nextpnr/common/placer_heap.cc

411 lines
16 KiB
C++
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2019 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* [[cite]] HeAP
* Analytical Placement for Heterogeneous FPGAs, Marcel Gort and Jason H. Anderson
* https://janders.eecg.utoronto.ca/pdfs/marcelfpl12.pdf
*
* [[cite]] SimPL
* SimPL: An Effective Placement Algorithm, Myung-Chul Kim, Dong-Jin Lee and Igor L. Markov
* http://www.ece.umich.edu/cse/awards/pdfs/iccad10-simpl.pdf
*/
#include <deque>
#include <numeric>
#include <unordered_map>
#include "log.h"
#include "nextpnr.h"
#include "place_common.h"
#include "placer_math.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
// A simple internal representation for a sparse system of equations Ax = rhs
// This is designed to decouple the functions that build the matrix to the engine that
// solves it, and the representation that requires
template <typename T> struct EquationSystem
{
EquationSystem(size_t rows, size_t cols)
{
A.resize(cols);
rhs.resize(rows);
}
// Simple sparse format, easy to convert to CCS for solver
std::vector<std::vector<std::pair<int, T>>> A; // col -> (row, x[row, col]) sorted by row
std::vector<T> rhs; // RHS vector
void reset()
{
for (auto &col : A)
col.clear();
std::fill(rhs.begin(), rhs.end(), T());
}
void add_coeff(int row, int col, T val)
{
auto &Ac = A[col];
// Binary search
int b = 0, e = int(Ac.size()) - 1;
while (b <= e) {
int i = (b + e) / 2;
if (Ac[i].first == row) {
Ac[i].second += val;
return;
}
if (Ac[i].first > row)
e = i - 1;
else
b = i + 1;
}
Ac.insert(Ac.begin() + b, std::make_pair(row, val));
}
void add_rhs(int row, T val) { rhs[row] += val; }
void solve(std::vector<double> &x)
{
int nnz = std::accumulate(A.begin(), A.end(), 0,
[](int a, const std::vector<std::pair<int, T>> &vec) { return a + int(vec.size()); });
taucif_system *sys = taucif_create_system(int(rhs.size()), int(A.size()), nnz);
for (int col = 0; col < int(A.size()); col++) {
auto &Ac = A[col];
for (auto &el : Ac) {
if (col <= el.first)
taucif_set_matrix_value(sys, el.first, col, el.second);
// FIXME: in debug mode, assert really is symmetric
}
}
taucif_solve_system(sys, x.data(), rhs.data());
taucif_free_system(sys);
}
};
} // namespace
class HeAPPlacer
{
public:
HeAPPlacer(Context *ctx) : ctx(ctx) {}
bool place()
{
taucif_init_solver();
place_constraints();
build_fast_bels();
seed_placement();
update_all_chains();
EquationSystem<double> es(place_cells.size(), place_cells.size());
build_equations(es, false);
solve_equations(es, false);
return true;
}
private:
Context *ctx;
int diameter, max_x, max_y;
std::vector<std::vector<std::vector<std::vector<BelId>>>> fast_bels;
std::unordered_map<IdString, std::tuple<int, int>> bel_types;
// For fast handling of heterogeneosity during initial placement without full legalisation,
// for each Bel type this goes from x or y to the nearest x or y where a Bel of a given type exists
// This is particularly important for the iCE40 architecture, where multipliers and BRAM only exist at the
// edges and corners respectively
std::vector<std::vector<int>> nearest_row_with_bel;
std::vector<std::vector<int>> nearest_col_with_bel;
// In some cases, we can't use bindBel because we allow overlap in the earlier stages. So we use this custom
// structure instead
struct CellLocation
{
int x, y;
bool locked, global;
};
std::unordered_map<IdString, CellLocation> cell_locs;
// The set of cells that we will actually place. This excludes locked cells and children cells of macros/chains
// (only the root of each macro is placed.)
std::vector<CellInfo *> place_cells;
// Place cells with the BEL attribute set to constrain them
void place_constraints()
{
size_t placed_cells = 0;
// Initial constraints placer
for (auto &cell_entry : ctx->cells) {
CellInfo *cell = cell_entry.second.get();
auto loc = cell->attrs.find(ctx->id("BEL"));
if (loc != cell->attrs.end()) {
std::string loc_name = loc->second;
BelId bel = ctx->getBelByName(ctx->id(loc_name));
if (bel == BelId()) {
log_error("No Bel named \'%s\' located for "
"this chip (processing BEL attribute on \'%s\')\n",
loc_name.c_str(), cell->name.c_str(ctx));
}
IdString bel_type = ctx->getBelType(bel);
if (bel_type != cell->type) {
log_error("Bel \'%s\' of type \'%s\' does not match cell "
"\'%s\' of type \'%s\'\n",
loc_name.c_str(), bel_type.c_str(ctx), cell->name.c_str(ctx), cell->type.c_str(ctx));
}
if (!ctx->isValidBelForCell(cell, bel)) {
log_error("Bel \'%s\' of type \'%s\' is not valid for cell "
"\'%s\' of type \'%s\'\n",
loc_name.c_str(), bel_type.c_str(ctx), cell->name.c_str(ctx), cell->type.c_str(ctx));
}
auto bound_cell = ctx->getBoundBelCell(bel);
if (bound_cell) {
log_error("Cell \'%s\' cannot be bound to bel \'%s\' since it is already bound to cell \'%s\'\n",
cell->name.c_str(ctx), loc_name.c_str(), bound_cell->name.c_str(ctx));
}
ctx->bindBel(bel, cell, STRENGTH_USER);
placed_cells++;
}
}
int constr_placed_cells = placed_cells;
log_info("Placed %d cells based on constraints.\n", int(placed_cells));
ctx->yield();
}
// Construct the fast_bels, nearest_row_with_bel and nearest_col_with_bel
void build_fast_bels()
{
int num_bel_types = 0;
for (auto bel : ctx->getBels()) {
IdString type = ctx->getBelType(bel);
if (bel_types.find(type) == bel_types.end()) {
bel_types[type] = std::tuple<int, int>(num_bel_types++, 1);
} else {
std::get<1>(bel_types.at(type))++;
}
}
for (auto bel : ctx->getBels()) {
if (!ctx->checkBelAvail(bel))
continue;
Loc loc = ctx->getBelLocation(bel);
IdString type = ctx->getBelType(bel);
int type_idx = std::get<0>(bel_types.at(type));
if (int(fast_bels.size()) < type_idx + 1)
fast_bels.resize(type_idx + 1);
if (int(fast_bels.at(type_idx).size()) < (loc.x + 1))
fast_bels.at(type_idx).resize(loc.x + 1);
if (int(fast_bels.at(type_idx).at(loc.x).size()) < (loc.y + 1))
fast_bels.at(type_idx).at(loc.x).resize(loc.y + 1);
max_x = std::max(max_x, loc.x);
max_y = std::max(max_y, loc.y);
fast_bels.at(type_idx).at(loc.x).at(loc.y).push_back(bel);
}
diameter = std::max(max_x, max_y) + 1;
nearest_row_with_bel.resize(num_bel_types, std::vector<int>(max_y + 1, -1));
nearest_col_with_bel.resize(num_bel_types, std::vector<int>(max_x + 1, -1));
for (auto bel : ctx->getBels()) {
if (!ctx->checkBelAvail(bel))
continue;
Loc loc = ctx->getBelLocation(bel);
int type_idx = std::get<0>(bel_types.at(ctx->getBelType(bel)));
auto &nr = nearest_row_with_bel.at(type_idx), &nc = nearest_col_with_bel.at(type_idx);
// Traverse outwards through nearest_row_with_bel and nearest_col_with_bel, stopping once
// another row/col is already recorded as being nearer
for (int x = loc.x; x <= max_x; x++) {
if (nc.at(x) == -1 || std::abs(loc.x - nc.at(x)) <= (x - loc.x))
break;
nc.at(x) = loc.x;
}
for (int x = loc.x - 1; x >= 0; x--) {
if (nc.at(x) == -1 || std::abs(loc.x - nc.at(x)) <= (loc.x - x))
break;
nc.at(x) = loc.x;
}
for (int y = loc.y; y <= max_y; y++) {
if (nr.at(y) == -1 || std::abs(loc.y - nc.at(y)) <= (y - loc.y))
break;
nr.at(y) = loc.y;
}
for (int y = loc.y - 1; y >= 0; y--) {
if (nc.at(y) == -1 || std::abs(loc.y - nc.at(y)) <= (loc.y - y))
break;
nc.at(y) = loc.y;
}
}
}
// Build up a random initial placement, without regard to legality
// FIXME: Are there better approaches to the initial placement (e.g. greedy?)
void seed_placement()
{
std::unordered_map<IdString, std::vector<BelId>> available_bels;
for (auto bel : ctx->getBels()) {
if (!ctx->checkBelAvail(bel))
continue;
available_bels[ctx->getBelType(bel)].push_back(bel);
}
for (auto &ab : available_bels)
ctx->shuffle(ab.second);
int placed_cell_count = 0;
for (auto cell : sorted(ctx->cells)) {
CellInfo *ci = cell.second;
if (ci->bel != BelId()) {
Loc loc = ctx->getBelLocation(ci->bel);
cell_locs[cell.first].x = loc.x;
cell_locs[cell.first].y = loc.y;
cell_locs[cell.first].locked = true;
cell_locs[cell.first].global = ctx->getBelGlobalBuf(ci->bel);
} else if (ci->constr_parent == nullptr) {
if (!available_bels.count(ci->type) || available_bels.at(ci->type).empty())
log_error("Unable to place cell '%s', no Bels remaining of type '%s'\n", ci->name.c_str(ctx),
ci->type.c_str(ctx));
BelId bel = available_bels.at(ci->type).back();
available_bels.at(ci->type).pop_back();
Loc loc = ctx->getBelLocation(bel);
cell_locs[cell.first].x = loc.x;
cell_locs[cell.first].y = loc.y;
cell_locs[cell.first].locked = false;
cell_locs[cell.first].global = ctx->getBelGlobalBuf(bel);
ci->udata = placed_cell_count++;
place_cells.push_back(ci);
}
}
}
// Update the location of all children of a chain
void update_chain(CellInfo *cell)
{
const auto &base = cell_locs[cell->name];
for (auto child : cell->constr_children) {
if (child->constr_x != child->UNCONSTR)
cell_locs[child->name].x = base.x + child->constr_x;
else
cell_locs[child->name].x = base.x; // better handling of UNCONSTR?
if (child->constr_y != child->UNCONSTR)
cell_locs[child->name].y = base.y + child->constr_y;
else
cell_locs[child->name].y = base.y; // better handling of UNCONSTR?
if (!child->constr_children.empty())
update_chain(child);
}
}
// Update all chains
void update_all_chains()
{
for (auto cell : place_cells) {
if (!cell->constr_children.empty())
update_chain(cell);
}
}
// Run a function on all ports of a net - including the driver and all users
template <typename Tf> void foreach_port(NetInfo *net, Tf func)
{
if (net->driver.cell != nullptr)
func(net->driver);
for (auto &user : net->users)
func(user);
}
// Build the system of equations for either X or Y
void build_equations(EquationSystem<double> &es, bool yaxis)
{
// Return the x or y position of a cell, depending on ydir
auto cell_pos = [&](CellInfo *cell) { return yaxis ? cell_locs.at(cell->name).y : cell_locs.at(cell->name).x; };
es.reset();
for (auto net : sorted(ctx->nets)) {
NetInfo *ni = net.second;
if (ni->driver.cell == nullptr)
continue;
if (ni->users.empty())
continue;
if (cell_locs.at(ni->driver.cell->name).global)
continue;
// Find the bounds of the net in this axis, and the ports that correspond to these bounds
PortRef *lbport = nullptr, *ubport = nullptr;
int lbpos = std::numeric_limits<int>::max(), ubpos = std::numeric_limits<int>::min();
foreach_port(ni, [&](PortRef &port) {
int pos = cell_pos(port.cell);
if (pos < lbpos) {
lbpos = pos;
lbport = &port;
}
if (pos > ubpos) {
ubpos = pos;
ubport = &port;
}
});
// Add all relevant connections to the matrix
foreach_port(ni, [&](PortRef &port) {
int this_pos = cell_pos(port.cell);
auto process_arc = [&](PortRef *other) {
if (other == &port)
return;
int o_pos = cell_pos(other->cell);
if (o_pos == this_pos)
return; // FIXME: or clamp to 1?
double weight = 1. / (ni->users.size() * std::abs(o_pos - this_pos));
// FIXME: add criticality to weighting
// If cell 0 is not fixed, it will stamp +w on its equation and -w on the other end's equation,
// if the other end isn't fixed
if (!cell_locs.at(port.cell->name).locked) {
es.add_coeff(port.cell->udata, port.cell->udata, weight);
if (!cell_locs.at(other->cell->name).locked)
es.add_coeff(other->cell->udata, port.cell->udata, -weight);
} else {
// Add our fixed position to the other end's RHS
if (!cell_locs.at(other->cell->name).locked)
es.add_rhs(other->cell->udata, this_pos * weight);
}
// Opposite for the other end of the connection
if (!cell_locs.at(other->cell->name).locked) {
es.add_coeff(other->cell->udata, other->cell->udata, weight);
if (!cell_locs.at(port.cell->name).locked)
es.add_coeff(port.cell->udata, other->cell->udata, -weight);
} else {
// Add our fixed position to the other end's RHS
if (!cell_locs.at(port.cell->name).locked)
es.add_rhs(port.cell->udata, this_pos * weight);
}
};
process_arc(lbport);
process_arc(ubport);
});
}
}
// Build the system of equations for either X or Y
void solve_equations(EquationSystem<double> &es, bool yaxis)
{
// Return the x or y position of a cell, depending on ydir
auto cell_pos = [&](CellInfo *cell) { return yaxis ? cell_locs.at(cell->name).y : cell_locs.at(cell->name).x; };
build_equations(es, yaxis);
std::vector<double> vals;
std::transform(place_cells.begin(), place_cells.end(), std::back_inserter(vals), cell_pos);
es.solve(vals);
}
};
bool placer_heap(Context *ctx) { return HeAPPlacer(ctx).place(); }
NEXTPNR_NAMESPACE_END