2018-06-20 17:44:28 +08:00
|
|
|
/*
|
|
|
|
* nextpnr -- Next Generation Place and Route
|
|
|
|
*
|
|
|
|
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
|
2018-08-07 03:14:00 +08:00
|
|
|
* Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca>
|
2018-06-20 17:44:28 +08:00
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "timing.h"
|
2018-06-20 17:53:49 +08:00
|
|
|
#include <algorithm>
|
2018-08-07 08:35:23 +08:00
|
|
|
#include <boost/range/adaptor/reversed.hpp>
|
2018-08-09 17:00:24 +08:00
|
|
|
#include <deque>
|
2018-11-03 00:56:53 +08:00
|
|
|
#include <map>
|
2018-06-20 17:44:28 +08:00
|
|
|
#include <unordered_map>
|
|
|
|
#include <utility>
|
2018-06-20 17:53:49 +08:00
|
|
|
#include "log.h"
|
2018-07-21 16:55:20 +08:00
|
|
|
#include "util.h"
|
2018-06-20 17:44:28 +08:00
|
|
|
|
2018-06-20 17:53:49 +08:00
|
|
|
NEXTPNR_NAMESPACE_BEGIN
|
|
|
|
|
2018-10-30 18:07:37 +08:00
|
|
|
namespace {
|
2018-11-03 00:56:53 +08:00
|
|
|
struct ClockEvent
|
|
|
|
{
|
|
|
|
IdString clock;
|
|
|
|
ClockEdge edge;
|
2018-11-03 01:26:14 +08:00
|
|
|
|
|
|
|
bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; }
|
2018-11-03 00:56:53 +08:00
|
|
|
};
|
2018-10-30 18:07:37 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
struct ClockPair
|
|
|
|
{
|
|
|
|
ClockEvent start, end;
|
2018-11-03 01:26:14 +08:00
|
|
|
|
|
|
|
bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; }
|
2018-11-03 00:56:53 +08:00
|
|
|
};
|
|
|
|
} // namespace
|
2018-10-30 18:07:37 +08:00
|
|
|
|
|
|
|
NEXTPNR_NAMESPACE_END
|
|
|
|
namespace std {
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>
|
|
|
|
{
|
|
|
|
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockEvent &obj) const noexcept
|
|
|
|
{
|
|
|
|
std::size_t seed = 0;
|
|
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(obj.clock));
|
|
|
|
boost::hash_combine(seed, hash<int>()(int(obj.edge)));
|
|
|
|
return seed;
|
|
|
|
}
|
|
|
|
};
|
2018-10-30 18:07:37 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockPair>
|
|
|
|
{
|
|
|
|
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockPair &obj) const noexcept
|
|
|
|
{
|
|
|
|
std::size_t seed = 0;
|
|
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
|
|
|
|
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
|
|
|
|
return seed;
|
|
|
|
}
|
|
|
|
};
|
2018-10-30 18:07:37 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
} // namespace std
|
2018-10-30 18:07:37 +08:00
|
|
|
NEXTPNR_NAMESPACE_BEGIN
|
|
|
|
|
2018-08-04 14:42:25 +08:00
|
|
|
typedef std::vector<const PortRef *> PortRefVector;
|
2018-08-05 09:55:03 +08:00
|
|
|
typedef std::map<int, unsigned> DelayFrequency;
|
2018-07-25 00:20:07 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
struct CriticalPath
|
|
|
|
{
|
|
|
|
PortRefVector ports;
|
|
|
|
delay_t path_delay;
|
|
|
|
delay_t path_period;
|
|
|
|
};
|
|
|
|
|
2018-12-01 21:43:12 +08:00
|
|
|
|
2018-12-01 19:54:26 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
typedef std::unordered_map<ClockPair, CriticalPath> CriticalPathMap;
|
2018-12-01 19:54:26 +08:00
|
|
|
typedef std::unordered_map<IdString, NetCriticalityInfo> NetCriticalityMap;
|
2018-11-03 00:56:53 +08:00
|
|
|
|
2018-08-04 13:39:25 +08:00
|
|
|
struct Timing
|
2018-06-20 17:44:28 +08:00
|
|
|
{
|
2018-08-04 13:39:25 +08:00
|
|
|
Context *ctx;
|
2018-08-06 22:18:06 +08:00
|
|
|
bool net_delays;
|
2018-08-04 13:39:25 +08:00
|
|
|
bool update;
|
|
|
|
delay_t min_slack;
|
2018-11-03 00:56:53 +08:00
|
|
|
CriticalPathMap *crit_path;
|
2018-08-04 14:39:42 +08:00
|
|
|
DelayFrequency *slack_histogram;
|
2018-11-03 00:56:53 +08:00
|
|
|
IdString async_clock;
|
2018-12-01 19:54:26 +08:00
|
|
|
NetCriticalityMap *net_crit;
|
2018-10-30 18:07:37 +08:00
|
|
|
|
2018-08-07 08:35:23 +08:00
|
|
|
struct TimingData
|
|
|
|
{
|
2018-08-06 13:38:54 +08:00
|
|
|
TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
|
2018-11-03 00:56:53 +08:00
|
|
|
TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
|
|
|
|
delay_t max_arrival;
|
2018-08-06 13:38:54 +08:00
|
|
|
unsigned max_path_length = 0;
|
|
|
|
delay_t min_remaining_budget;
|
2018-09-16 06:17:37 +08:00
|
|
|
bool false_startpoint = false;
|
2018-12-01 19:54:26 +08:00
|
|
|
std::vector<delay_t> min_required;
|
2018-11-03 00:56:53 +08:00
|
|
|
std::unordered_map<ClockEvent, delay_t> arrival_time;
|
2018-08-06 13:38:54 +08:00
|
|
|
};
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr,
|
2018-12-01 19:54:26 +08:00
|
|
|
DelayFrequency *slack_histogram = nullptr, NetCriticalityMap *net_crit = nullptr)
|
2018-08-06 22:19:32 +08:00
|
|
|
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq),
|
2018-12-01 19:54:26 +08:00
|
|
|
crit_path(crit_path), slack_histogram(slack_histogram), net_crit(net_crit),
|
|
|
|
async_clock(ctx->id("$async$"))
|
2018-08-04 14:42:25 +08:00
|
|
|
{
|
|
|
|
}
|
2018-08-04 13:39:25 +08:00
|
|
|
|
|
|
|
delay_t walk_paths()
|
|
|
|
{
|
2018-11-04 22:03:33 +08:00
|
|
|
const auto clk_period = ctx->getDelayFromNS(1.0e9 / ctx->target_freq).maxDelay();
|
2018-08-04 14:42:25 +08:00
|
|
|
|
2018-08-08 23:01:24 +08:00
|
|
|
// First, compute the topographical order of nets to walk through the circuit, assuming it is a _acyclic_ graph
|
|
|
|
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
|
2018-08-07 08:35:23 +08:00
|
|
|
std::vector<NetInfo *> topographical_order;
|
2018-10-30 18:07:37 +08:00
|
|
|
std::unordered_map<const NetInfo *, std::unordered_map<ClockEvent, TimingData>> net_data;
|
2018-08-08 23:01:24 +08:00
|
|
|
// In lieu of deleting edges from the graph, simply count the number of fanins to each output port
|
2018-08-07 08:35:23 +08:00
|
|
|
std::unordered_map<const PortInfo *, unsigned> port_fanin;
|
2018-08-06 13:38:54 +08:00
|
|
|
|
|
|
|
std::vector<IdString> input_ports;
|
2018-08-07 08:35:23 +08:00
|
|
|
std::vector<const PortInfo *> output_ports;
|
2018-08-06 13:38:54 +08:00
|
|
|
for (auto &cell : ctx->cells) {
|
|
|
|
input_ports.clear();
|
|
|
|
output_ports.clear();
|
2018-08-07 08:35:23 +08:00
|
|
|
for (auto &port : cell.second->ports) {
|
|
|
|
if (!port.second.net)
|
|
|
|
continue;
|
2018-08-06 13:38:54 +08:00
|
|
|
if (port.second.type == PORT_OUT)
|
|
|
|
output_ports.push_back(&port.second);
|
|
|
|
else
|
|
|
|
input_ports.push_back(port.first);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto o : output_ports) {
|
2018-11-03 00:56:53 +08:00
|
|
|
int clocks = 0;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clocks);
|
2018-08-08 23:07:20 +08:00
|
|
|
// If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing
|
|
|
|
// start-point
|
2018-08-08 20:58:43 +08:00
|
|
|
if (portClass == TMG_REGISTER_OUTPUT) {
|
2018-08-06 13:38:54 +08:00
|
|
|
topographical_order.emplace_back(o->net);
|
2018-11-03 00:56:53 +08:00
|
|
|
for (int i = 0; i < clocks; i++) {
|
|
|
|
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(cell.second.get(), o->name, i);
|
|
|
|
const NetInfo *clknet = get_net_or_empty(cell.second.get(), clkInfo.clock_port);
|
|
|
|
IdString clksig = clknet ? clknet->name : async_clock;
|
|
|
|
net_data[o->net][ClockEvent{clksig, clknet ? clkInfo.edge : RISING_EDGE}] =
|
|
|
|
TimingData{clkInfo.clockToQ.maxDelay()};
|
|
|
|
}
|
|
|
|
|
2018-08-07 08:35:23 +08:00
|
|
|
} else {
|
2018-08-08 22:49:07 +08:00
|
|
|
if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) {
|
2018-08-06 13:38:54 +08:00
|
|
|
topographical_order.emplace_back(o->net);
|
2018-09-16 06:17:37 +08:00
|
|
|
TimingData td;
|
|
|
|
td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE);
|
2018-11-03 22:09:27 +08:00
|
|
|
td.max_arrival = 0;
|
2018-11-03 00:56:53 +08:00
|
|
|
net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
|
2018-08-06 13:38:54 +08:00
|
|
|
}
|
2018-11-03 22:09:27 +08:00
|
|
|
|
|
|
|
// Don't analyse paths from a clock input to other pins - they will be considered by the
|
|
|
|
// special-case handling register input/output class ports
|
|
|
|
if (portClass == TMG_CLOCK_INPUT)
|
|
|
|
continue;
|
|
|
|
|
2018-08-08 23:07:20 +08:00
|
|
|
// Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and
|
|
|
|
// the current output port, increment fanin counter
|
2018-08-06 13:38:54 +08:00
|
|
|
for (auto i : input_ports) {
|
|
|
|
DelayInfo comb_delay;
|
|
|
|
bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
|
|
|
|
if (is_path)
|
|
|
|
port_fanin[o]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-08-07 08:35:23 +08:00
|
|
|
std::deque<NetInfo *> queue(topographical_order.begin(), topographical_order.end());
|
2018-08-06 13:38:54 +08:00
|
|
|
|
2018-08-08 23:01:24 +08:00
|
|
|
// Now walk the design, from the start points identified previously, building up a topographical order
|
2018-08-06 13:38:54 +08:00
|
|
|
while (!queue.empty()) {
|
|
|
|
const auto net = queue.front();
|
|
|
|
queue.pop_front();
|
|
|
|
|
|
|
|
for (auto &usr : net->users) {
|
2018-11-03 00:56:53 +08:00
|
|
|
int user_clocks;
|
|
|
|
TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, user_clocks);
|
2018-08-08 21:07:41 +08:00
|
|
|
if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT)
|
|
|
|
continue;
|
2018-08-07 08:35:23 +08:00
|
|
|
for (auto &port : usr.cell->ports) {
|
2018-08-07 10:53:42 +08:00
|
|
|
if (port.second.type != PORT_OUT || !port.second.net)
|
|
|
|
continue;
|
2018-11-03 00:56:53 +08:00
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, port_clocks);
|
2018-08-08 21:07:41 +08:00
|
|
|
|
2018-08-07 10:53:42 +08:00
|
|
|
// Skip if this is a clocked output (but allow non-clocked ones)
|
2018-08-08 21:07:41 +08:00
|
|
|
if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE ||
|
|
|
|
portClass == TMG_GEN_CLOCK)
|
2018-08-07 10:53:42 +08:00
|
|
|
continue;
|
|
|
|
DelayInfo comb_delay;
|
|
|
|
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
2018-08-08 23:07:20 +08:00
|
|
|
// Decrement the fanin count, and only add to topographical order if all its fanins have already
|
|
|
|
// been visited
|
2018-08-07 10:53:42 +08:00
|
|
|
auto it = port_fanin.find(&port.second);
|
|
|
|
NPNR_ASSERT(it != port_fanin.end());
|
|
|
|
if (--it->second == 0) {
|
|
|
|
topographical_order.emplace_back(port.second.net);
|
|
|
|
queue.emplace_back(port.second.net);
|
|
|
|
port_fanin.erase(it);
|
2018-08-06 13:38:54 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-08-08 23:01:24 +08:00
|
|
|
// Sanity check to ensure that all ports where fanins were recorded were indeed visited
|
2018-10-02 00:45:35 +08:00
|
|
|
if (!port_fanin.empty()) {
|
|
|
|
for (auto fanin : port_fanin) {
|
|
|
|
NetInfo *net = fanin.first->net;
|
|
|
|
if (net != nullptr) {
|
|
|
|
log_info(" remaining fanin includes %s (net %s)\n", fanin.first->name.c_str(ctx),
|
|
|
|
net->name.c_str(ctx));
|
|
|
|
if (net->driver.cell != nullptr)
|
|
|
|
log_info(" driver = %s.%s\n", net->driver.cell->name.c_str(ctx),
|
|
|
|
net->driver.port.c_str(ctx));
|
|
|
|
for (auto net_user : net->users)
|
2018-10-02 01:20:14 +08:00
|
|
|
log_info(" user: %s.%s\n", net_user.cell->name.c_str(ctx), net_user.port.c_str(ctx));
|
2018-10-02 00:45:35 +08:00
|
|
|
} else {
|
|
|
|
log_info(" remaining fanin includes %s (no net)\n", fanin.first->name.c_str(ctx));
|
|
|
|
}
|
|
|
|
}
|
2018-11-12 05:19:50 +08:00
|
|
|
if (ctx->force)
|
2018-11-16 21:25:51 +08:00
|
|
|
log_warning("timing analysis failed due to presence of combinatorial loops, incomplete specification "
|
|
|
|
"of timing ports, etc.\n");
|
2018-11-12 05:19:50 +08:00
|
|
|
else
|
2018-11-16 21:25:51 +08:00
|
|
|
log_error("timing analysis failed due to presence of combinatorial loops, incomplete specification of "
|
|
|
|
"timing ports, etc.\n");
|
2018-10-02 00:45:35 +08:00
|
|
|
}
|
2018-08-07 03:03:58 +08:00
|
|
|
|
2018-08-08 23:01:24 +08:00
|
|
|
// Go forwards topographically to find the maximum arrival time and max path length for each net
|
2018-08-06 13:38:54 +08:00
|
|
|
for (auto net : topographical_order) {
|
2018-11-03 03:13:50 +08:00
|
|
|
if (!net_data.count(net))
|
|
|
|
continue;
|
2018-10-30 18:07:37 +08:00
|
|
|
auto &nd_map = net_data.at(net);
|
|
|
|
for (auto &startdomain : nd_map) {
|
|
|
|
ClockEvent start_clk = startdomain.first;
|
|
|
|
auto &nd = startdomain.second;
|
2018-11-03 03:13:50 +08:00
|
|
|
if (nd.false_startpoint)
|
|
|
|
continue;
|
2018-10-30 18:07:37 +08:00
|
|
|
const auto net_arrival = nd.max_arrival;
|
|
|
|
const auto net_length_plus_one = nd.max_path_length + 1;
|
|
|
|
nd.min_remaining_budget = clk_period;
|
|
|
|
for (auto &usr : net->users) {
|
2018-11-03 00:56:53 +08:00
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
|
|
|
|
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
|
|
|
|
auto usr_arrival = net_arrival + net_delay;
|
|
|
|
|
2018-11-03 22:09:27 +08:00
|
|
|
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE ||
|
|
|
|
portClass == TMG_CLOCK_INPUT) {
|
2018-11-03 00:56:53 +08:00
|
|
|
// Skip
|
2018-10-30 18:07:37 +08:00
|
|
|
} else {
|
|
|
|
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
|
|
|
|
// Iterate over all output ports on the same cell as the sink
|
|
|
|
for (auto port : usr.cell->ports) {
|
|
|
|
if (port.second.type != PORT_OUT || !port.second.net)
|
|
|
|
continue;
|
|
|
|
DelayInfo comb_delay;
|
|
|
|
// Look up delay through this path
|
|
|
|
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
|
|
|
auto &data = net_data[port.second.net][start_clk];
|
|
|
|
auto &arrival = data.max_arrival;
|
|
|
|
arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
|
|
|
|
if (!budget_override) { // Do not increment path length if budget overriden since it doesn't
|
|
|
|
// require a share of the slack
|
|
|
|
auto &path_length = data.max_path_length;
|
|
|
|
path_length = std::max(path_length, net_length_plus_one);
|
|
|
|
}
|
2018-08-06 13:38:54 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
std::unordered_map<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets;
|
2018-08-07 05:14:41 +08:00
|
|
|
|
2018-08-08 23:07:20 +08:00
|
|
|
// Now go backwards topographically to determine the minimum path slack, and to distribute all path slack evenly
|
|
|
|
// between all nets on the path
|
2018-08-06 13:38:54 +08:00
|
|
|
for (auto net : boost::adaptors::reverse(topographical_order)) {
|
2018-11-03 03:13:50 +08:00
|
|
|
if (!net_data.count(net))
|
|
|
|
continue;
|
2018-11-03 00:56:53 +08:00
|
|
|
auto &nd_map = net_data.at(net);
|
|
|
|
for (auto &startdomain : nd_map) {
|
|
|
|
auto &nd = startdomain.second;
|
|
|
|
// Ignore false startpoints
|
|
|
|
if (nd.false_startpoint)
|
|
|
|
continue;
|
|
|
|
const delay_t net_length_plus_one = nd.max_path_length + 1;
|
|
|
|
auto &net_min_remaining_budget = nd.min_remaining_budget;
|
|
|
|
for (auto &usr : net->users) {
|
|
|
|
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
|
|
|
|
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
|
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
|
|
|
|
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
|
|
|
|
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
|
|
|
|
const auto net_arrival = nd.max_arrival;
|
|
|
|
const auto endpoint_arrival = net_arrival + net_delay + setup;
|
|
|
|
delay_t period;
|
2018-11-12 21:42:25 +08:00
|
|
|
// Set default period
|
2018-11-03 00:56:53 +08:00
|
|
|
if (edge == startdomain.first.edge) {
|
|
|
|
period = clk_period;
|
|
|
|
} else {
|
|
|
|
period = clk_period / 2;
|
|
|
|
}
|
2018-11-12 21:42:25 +08:00
|
|
|
if (clksig != async_clock) {
|
|
|
|
if (ctx->nets.at(clksig)->clkconstr) {
|
|
|
|
if (edge == startdomain.first.edge) {
|
|
|
|
// same edge
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
|
|
|
|
} else if (edge == RISING_EDGE) {
|
|
|
|
// falling -> rising
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
|
|
|
|
} else if (edge == FALLING_EDGE) {
|
|
|
|
// rising -> falling
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-11-14 16:46:10 +08:00
|
|
|
auto path_budget = period - endpoint_arrival;
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
if (update) {
|
|
|
|
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
|
|
|
|
usr.budget = std::min(usr.budget, net_delay + budget_share);
|
|
|
|
net_min_remaining_budget =
|
|
|
|
std::min(net_min_remaining_budget, path_budget - budget_share);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (path_budget < min_slack)
|
|
|
|
min_slack = path_budget;
|
|
|
|
|
|
|
|
if (slack_histogram) {
|
|
|
|
int slack_ps = ctx->getDelayNS(path_budget) * 1000;
|
|
|
|
(*slack_histogram)[slack_ps]++;
|
|
|
|
}
|
|
|
|
ClockEvent dest_ev{clksig, edge};
|
|
|
|
ClockPair clockPair{startdomain.first, dest_ev};
|
|
|
|
nd.arrival_time[dest_ev] = std::max(nd.arrival_time[dest_ev], endpoint_arrival);
|
|
|
|
|
|
|
|
if (crit_path) {
|
|
|
|
if (!crit_nets.count(clockPair) || crit_nets.at(clockPair).first < endpoint_arrival) {
|
|
|
|
crit_nets[clockPair] = std::make_pair(endpoint_arrival, net);
|
|
|
|
(*crit_path)[clockPair].path_delay = endpoint_arrival;
|
2018-11-04 22:03:33 +08:00
|
|
|
(*crit_path)[clockPair].path_period = period;
|
2018-11-03 00:56:53 +08:00
|
|
|
(*crit_path)[clockPair].ports.clear();
|
|
|
|
(*crit_path)[clockPair].ports.push_back(&usr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
if (portClass == TMG_REGISTER_INPUT) {
|
|
|
|
for (int i = 0; i < port_clocks; i++) {
|
|
|
|
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, i);
|
|
|
|
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
|
|
|
|
IdString clksig = clknet ? clknet->name : async_clock;
|
2018-11-03 22:09:27 +08:00
|
|
|
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, clkInfo.setup.maxDelay());
|
2018-11-03 00:56:53 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
process_endpoint(async_clock, RISING_EDGE, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (update) {
|
2018-08-06 13:38:54 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
// Iterate over all output ports on the same cell as the sink
|
|
|
|
for (const auto &port : usr.cell->ports) {
|
|
|
|
if (port.second.type != PORT_OUT || !port.second.net)
|
|
|
|
continue;
|
|
|
|
DelayInfo comb_delay;
|
|
|
|
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
2018-11-03 01:26:14 +08:00
|
|
|
if (net_data.count(port.second.net) &&
|
|
|
|
net_data.at(port.second.net).count(startdomain.first)) {
|
|
|
|
auto path_budget =
|
|
|
|
net_data.at(port.second.net).at(startdomain.first).min_remaining_budget;
|
|
|
|
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
|
|
|
|
usr.budget = std::min(usr.budget, net_delay + budget_share);
|
|
|
|
net_min_remaining_budget =
|
|
|
|
std::min(net_min_remaining_budget, path_budget - budget_share);
|
|
|
|
}
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
|
|
|
}
|
2018-08-06 13:38:54 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-08-07 05:14:41 +08:00
|
|
|
|
|
|
|
if (crit_path) {
|
|
|
|
// Walk backwards from the most critical net
|
2018-11-03 00:56:53 +08:00
|
|
|
for (auto crit_pair : crit_nets) {
|
|
|
|
NetInfo *crit_net = crit_pair.second.second;
|
|
|
|
auto &cp_ports = (*crit_path)[crit_pair.first].ports;
|
|
|
|
while (crit_net) {
|
|
|
|
const PortInfo *crit_ipin = nullptr;
|
|
|
|
delay_t max_arrival = std::numeric_limits<delay_t>::min();
|
|
|
|
|
|
|
|
// Look at all input ports on its driving cell
|
|
|
|
for (const auto &port : crit_net->driver.cell->ports) {
|
|
|
|
if (port.second.type != PORT_IN || !port.second.net)
|
|
|
|
continue;
|
|
|
|
DelayInfo comb_delay;
|
|
|
|
bool is_path =
|
|
|
|
ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
|
|
|
// If input port is influenced by a clock, skip
|
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass =
|
|
|
|
ctx->getPortTimingClass(crit_net->driver.cell, port.first, port_clocks);
|
|
|
|
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_CLOCK_INPUT ||
|
|
|
|
portClass == TMG_ENDPOINT || portClass == TMG_IGNORE)
|
|
|
|
continue;
|
2018-08-07 05:14:41 +08:00
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
// And find the fanin net with the latest arrival time
|
2018-11-03 22:09:27 +08:00
|
|
|
if (net_data.count(port.second.net) &&
|
|
|
|
net_data.at(port.second.net).count(crit_pair.first.start)) {
|
2018-11-03 01:26:14 +08:00
|
|
|
const auto net_arrival = net_data.at(port.second.net).at(crit_pair.first.start).max_arrival;
|
|
|
|
if (net_arrival > max_arrival) {
|
|
|
|
max_arrival = net_arrival;
|
|
|
|
crit_ipin = &port.second;
|
|
|
|
}
|
2018-11-03 00:56:53 +08:00
|
|
|
}
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
if (!crit_ipin)
|
2018-08-07 05:14:41 +08:00
|
|
|
break;
|
2018-11-03 00:56:53 +08:00
|
|
|
|
|
|
|
// Now convert PortInfo* into a PortRef*
|
|
|
|
for (auto &usr : crit_ipin->net->users) {
|
|
|
|
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
|
|
|
|
cp_ports.push_back(&usr);
|
|
|
|
break;
|
|
|
|
}
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
2018-11-03 00:56:53 +08:00
|
|
|
crit_net = crit_ipin->net;
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
2018-11-03 00:56:53 +08:00
|
|
|
std::reverse(cp_ports.begin(), cp_ports.end());
|
2018-08-07 05:14:41 +08:00
|
|
|
}
|
|
|
|
}
|
2018-12-01 19:54:26 +08:00
|
|
|
|
|
|
|
if (net_crit) {
|
|
|
|
NPNR_ASSERT(crit_path);
|
|
|
|
// Go through in reverse topographical order to set required times
|
|
|
|
for (auto net : boost::adaptors::reverse(topographical_order)) {
|
|
|
|
if (!net_data.count(net))
|
|
|
|
continue;
|
|
|
|
auto &nd_map = net_data.at(net);
|
|
|
|
for (auto &startdomain : nd_map) {
|
|
|
|
auto &nd = startdomain.second;
|
|
|
|
if (nd.false_startpoint)
|
|
|
|
continue;
|
2018-12-02 20:23:18 +08:00
|
|
|
if (startdomain.first.clock == async_clock)
|
|
|
|
continue;
|
2018-12-01 19:54:26 +08:00
|
|
|
const delay_t net_length_plus_one = nd.max_path_length + 1;
|
|
|
|
auto &net_min_remaining_budget = nd.min_remaining_budget;
|
|
|
|
if (nd.min_required.empty())
|
|
|
|
nd.min_required.resize(net->users.size(), std::numeric_limits<delay_t>::max());
|
|
|
|
delay_t net_min_required = std::numeric_limits<delay_t>::max();
|
|
|
|
for (size_t i = 0; i < net->users.size(); i++) {
|
|
|
|
auto &usr = net->users.at(i);
|
|
|
|
auto net_delay = ctx->getNetinfoRouteDelay(net, usr);
|
|
|
|
int port_clocks;
|
|
|
|
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
|
|
|
|
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
|
|
|
|
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
|
|
|
|
delay_t period;
|
|
|
|
// Set default period
|
|
|
|
if (edge == startdomain.first.edge) {
|
|
|
|
period = clk_period;
|
|
|
|
} else {
|
|
|
|
period = clk_period / 2;
|
|
|
|
}
|
|
|
|
if (clksig != async_clock) {
|
|
|
|
if (ctx->nets.at(clksig)->clkconstr) {
|
|
|
|
if (edge == startdomain.first.edge) {
|
|
|
|
// same edge
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
|
|
|
|
} else if (edge == RISING_EDGE) {
|
|
|
|
// falling -> rising
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
|
|
|
|
} else if (edge == FALLING_EDGE) {
|
|
|
|
// rising -> falling
|
|
|
|
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
nd.min_required.at(i) = std::min(period - setup, nd.min_required.at(i));
|
|
|
|
};
|
|
|
|
if (portClass == TMG_REGISTER_INPUT) {
|
|
|
|
for (int j = 0; j < port_clocks; j++) {
|
|
|
|
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, j);
|
|
|
|
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
|
|
|
|
IdString clksig = clknet ? clknet->name : async_clock;
|
|
|
|
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE,
|
|
|
|
clkInfo.setup.maxDelay());
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
process_endpoint(async_clock, RISING_EDGE, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
net_min_required = std::min(net_min_required, nd.min_required.at(i) - net_delay);
|
|
|
|
}
|
|
|
|
PortRef &drv = net->driver;
|
|
|
|
if (drv.cell == nullptr)
|
|
|
|
continue;
|
|
|
|
for (const auto &port : drv.cell->ports) {
|
|
|
|
if (port.second.type != PORT_IN || !port.second.net)
|
|
|
|
continue;
|
|
|
|
DelayInfo comb_delay;
|
|
|
|
bool is_path = ctx->getCellDelay(drv.cell, port.first, drv.port, comb_delay);
|
|
|
|
if (!is_path)
|
|
|
|
continue;
|
|
|
|
NetInfo *sink_net = port.second.net;
|
|
|
|
if (net_data.count(sink_net) && net_data.at(sink_net).count(startdomain.first)) {
|
|
|
|
auto &sink_nd = net_data.at(sink_net).at(startdomain.first);
|
|
|
|
if (sink_nd.min_required.empty())
|
|
|
|
sink_nd.min_required.resize(sink_net->users.size(),
|
|
|
|
std::numeric_limits<delay_t>::max());
|
|
|
|
for (size_t i = 0; i < sink_net->users.size(); i++) {
|
|
|
|
auto &user = sink_net->users.at(i);
|
|
|
|
if (user.cell == drv.cell && user.port == port.first) {
|
|
|
|
sink_nd.min_required.at(i) = net_min_required - comb_delay.maxDelay();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::unordered_map<ClockEvent, delay_t> worst_slack;
|
|
|
|
|
|
|
|
// Assign slack values
|
|
|
|
for (auto &net_entry : net_data) {
|
|
|
|
const NetInfo *net = net_entry.first;
|
|
|
|
for (auto &startdomain : net_entry.second) {
|
|
|
|
auto &nd = startdomain.second;
|
2018-12-02 20:23:18 +08:00
|
|
|
if (startdomain.first.clock == async_clock)
|
|
|
|
continue;
|
2018-12-01 19:54:26 +08:00
|
|
|
if (nd.min_required.empty())
|
|
|
|
continue;
|
|
|
|
auto &nc = (*net_crit)[net->name];
|
|
|
|
if (nc.slack.empty())
|
|
|
|
nc.slack.resize(net->users.size(), std::numeric_limits<delay_t>::max());
|
|
|
|
for (size_t i = 0; i < net->users.size(); i++) {
|
|
|
|
delay_t slack = nd.min_required.at(i) -
|
|
|
|
(nd.max_arrival + ctx->getNetinfoRouteDelay(net, net->users.at(i)));
|
|
|
|
if (worst_slack.count(startdomain.first))
|
|
|
|
worst_slack.at(startdomain.first) = std::min(worst_slack.at(startdomain.first), slack);
|
|
|
|
else
|
|
|
|
worst_slack[startdomain.first] = slack;
|
|
|
|
nc.slack.at(i) = std::min(nc.slack.at(i), slack);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Assign criticality values
|
|
|
|
for (auto &net_entry : net_data) {
|
|
|
|
const NetInfo *net = net_entry.first;
|
|
|
|
for (auto &startdomain : net_entry.second) {
|
2018-12-02 20:23:18 +08:00
|
|
|
if (startdomain.first.clock == async_clock)
|
|
|
|
continue;
|
2018-12-01 19:54:26 +08:00
|
|
|
auto &nd = startdomain.second;
|
|
|
|
if (nd.min_required.empty())
|
|
|
|
continue;
|
|
|
|
auto &nc = (*net_crit)[net->name];
|
|
|
|
if (nc.slack.empty())
|
|
|
|
continue;
|
|
|
|
if (nc.criticality.empty())
|
|
|
|
nc.criticality.resize(net->users.size(), 0);
|
|
|
|
// Only consider intra-clock paths for criticality
|
|
|
|
if (!crit_path->count(ClockPair{startdomain.first, startdomain.first}))
|
|
|
|
continue;
|
|
|
|
delay_t dmax = crit_path->at(ClockPair{startdomain.first, startdomain.first}).path_delay;
|
|
|
|
for (size_t i = 0; i < net->users.size(); i++) {
|
2018-12-02 20:23:18 +08:00
|
|
|
float criticality = 1.0f - (float(nc.slack.at(i) - worst_slack.at(startdomain.first)) / dmax);
|
2018-12-01 19:54:26 +08:00
|
|
|
nc.criticality.at(i) = std::max(nc.criticality.at(i), criticality);
|
|
|
|
}
|
2018-12-01 21:22:57 +08:00
|
|
|
nc.max_path_length = std::max(nc.max_path_length, nd.max_path_length);
|
2018-12-01 21:43:12 +08:00
|
|
|
nc.cd_worst_slack = std::min(nc.cd_worst_slack, worst_slack.at(startdomain.first));
|
2018-12-01 19:54:26 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-08-04 13:39:25 +08:00
|
|
|
return min_slack;
|
2018-06-20 17:53:49 +08:00
|
|
|
}
|
2018-06-20 17:44:28 +08:00
|
|
|
|
2018-08-04 13:39:25 +08:00
|
|
|
void assign_budget()
|
|
|
|
{
|
|
|
|
// Clear delays to a very high value first
|
|
|
|
for (auto &net : ctx->nets) {
|
|
|
|
for (auto &usr : net.second->users) {
|
2018-08-06 13:38:54 +08:00
|
|
|
usr.budget = std::numeric_limits<delay_t>::max();
|
2018-06-20 18:21:56 +08:00
|
|
|
}
|
|
|
|
}
|
2018-06-20 23:08:57 +08:00
|
|
|
|
2018-08-04 13:39:25 +08:00
|
|
|
walk_paths();
|
|
|
|
}
|
|
|
|
};
|
2018-07-26 09:21:39 +08:00
|
|
|
|
2018-07-29 05:10:48 +08:00
|
|
|
void assign_budget(Context *ctx, bool quiet)
|
2018-07-26 09:21:39 +08:00
|
|
|
{
|
2018-07-29 05:10:48 +08:00
|
|
|
if (!quiet) {
|
|
|
|
log_break();
|
2018-08-06 22:19:32 +08:00
|
|
|
log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n", ctx->target_freq / 1e6);
|
2018-07-29 05:10:48 +08:00
|
|
|
}
|
|
|
|
|
2018-08-06 22:18:06 +08:00
|
|
|
Timing timing(ctx, ctx->slack_redist_iter > 0 /* net_delays */, true /* update */);
|
2018-08-04 13:39:25 +08:00
|
|
|
timing.assign_budget();
|
2018-07-26 09:21:39 +08:00
|
|
|
|
2018-07-29 05:10:48 +08:00
|
|
|
if (!quiet || ctx->verbose) {
|
2018-07-29 03:50:21 +08:00
|
|
|
for (auto &net : ctx->nets) {
|
|
|
|
for (auto &user : net.second->users) {
|
|
|
|
// Post-update check
|
2018-08-04 10:53:32 +08:00
|
|
|
if (!ctx->auto_freq && user.budget < 0)
|
2018-11-22 01:13:53 +08:00
|
|
|
log_info("port %s.%s, connected to net '%s', has negative "
|
|
|
|
"timing budget of %fns\n",
|
|
|
|
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
|
|
|
|
ctx->getDelayNS(user.budget));
|
|
|
|
else if (ctx->debug)
|
2018-07-22 03:47:09 +08:00
|
|
|
log_info("port %s.%s, connected to net '%s', has "
|
|
|
|
"timing budget of %fns\n",
|
|
|
|
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
|
|
|
|
ctx->getDelayNS(user.budget));
|
|
|
|
}
|
2018-07-21 16:55:20 +08:00
|
|
|
}
|
|
|
|
}
|
2018-07-27 12:35:37 +08:00
|
|
|
|
2018-08-08 23:07:20 +08:00
|
|
|
// For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the
|
|
|
|
// currently achieved maximum
|
2018-08-04 10:53:32 +08:00
|
|
|
if (ctx->auto_freq && ctx->slack_redist_iter > 0) {
|
2018-08-08 23:54:25 +08:00
|
|
|
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq);
|
|
|
|
ctx->target_freq = 1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack);
|
2018-08-04 13:39:25 +08:00
|
|
|
if (ctx->verbose)
|
2018-08-08 23:54:25 +08:00
|
|
|
log_info("minimum slack for this assign = %.2f ns, target Fmax for next "
|
2018-08-04 14:42:25 +08:00
|
|
|
"update = %.2f MHz\n",
|
2018-08-08 23:54:25 +08:00
|
|
|
ctx->getDelayNS(timing.min_slack), ctx->target_freq / 1e6);
|
2018-07-27 12:35:37 +08:00
|
|
|
}
|
2018-07-29 05:10:48 +08:00
|
|
|
|
|
|
|
if (!quiet)
|
|
|
|
log_info("Checksum: 0x%08x\n", ctx->checksum());
|
2018-07-21 16:55:20 +08:00
|
|
|
}
|
|
|
|
|
2018-11-22 01:13:53 +08:00
|
|
|
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure)
|
2018-07-26 09:21:39 +08:00
|
|
|
{
|
2018-11-03 02:59:04 +08:00
|
|
|
auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
|
|
|
|
std::string value;
|
|
|
|
if (e.clock == ctx->id("$async$"))
|
|
|
|
value = std::string("<async>");
|
|
|
|
else
|
|
|
|
value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
|
|
|
|
if (int(value.length()) < field_width)
|
|
|
|
value.insert(value.length(), field_width - int(value.length()), ' ');
|
|
|
|
return value;
|
|
|
|
};
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
CriticalPathMap crit_paths;
|
2018-08-04 14:39:42 +08:00
|
|
|
DelayFrequency slack_histogram;
|
2018-08-04 13:39:25 +08:00
|
|
|
|
2018-11-03 02:59:04 +08:00
|
|
|
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
|
2018-08-04 14:42:25 +08:00
|
|
|
print_histogram ? &slack_histogram : nullptr);
|
2018-11-12 22:00:08 +08:00
|
|
|
timing.walk_paths();
|
2018-11-03 02:59:04 +08:00
|
|
|
std::map<IdString, std::pair<ClockPair, CriticalPath>> clock_reports;
|
2018-11-04 22:26:16 +08:00
|
|
|
std::map<IdString, double> clock_fmax;
|
2018-11-03 02:59:04 +08:00
|
|
|
std::vector<ClockPair> xclock_paths;
|
2018-11-14 16:46:10 +08:00
|
|
|
std::set<IdString> empty_clocks; // set of clocks with no interior paths
|
2018-11-03 02:59:04 +08:00
|
|
|
if (print_path || print_fmax) {
|
2018-11-14 16:46:10 +08:00
|
|
|
for (auto path : crit_paths) {
|
|
|
|
const ClockEvent &a = path.first.start;
|
|
|
|
const ClockEvent &b = path.first.end;
|
|
|
|
empty_clocks.insert(a.clock);
|
|
|
|
empty_clocks.insert(b.clock);
|
|
|
|
}
|
2018-11-03 00:56:53 +08:00
|
|
|
for (auto path : crit_paths) {
|
|
|
|
const ClockEvent &a = path.first.start;
|
|
|
|
const ClockEvent &b = path.first.end;
|
|
|
|
if (a.clock != b.clock || a.clock == ctx->id("$async$"))
|
|
|
|
continue;
|
2018-11-04 22:26:16 +08:00
|
|
|
double Fmax;
|
2018-11-14 16:46:10 +08:00
|
|
|
empty_clocks.erase(a.clock);
|
2018-11-04 22:26:16 +08:00
|
|
|
if (a.edge == b.edge)
|
|
|
|
Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
|
|
|
|
else
|
|
|
|
Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
|
2018-11-04 22:51:48 +08:00
|
|
|
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) {
|
2018-11-03 00:56:53 +08:00
|
|
|
clock_reports[a.clock] = path;
|
2018-11-04 22:26:16 +08:00
|
|
|
clock_fmax[a.clock] = Fmax;
|
2018-11-03 00:56:53 +08:00
|
|
|
}
|
|
|
|
}
|
2018-11-03 02:59:04 +08:00
|
|
|
|
|
|
|
for (auto &path : crit_paths) {
|
|
|
|
const ClockEvent &a = path.first.start;
|
|
|
|
const ClockEvent &b = path.first.end;
|
|
|
|
if (a.clock == b.clock && a.clock != ctx->id("$async$"))
|
|
|
|
continue;
|
|
|
|
xclock_paths.push_back(path.first);
|
|
|
|
}
|
|
|
|
|
2018-11-03 00:56:53 +08:00
|
|
|
if (clock_reports.empty()) {
|
|
|
|
log_warning("No clocks found in design");
|
2018-11-03 02:59:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
std::sort(xclock_paths.begin(), xclock_paths.end(), [ctx](const ClockPair &a, const ClockPair &b) {
|
|
|
|
if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
|
|
|
|
return true;
|
|
|
|
if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
|
|
|
|
return false;
|
|
|
|
if (a.start.edge < b.start.edge)
|
|
|
|
return true;
|
|
|
|
if (a.start.edge > b.start.edge)
|
|
|
|
return false;
|
|
|
|
if (a.end.clock.str(ctx) < b.end.clock.str(ctx))
|
|
|
|
return true;
|
|
|
|
if (a.end.clock.str(ctx) > b.end.clock.str(ctx))
|
|
|
|
return false;
|
|
|
|
if (a.end.edge < b.end.edge)
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
if (print_path) {
|
2018-11-03 22:09:27 +08:00
|
|
|
auto print_path_report = [ctx](ClockPair &clocks, PortRefVector &crit_path) {
|
2018-11-17 00:24:06 +08:00
|
|
|
delay_t total = 0, logic_total = 0, route_total = 0;
|
2018-11-03 02:59:04 +08:00
|
|
|
auto &front = crit_path.front();
|
|
|
|
auto &front_port = front->cell->ports.at(front->port);
|
|
|
|
auto &front_driver = front_port.net->driver;
|
|
|
|
|
|
|
|
int port_clocks;
|
|
|
|
auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);
|
|
|
|
IdString last_port = front_driver.port;
|
|
|
|
if (portClass == TMG_REGISTER_OUTPUT) {
|
2018-11-03 00:56:53 +08:00
|
|
|
for (int i = 0; i < port_clocks; i++) {
|
|
|
|
TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
|
|
|
|
const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port);
|
2018-11-03 02:59:04 +08:00
|
|
|
if (clknet != nullptr && clknet->name == clocks.start.clock &&
|
|
|
|
clockInfo.edge == clocks.start.edge) {
|
2018-11-04 22:26:16 +08:00
|
|
|
last_port = clockInfo.clock_port;
|
2018-11-16 20:59:27 +08:00
|
|
|
total += clockInfo.clockToQ.maxDelay();
|
2018-11-17 00:24:06 +08:00
|
|
|
logic_total += clockInfo.clockToQ.maxDelay();
|
2018-11-16 20:59:27 +08:00
|
|
|
break;
|
2018-11-03 00:56:53 +08:00
|
|
|
}
|
|
|
|
}
|
2018-11-03 01:26:14 +08:00
|
|
|
}
|
|
|
|
|
2018-11-14 06:14:51 +08:00
|
|
|
log_info("curr total\n");
|
2018-11-03 02:59:04 +08:00
|
|
|
for (auto sink : crit_path) {
|
|
|
|
auto sink_cell = sink->cell;
|
|
|
|
auto &port = sink_cell->ports.at(sink->port);
|
|
|
|
auto net = port.net;
|
|
|
|
auto &driver = net->driver;
|
|
|
|
auto driver_cell = driver.cell;
|
|
|
|
DelayInfo comb_delay;
|
|
|
|
if (last_port == driver.port) {
|
|
|
|
// Case where we start with a STARTPOINT etc
|
2018-11-04 22:03:33 +08:00
|
|
|
comb_delay = ctx->getDelayFromNS(0);
|
2018-11-17 00:24:06 +08:00
|
|
|
} else {
|
2018-11-03 02:59:04 +08:00
|
|
|
ctx->getCellDelay(sink_cell, last_port, driver.port, comb_delay);
|
|
|
|
}
|
|
|
|
total += comb_delay.maxDelay();
|
2018-11-17 00:24:06 +08:00
|
|
|
logic_total += comb_delay.maxDelay();
|
2018-11-03 22:09:27 +08:00
|
|
|
log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total),
|
|
|
|
driver_cell->name.c_str(ctx), driver.port.c_str(ctx));
|
2018-11-03 02:59:04 +08:00
|
|
|
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
|
|
|
|
total += net_delay;
|
2018-11-17 00:24:06 +08:00
|
|
|
route_total += net_delay;
|
2018-11-03 02:59:04 +08:00
|
|
|
auto driver_loc = ctx->getBelLocation(driver_cell->bel);
|
|
|
|
auto sink_loc = ctx->getBelLocation(sink_cell->bel);
|
|
|
|
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(net_delay),
|
2018-11-03 22:09:27 +08:00
|
|
|
ctx->getDelayNS(total), net->name.c_str(ctx), ctx->getDelayNS(sink->budget), driver_loc.x,
|
|
|
|
driver_loc.y, sink_loc.x, sink_loc.y);
|
2018-11-14 08:32:06 +08:00
|
|
|
log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx));
|
|
|
|
if (ctx->verbose) {
|
|
|
|
auto driver_wire = ctx->getNetinfoSourceWire(net);
|
|
|
|
auto sink_wire = ctx->getNetinfoSinkWire(net, *sink);
|
|
|
|
log_info(" prediction: %f ns estimate: %f ns\n",
|
2018-11-16 21:25:51 +08:00
|
|
|
ctx->getDelayNS(ctx->predictDelay(net, *sink)),
|
|
|
|
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
|
2018-11-14 08:32:06 +08:00
|
|
|
auto cursor = sink_wire;
|
|
|
|
delay_t delay;
|
|
|
|
while (driver_wire != cursor) {
|
|
|
|
auto it = net->wires.find(cursor);
|
|
|
|
assert(it != net->wires.end());
|
|
|
|
auto pip = it->second.pip;
|
|
|
|
NPNR_ASSERT(pip != PipId());
|
|
|
|
delay = ctx->getPipDelay(pip).maxDelay();
|
2018-11-16 21:25:51 +08:00
|
|
|
log_info(" %1.3f %s\n", ctx->getDelayNS(delay),
|
|
|
|
ctx->getPipName(pip).c_str(ctx));
|
2018-11-14 08:32:06 +08:00
|
|
|
cursor = ctx->getPipSrcWire(pip);
|
|
|
|
}
|
|
|
|
}
|
2018-11-03 02:59:04 +08:00
|
|
|
last_port = sink->port;
|
2018-08-01 17:23:11 +08:00
|
|
|
}
|
2018-11-16 20:59:27 +08:00
|
|
|
int clockCount = 0;
|
|
|
|
auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount);
|
|
|
|
if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
|
|
|
|
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
|
|
|
|
delay_t setup = sinkClockInfo.setup.maxDelay();
|
|
|
|
total += setup;
|
2018-11-17 00:24:06 +08:00
|
|
|
logic_total += setup;
|
2018-11-16 20:59:27 +08:00
|
|
|
log_info("%4.1f %4.1f Setup %s.%s\n", ctx->getDelayNS(setup), ctx->getDelayNS(total),
|
|
|
|
crit_path.back()->cell->name.c_str(ctx), crit_path.back()->port.c_str(ctx));
|
|
|
|
}
|
2018-11-17 00:24:06 +08:00
|
|
|
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
|
2018-11-03 02:59:04 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
for (auto &clock : clock_reports) {
|
|
|
|
log_break();
|
2018-11-16 21:25:51 +08:00
|
|
|
std::string start =
|
|
|
|
clock.second.first.start.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
|
|
|
|
std::string end =
|
|
|
|
clock.second.first.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
|
|
|
|
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
|
|
|
|
end.c_str());
|
2018-11-03 02:59:04 +08:00
|
|
|
auto &crit_path = clock.second.second.ports;
|
|
|
|
print_path_report(clock.second.first, crit_path);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &xclock : xclock_paths) {
|
2018-11-03 01:26:14 +08:00
|
|
|
log_break();
|
2018-11-03 02:59:04 +08:00
|
|
|
std::string start = format_event(xclock.start);
|
|
|
|
std::string end = format_event(xclock.end);
|
|
|
|
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
|
|
|
|
auto &crit_path = crit_paths.at(xclock).ports;
|
|
|
|
print_path_report(xclock, crit_path);
|
2018-07-26 13:10:26 +08:00
|
|
|
}
|
|
|
|
}
|
2018-11-03 02:59:04 +08:00
|
|
|
if (print_fmax) {
|
|
|
|
log_break();
|
2018-11-15 10:27:43 +08:00
|
|
|
unsigned max_width = 0;
|
|
|
|
for (auto &clock : clock_reports)
|
|
|
|
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
|
2018-11-03 02:59:04 +08:00
|
|
|
for (auto &clock : clock_reports) {
|
2018-11-15 10:27:43 +08:00
|
|
|
const auto &clock_name = clock.first.str(ctx);
|
|
|
|
const int width = max_width - clock_name.size();
|
2018-11-22 01:13:53 +08:00
|
|
|
float target = ctx->target_freq / 1e6;
|
|
|
|
if (ctx->nets.at(clock.first)->clkconstr)
|
|
|
|
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
|
|
|
|
|
|
|
|
bool passed = target < clock_fmax[clock.first];
|
|
|
|
if (!warn_on_failure || passed)
|
2018-11-16 21:25:51 +08:00
|
|
|
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
2018-11-22 01:13:53 +08:00
|
|
|
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
|
|
|
|
else
|
2018-11-26 17:22:42 +08:00
|
|
|
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
2018-11-26 17:37:39 +08:00
|
|
|
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
|
2018-11-03 02:59:04 +08:00
|
|
|
}
|
2018-11-14 16:46:10 +08:00
|
|
|
for (auto &eclock : empty_clocks) {
|
|
|
|
if (eclock != ctx->id("$async$"))
|
|
|
|
log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx));
|
|
|
|
}
|
2018-11-03 02:59:04 +08:00
|
|
|
log_break();
|
|
|
|
|
|
|
|
int start_field_width = 0, end_field_width = 0;
|
|
|
|
for (auto &xclock : xclock_paths) {
|
|
|
|
start_field_width = std::max((int)format_event(xclock.start).length(), start_field_width);
|
|
|
|
end_field_width = std::max((int)format_event(xclock.end).length(), end_field_width);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &xclock : xclock_paths) {
|
|
|
|
const ClockEvent &a = xclock.start;
|
|
|
|
const ClockEvent &b = xclock.end;
|
|
|
|
auto &path = crit_paths.at(xclock);
|
|
|
|
auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width);
|
|
|
|
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path.path_delay));
|
|
|
|
}
|
|
|
|
log_break();
|
|
|
|
}
|
2018-08-04 13:39:25 +08:00
|
|
|
|
2018-08-05 22:36:35 +08:00
|
|
|
if (print_histogram && slack_histogram.size() > 0) {
|
2018-08-23 00:24:30 +08:00
|
|
|
unsigned num_bins = 20;
|
2018-08-04 14:39:42 +08:00
|
|
|
unsigned bar_width = 60;
|
2018-08-05 09:54:23 +08:00
|
|
|
auto min_slack = slack_histogram.begin()->first;
|
|
|
|
auto max_slack = slack_histogram.rbegin()->first;
|
2018-08-23 00:24:30 +08:00
|
|
|
auto bin_size = std::max(1u, (max_slack - min_slack) / num_bins);
|
|
|
|
num_bins = std::min((max_slack - min_slack) / bin_size, num_bins) + 1;
|
|
|
|
std::vector<unsigned> bins(num_bins);
|
2018-08-04 14:39:42 +08:00
|
|
|
unsigned max_freq = 0;
|
2018-08-04 14:42:25 +08:00
|
|
|
for (const auto &i : slack_histogram) {
|
|
|
|
auto &bin = bins[(i.first - min_slack) / bin_size];
|
2018-08-04 14:39:42 +08:00
|
|
|
bin += i.second;
|
|
|
|
max_freq = std::max(max_freq, bin);
|
|
|
|
}
|
|
|
|
bar_width = std::min(bar_width, max_freq);
|
|
|
|
|
|
|
|
log_break();
|
|
|
|
log_info("Slack histogram:\n");
|
|
|
|
log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
|
2018-08-06 22:29:42 +08:00
|
|
|
log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
|
2018-08-23 00:24:30 +08:00
|
|
|
for (unsigned i = 0; i < num_bins; ++i)
|
2018-08-06 22:29:42 +08:00
|
|
|
log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1),
|
|
|
|
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
|
|
|
|
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
|
2018-08-04 14:39:42 +08:00
|
|
|
}
|
2018-07-26 09:21:39 +08:00
|
|
|
}
|
|
|
|
|
2018-12-01 21:43:12 +08:00
|
|
|
void get_criticalities(Context *ctx, NetCriticalityMap *net_crit) {
|
|
|
|
CriticalPathMap crit_paths;
|
|
|
|
net_crit->clear();
|
|
|
|
Timing timing(ctx, true, true, &crit_paths, nullptr, net_crit);
|
|
|
|
timing.walk_paths();
|
|
|
|
}
|
|
|
|
|
2018-06-20 17:53:49 +08:00
|
|
|
NEXTPNR_NAMESPACE_END
|