wrong).
return getBoundBelCell(bel) == nullptr;
}
CellInfo *getBoundBelCell(BelId bel) const final
{
NPNR_ASSERT(bel != BelId());
auto iter = tileStatus.find(bel.tile);
if (iter == tileStatus.end()) {
return nullptr;
} else {
return iter->second.boundcells[bel.index];
}
}
CellInfo *getConflictingBelCell(BelId bel) const final
{
NPNR_ASSERT(bel != BelId());
// FIXME: This could consult the constraint system to see why this BEL
// is blocked.
return getBoundBelCell(bel);
}
BelRange getBels() const final
{
BelRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no Bels in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
Loc getBelLocation(BelId bel) const final
{
NPNR_ASSERT(bel != BelId());
Loc loc;
get_tile_x_y(bel.tile, &loc.x, &loc.y);
loc.z = bel.index;
return loc;
}
BelId getBelByLocation(Loc loc) const final;
BelRange getBelsByTile(int x, int y) const final;
bool getBelGlobalBuf(BelId bel) const final
{
auto &bel_data = bel_info(chip_info, bel);
IdString bel_name(bel_data.name);
// Note: Check profiles and see if this should be something other than
// a linear scan. Expectation is that for most arches, this will be
// fast enough.
for (int32_t global_bel : chip_info->cell_map->global_buffers) {
IdString global_bel_name(global_bel);
if (bel_name == global_bel_name) {
return true;
}
}
return false;
}
bool getBelHidden(BelId bel) const final { return bel_info(chip_info, bel).category != BEL_CATEGORY_LOGIC; }
IdString getBelType(BelId bel) const final
{
NPNR_ASSERT(bel != BelId());
return IdString(bel_info(chip_info, bel).type);
}
std::vector<std::pair<IdString, std::string>> getBelAttrs(BelId bel) const final;
int get_bel_pin_index(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
int num_bel_wires = bel_info(chip_info, bel).num_bel_wires;
const int32_t *ports = bel_info(chip_info, bel).ports.get();
for (int i = 0; i < num_bel_wires; i++) {
if (ports[i] == pin.index) {
return i;
}
}
return -1;
}
WireId getBelPinWire(BelId bel, IdString pin) const final;
PortType getBelPinType(BelId bel, IdString pin) const final;
IdStringRange getBelPins(BelId bel) const final
{
NPNR_ASSERT(bel != BelId());
int num_bel_wires = bel_info(chip_info, bel).num_bel_wires;
const int32_t *ports = bel_info(chip_info, bel).ports.get();
IdStringRange str_range;
str_range.b.cursor = &ports[0];
str_range.e.cursor = &ports[num_bel_wires];
return str_range;
}
const std::vector<IdString> &getBelPinsForCellPin(const CellInfo *cell_info, IdString pin) const final;
// -------------------------------------------------
WireId getWireByName(IdStringList name) const final;
const TileWireInfoPOD &wire_info(WireId wire) const
{
if (wire.tile == -1) {
const TileWireRefPOD &wr = chip_info->nodes[wire.index].tile_wires[0];
return chip_info->tile_types[chip_info->tiles[wr.tile].type].wire_data[wr.index];
} else {
return loc_info(chip_info, wire).wire_data[wire.index];
}
}
IdStringList getWireName(WireId wire) const final
{
NPNR_ASSERT(wire != WireId());
if (wire.tile != -1) {
const auto &tile_type = loc_info(chip_info, wire);
if (tile_type.wire_data[wire.index].site != -1) {
const SiteInstInfoPOD &site = get_site_inst(wire);
std::array<IdString, 2> ids{id(site.name.get()), IdString(tile_type.wire_data[wire.index].name)};
return IdStringList(ids);
}
}
int32_t tile = wire.tile == -1 ? chip_info->nodes[wire.index].tile_wires[0].tile : wire.tile;
IdString tile_name = id(chip_info->tiles[tile].name.get());
std::array<IdString, 2> ids{tile_name, IdString(wire_info(wire).name)};
return IdStringList(ids);
}
IdString getWireType(WireId wire) const final;
std::vector<std::pair<IdString, std::string>> getWireAttrs(WireId wire) const final;
uint32_t getWireChecksum(WireId wire) const final { return wire.index; }
void bindWire(WireId wire, NetInfo *net, PlaceStrength strength) final;
void unbindWire(WireId wire) final
{
NPNR_ASSERT(wire != WireId());
unassign_wire(wire);
refreshUiWire(wire);
}
bool checkWireAvail(WireId wire) const final
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() || w2n->second == nullptr;
}
NetInfo *getBoundWireNet(WireId wire) const final
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() ? nullptr : w2n->second;
}
WireId getConflictingWireWire(WireId wire) const final { return wire; }
NetInfo *getConflictingWireNet(WireId wire) const final
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() ? nullptr : w2n->second;
}
DelayQuad getWireDelay(WireId wire) const final { return DelayQuad(0); }
TileWireRange get_tile_wire_range(WireId wire) const
{
TileWireRange range;
range.b.chip = chip_info;
range.b.baseWire = wire;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.baseWire = wire;
if (wire.tile == -1) {
range.e.cursor = chip_info->nodes[wire.index].tile_wires.size();
} else {
range.e.cursor = 1;
}
return range;
}
BelPinRange getWireBelPins(WireId wire) const final
{
BelPinRange range;
NPNR_ASSERT(wire != WireId());
TileWireRange twr = get_tile_wire_range(wire);
range.b.chip = chip_info;
range.b.twi = twr.b;
range.b.twi_end = twr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.twi = twr.e;
range.e.twi_end = twr.e;
range.e.cursor = 0;
return range;
}
WireRange getWires() const final
{
WireRange range;
range.b.chip = chip_info;
range.b.cursor_tile = -1;
range.b.cursor_index = 0;
range.e.chip = chip_info;
range.e.cursor_tile = chip_info->tiles.size();
range.e.cursor_index = 0;
return range;
}
bool is_site_wire(WireId wire) const;
WireCategory get_wire_category(WireId wire) const;
// -------------------------------------------------
PipId getPipByName(IdStringList name) const final;
IdStringList getPipName(PipId pip) const final;
IdString getPipType(PipId pip) const final;
std::vector<std::pair<IdString, std::string>> getPipAttrs(PipId pip) const final;
void assign_net_to_wire(WireId wire, NetInfo *net, const char *src, bool require_empty);
void assign_pip_pseudo_wires(PipId pip, NetInfo *net)
{
NPNR_ASSERT(net != nullptr);
WireId wire;
wire.tile = pip.tile;
const PipInfoPOD &pip_data = pip_info(chip_info, pip);
for (int32_t wire_index : pip_data.pseudo_cell_wires) {
wire.index = wire_index;
if (getBoundWireNet(wire) != net)
assign_net_to_wire(wire, net, "pseudo", /*require_empty=*/true);
}
if (pip_data.pseudo_cell_wires.size() > 0) {
get_tile_status(pip.tile).pseudo_pip_model.bindPip(getCtx(), pip);
}
}
void remove_pip_pseudo_wires(PipId pip, NetInfo *net);
void unassign_wire(WireId wire);
void bindPip(PipId pip, NetInfo *net, PlaceStrength strength) final;
void unbindPip(PipId pip) final;
bool checkPipAvail(PipId pip) const final;
bool checkPipAvailForNet(PipId pip, const NetInfo *net) const final;
NetInfo *getBoundPipNet(PipId pip) const final
{
NPNR_ASSERT(pip != PipId());
auto p2n = pip_to_net.find(pip);
return p2n == pip_to_net.end() ? nullptr : p2n->second;
}
WireId getConflictingPipWire(PipId pip) const final
{
// FIXME: This doesn't account for pseudo pips.
return getPipDstWire(pip);
}
NetInfo *getConflictingPipNet(PipId pip) const final
{
// FIXME: This doesn't account for pseudo pips.
auto p2n = pip_to_net.find(pip);
return p2n == pip_to_net.end() ? nullptr : p2n->second;
}
AllPipRange getPips() const final
{
AllPipRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
++range.b; //-1 and then ++ deals with the case of no wries in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
return range;
}
Loc getPipLocation(PipId pip) const final
{
Loc loc;
get_tile_loc(pip.tile, &loc);
loc.z = 0;
return loc;
}
uint32_t getPipChecksum(PipId pip) const final { return pip.index; }
WireId getPipSrcWire(PipId pip) const final NPNR_ALWAYS_INLINE
{
return canonical_wire(chip_info, pip.tile, loc_info(chip_info, pip).pip_data[pip.index].src_index);
}
WireId getPipDstWire(PipId pip) const final NPNR_ALWAYS_INLINE
{
return canonical_wire(chip_info, pip.tile, loc_info(chip_info, pip).pip_data[pip.index].dst_index);
}
DelayQuad getPipDelay(PipId pip) const final;
DownhillPipRange getPipsDownhill(WireId wire) const final
{
DownhillPipRange range;
NPNR_ASSERT(wire != WireId());
TileWireRange twr = get_tile_wire_range(wire);
range.b.chip = chip_info;
range.b.twi = twr.b;
range.b.twi_end = twr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.twi = twr.e;
range.e.twi_end = twr.e;
range.e.cursor = 0;
return range;
}
UphillPipRange getPipsUphill(WireId wire) const final
{
UphillPipRange range;
NPNR_ASSERT(wire != WireId());
TileWireRange twr = get_tile_wire_range(wire);
range.b.chip = chip_info;
range.b.twi = twr.b;
range.b.twi_end = twr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.twi = twr.e;
range.e.twi_end = twr.e;
range.e.cursor = 0;
return range;
}
// -------------------------------------------------
// FIXME: Use groups to get access to sites.
GroupId getGroupByName(IdStringList name) const final { return GroupId(); }
IdStringList getGroupName(GroupId group) const final { return IdStringList(); }
std::vector<GroupId> getGroups() const final { return {}; }
std::vector<BelId> getGroupBels(GroupId group) const final { return {}; }
std::vector<WireId> getGroupWires(GroupId group) const final { return {}; }
std::vector<PipId> getGroupPips(GroupId group) const final { return {}; }
std::vector<GroupId> getGroupGroups(GroupId group) const final { return {}; }
// -------------------------------------------------
delay_t estimateDelay(WireId src, WireId dst) const final;
delay_t predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const final;
ArcBounds getRouteBoundingBox(WireId src, WireId dst) const final;
delay_t getDelayEpsilon() const final { return 20; }
delay_t getRipupDelayPenalty() const final { return 120; }
float getDelayNS(delay_t v) const final { return v * 0.001; }
delay_t getDelayFromNS(float ns) const final { return delay_t(ns * 1000); }
uint32_t getDelayChecksum(delay_t v) const final { return v; }
bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const final;
// -------------------------------------------------
void place_iobufs(WireId pad_wire, NetInfo *net,
const dict<CellInfo *, IdString, hash_ptr_ops> &tightly_attached_bels,
pool<CellInfo *, hash_ptr_ops> *placed_cells);
void pack_ports();
// Clusters
void pack_cluster();
void prepare_cluster(const ClusterPOD *cluster, uint32_t index);
2021-08-30 17:12:49 +08:00
void prepare_macro_cluster(const ClusterPOD *cluster, uint32_t index);
dict<ClusterId, Cluster> clusters;
// User constraints
void place_constraints();
void decode_lut_cells();
const GlobalCellPOD *global_cell_info(IdString cell_type) const;
void place_globals();
void route_globals();
bool pack() final;
bool place() final;
bool route() final;
// -------------------------------------------------
std::vector<GraphicElement> getDecalGraphics(DecalId decal) const final;
DecalXY getBelDecal(BelId bel) const final;
DecalXY getWireDecal(WireId wire) const final;
DecalXY getPipDecal(PipId pip) const final;
DecalXY getGroupDecal(GroupId group) const final;
// -------------------------------------------------
// Get the delay through a cell from one port to another, returning false
// if no path exists. This only considers combinational delays, as required by the Arch API
bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const;
// Get the port class, also setting clockInfoCount to the number of TimingClockingInfos associated with a port
TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const;
// Get the TimingClockingInfo of a port
TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const;
// -------------------------------------------------
const BelBucketRange getBelBuckets() const final
{
BelBucketRange bel_bucket_range;
bel_bucket_range.b.cursor.cursor = chip_info->bel_buckets.begin();
bel_bucket_range.e.cursor.cursor = chip_info->bel_buckets.end();
return bel_bucket_range;
}
BelBucketId getBelBucketForBel(BelId bel) const final
{
BelBucketId bel_bucket;
bel_bucket.name = IdString(bel_info(chip_info, bel).bel_bucket);
return bel_bucket;
}
const IdStringRange getCellTypes() const final
{
const CellMapPOD &cell_map = *chip_info->cell_map;
IdStringRange id_range;
id_range.b.cursor = cell_map.cell_names.begin();
id_range.e.cursor = cell_map.cell_names.end();
return id_range;
}
IdString getBelBucketName(BelBucketId bucket) const final { return bucket.name; }
BelBucketId getBelBucketByName(IdString name) const final
{
for (BelBucketId bel_bucket : getBelBuckets()) {
if (bel_bucket.name == name) {
return bel_bucket;
}
}
NPNR_ASSERT_FALSE("Failed to find BEL bucket for name.");
return BelBucketId();
}
size_t get_cell_type_index(IdString cell_type) const;
BelBucketId getBelBucketForCellType(IdString cell_type) const final
{
if (io_port_types.count(cell_type)) {
BelBucketId bucket;
bucket.name = id("IOPORTS");
return bucket;
}
BelBucketId bucket;
const CellMapPOD &cell_map = *chip_info->cell_map;
bucket.name = IdString(cell_map.cell_bel_buckets[get_cell_type_index(cell_type)]);
return bucket;
}
FilteredBelRange getBelsInBucket(BelBucketId bucket) const final
{
BelRange range = getBels();
FilteredBelRange filtered_range(range.begin(), range.end(),
[this, bucket](BelId bel) { return getBelBucketForBel(bel) == bucket; });
return filtered_range;
}
bool isValidBelForCellType(IdString cell_type, BelId bel) const final
{
if (io_port_types.count(cell_type)) {
return pads.count(bel) > 0;
}
const auto &bel_data = bel_info(chip_info, bel);
if (bel_data.category != BEL_CATEGORY_LOGIC) {
return false;
}
auto cell_type_index = get_cell_type_index(cell_type);
return bel_data.pin_map[cell_type_index] != -1;
}
bool is_cell_valid_constraints(const CellInfo *cell, const TileStatus &tile_status, bool explain) const
{
if (io_port_types.count(cell->type)) {
return true;
}
BelId bel = cell->bel;
NPNR_ASSERT(bel != BelId());
return constraints.isValidBelForCellType(getCtx(), get_constraint_prototype(bel), tile_status.tags.data(),
get_cell_constraints(bel, cell->type),
id(chip_info->tiles[bel.tile].name.get()), cell->name, bel, explain);
}
// Return true whether all Bels at a given location are valid
bool isBelLocationValid(BelId bel) const final
{
auto iter = tileStatus.find(bel.tile);
if (iter == tileStatus.end()) {
return true;
}
const TileStatus &tile_status = iter->second;
CellInfo *cell = tile_status.boundcells[bel.index];
auto &bel_data = bel_info(chip_info, bel);
auto &site_status = get_site_status(tile_status, bel_data);
if (cell != nullptr) {
if (!dedicated_interconnect.isBelLocationValid(bel, cell))
return false;
if (io_port_types.count(cell->type)) {
// FIXME: Probably need to actually constraint io port cell/bel,
// but the current BBA emission doesn't support that. This only
// really matters if the placer can choose IO port locations.
return true;
}
if (!is_cell_valid_constraints(cell, tile_status, explain_constraints)) {
return false;
}
for (auto ci : site_status.cells_in_site) {
if (ci->cluster != ClusterId() && ci->cluster != cell->cluster &&
cluster_info(chip_info, clusters.at(ci->cluster).index).disallow_other_cells)
return false;
if (cell->cluster != ClusterId() && ci->cluster != cell->cluster &&
cluster_info(chip_info, clusters.at(cell->cluster).index).disallow_other_cells)
return false;
}
}
// Still check site status if cell is nullptr; as other bels in the site could be illegal (for example when
// dedicated paths can no longer be used after ripping up a cell)
bool routing_status = site_status.checkSiteRouting(getCtx(), tile_status);
return routing_status;
}
CellInfo *getClusterRootCell(ClusterId cluster) const override;
ArcBounds getClusterBounds(ClusterId cluster) const override;
Loc getClusterOffset(const CellInfo *cell) const override;
bool isClusterStrict(const CellInfo *cell) const override;
bool normal_cluster_placement(const Context *, const Cluster &, const ClusterPOD &, CellInfo *, BelId,
std::vector<std::pair<CellInfo *, BelId>> &) const;
bool macro_cluster_placement(const Context *, const Cluster &, const ClusterPOD &, CellInfo *, BelId,
std::vector<std::pair<CellInfo *, BelId>> &) const;
bool getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const override;
IdString get_bel_tiletype(BelId bel) const { return IdString(loc_info(chip_info, bel).name); }
dict<WireId, Loc> sink_locs, source_locs;
// -------------------------------------------------
void assignArchInfo() final {}
// -------------------------------------------------
static const std::string defaultPlacer;
static const std::vector<std::string> availablePlacers;
static const std::string defaultRouter;
static const std::vector<std::string> availableRouters;
// -------------------------------------------------
void read_logical_netlist(const std::string &filename);
void write_physical_netlist(const std::string &filename) const;
void parse_xdc(const std::string &filename);
pool<IdString> io_port_types;
pool<BelId> pads;
bool is_site_port(PipId pip) const
{
const PipInfoPOD &pip_data = pip_info(chip_info, pip);
if (pip_data.site == -1) {
return false;
}
BelId bel;
bel.tile = pip.tile;
bel.index = pip_data.bel;
const BelInfoPOD &bel_data = bel_info(chip_info, bel);
return bel_data.category == BEL_CATEGORY_SITE_PORT;
}
// Is the driver and all users of this net located within the same site?
//
// Returns false if any element of the net is not placed.
bool is_net_within_site(const NetInfo &net) const;
using ArchConstraints = Constraints<kMaxState>;
ArchConstraints constraints;
std::vector<ArchConstraints::TagState> default_tags;
bool explain_constraints;
struct StateRange
{
const int32_t *b;
const int32_t *e;
const int32_t *begin() const { return b; }
const int32_t *end() const { return e; }
};
struct Constraint : ArchConstraints::Constraint<StateRange>
{
const CellConstraintPOD *constraint;
Constraint(const CellConstraintPOD *constraint) : constraint(constraint) {}
size_t tag() const final { return constraint->tag; }
ArchConstraints::ConstraintType constraint_type() const final
{
return Constraints<kMaxState>::ConstraintType(constraint->constraint_type);
}
ArchConstraints::ConstraintStateType state() const final
{
NPNR_ASSERT(constraint_type() == Constraints<kMaxState>::CONSTRAINT_TAG_IMPLIES);
NPNR_ASSERT(constraint->states.size() == 1);
return constraint->states[0];
}
StateRange states() const final
{
StateRange range;
range.b = constraint->states.get();
range.e = range.b + constraint->states.size();
return range;
}
};
struct ConstraintIterator
{
const CellConstraintPOD *constraint;
ConstraintIterator() {}
ConstraintIterator operator++()
{
++constraint;
return *this;
}
bool operator!=(const ConstraintIterator &other) const { return constraint != other.constraint; }
bool operator==(const ConstraintIterator &other) const { return constraint == other.constraint; }
Constraint operator*() const { return Constraint(constraint); }
};
struct ConstraintRange
{
ConstraintIterator b, e;
ConstraintIterator begin() const { return b; }
ConstraintIterator end() const { return e; }
};
uint32_t get_constraint_prototype(BelId bel) const { return chip_info->tiles[bel.tile].type; }
ConstraintRange get_cell_constraints(BelId bel, IdString cell_type) const
{
const auto &bel_data = bel_info(chip_info, bel);
NPNR_ASSERT(bel_data.category == BEL_CATEGORY_LOGIC);
int32_t mapping = bel_data.pin_map[get_cell_type_index(cell_type)];
NPNR_ASSERT(mapping >= 0);
auto &cell_bel_map = chip_info->cell_map->cell_bel_map[mapping];
ConstraintRange range;
range.b.constraint = cell_bel_map.constraints.get();
range.e.constraint = range.b.constraint + cell_bel_map.constraints.size();
return range;
}
const char *get_site_name(int32_t tile, size_t site) const
{
return site_inst_info(chip_info, tile, site).name.get();
}
const char *get_site_name(BelId bel) const
{
auto &bel_data = bel_info(chip_info, bel);
return get_site_name(bel.tile, bel_data.site);
}
const SiteInstInfoPOD &get_site_inst(BelId bel) const
{
auto &bel_data = bel_info(chip_info, bel);
return site_inst_info(chip_info, bel.tile, bel_data.site);
}
const SiteInstInfoPOD &get_site_inst(WireId wire) const
{
auto &wire_data = wire_info(wire);
NPNR_ASSERT(wire_data.site != -1);
return site_inst_info(chip_info, wire.tile, wire_data.site);
}
const SiteInstInfoPOD &get_site_inst(PipId pip) const
{
auto &pip_data = pip_info(chip_info, pip);
return site_inst_info(chip_info, pip.tile, pip_data.site);
}
// Is this bel synthetic (e.g. added during import process)?
//
// This is generally used for constant networks, but can also be used for
// static partitions.
bool is_bel_synthetic(BelId bel) const
{
const BelInfoPOD &bel_data = bel_info(chip_info, bel);
return bel_data.synthetic != 0;
}
// Is this pip synthetic (e.g. added during import process)?
//
// This is generally used for constant networks, but can also be used for
// static partitions.
bool is_pip_synthetic(PipId pip) const
{
auto &pip_data = pip_info(chip_info, pip);
if (pip_data.site == -1) {
return pip_data.extra_data == -1;
} else {
BelId bel;
bel.tile = pip.tile;
bel.index = pip_data.bel;
return is_bel_synthetic(bel);
}
}
bool is_same_site(WireId wire_a, WireId wire_b) const
{
if (wire_a.tile == -1) {
return false;
}
if (wire_a.tile != wire_b.tile) {
return false;
}
auto &wire_a_data = wire_info(wire_a);
auto &wire_b_data = wire_info(wire_b);
return wire_a_data.site == wire_b_data.site && wire_a_data.site != -1;
}
bool is_wire_in_site(WireId wire) const
{
if (wire.tile == -1) {
return false;
}
auto &wire_data = wire_info(wire);
return wire_data.site != -1;
}
// Does this pip always invert its signal?
bool is_inverting(PipId pip) const;
// Can this pip optional invert its signal?
bool can_invert(PipId pip) const;
void merge_constant_nets();
void report_invalid_bel(BelId bel, CellInfo *cell) const;
std::vector<IdString> no_pins;
IdString gnd_cell_pin;
IdString vcc_cell_pin;
std::vector<std::vector<LutElement>> lut_elements;
dict<IdString, const LutCellPOD *> lut_cells;
// Defines the max number of LUT cells in a site and LUT pins
// to allow a correct functioning of the site lut mapping cache
int max_lut_cells;
int max_lut_pins;
// Of the LUT cells, which is used for wires?
// Note: May be null in arch's without wire LUT types. Assumption is
// that these arch's don't need wire LUT's because the LUT share is simple
// enough to avoid it.
const LutCellPOD *wire_lut;
std::regex raw_bin_constant;
std::regex verilog_bin_constant;
std::regex verilog_hex_constant;
void read_lut_equation(DynamicBitarray<> *equation, const Property &equation_parameter) const;
IdString id_GND;
IdString id_VCC;
Lookahead lookahead;
mutable RouteNodeStorage node_storage;
mutable SiteRoutingCache site_routing_cache;
mutable SiteLutMappingCache site_lut_mapping_cache;
bool disallow_site_routing;
CellParameters cell_parameters;
std::string chipdb_hash;
std::string get_chipdb_hash() const;
// Masking moves BEL pins from cell_bel_pins to masked_cell_bel_pins for
// the purposes routing. The idea is that masked BEL pins are already
// handled during site routing, and they shouldn't be visible to the
// router.
void mask_bel_pins_on_site_wire(NetInfo *net, WireId wire);
// This removes pips and wires bound by the site router, and unmasks all
// BEL pins masked during site routing.
void remove_site_routing();
// This unmasks any BEL pins that were masked when site routing was bound.
void unmask_bel_pins();
void explain_bel_status(BelId bel) const;
const DefaultCellConnsPOD *get_default_conns(IdString cell_type) const;
void pack_default_conns();
dict<IdString, std::vector<CellInfo *>> macro_to_cells;
void expand_macros();
};
NEXTPNR_NAMESPACE_END
#endif /* FPGA_INTERCHANGE_ARCH_H */