nextpnr/fpga_interchange/pseudo_pip_model.cc

512 lines
18 KiB
C++
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 Symbiflow Authors
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "pseudo_pip_model.h"
#include "context.h"
//#define DEBUG_PSEUDO_PIP
NEXTPNR_NAMESPACE_BEGIN
void PseudoPipData::init_tile_type(const Context *ctx, int32_t tile_type)
{
if (max_pseudo_pip_for_tile_type.count(tile_type)) {
return;
}
const TileTypeInfoPOD &type_data = ctx->chip_info->tile_types[tile_type];
int32_t max_pseudo_pip_index = -1;
for (int32_t pip_idx = 0; pip_idx < type_data.pip_data.ssize(); ++pip_idx) {
const PipInfoPOD &pip_data = type_data.pip_data[pip_idx];
if (pip_data.pseudo_cell_wires.size() == 0) {
continue;
}
if (pip_idx > max_pseudo_pip_index) {
max_pseudo_pip_index = pip_idx;
}
pool<size_t> sites;
std::vector<PseudoPipBel> pseudo_pip_bels;
for (int32_t wire_index : pip_data.pseudo_cell_wires) {
const TileWireInfoPOD &wire_data = type_data.wire_data[wire_index];
if (wire_data.site == -1) {
continue;
}
// Only use primary site types for psuedo pips
//
// Note: This assumption may be too restrictive. If so, then
// need to update database generators to provide
// pseudo_cell_wires for each site type, not just the primary.
if (wire_data.site_variant != -1) {
continue;
}
sites.emplace(wire_data.site);
for (const BelPortPOD &bel_pin : wire_data.bel_pins) {
const BelInfoPOD &bel_data = type_data.bel_data[bel_pin.bel_index];
if (bel_data.synthetic != NOT_SYNTH) {
// Ignore synthetic BELs
continue;
}
if (bel_data.category != BEL_CATEGORY_LOGIC) {
// Ignore site ports and site routing
continue;
}
int32_t bel_pin_idx = -1;
for (int32_t i = 0; i < bel_data.num_bel_wires; ++i) {
if (bel_data.ports[i] == bel_pin.port) {
bel_pin_idx = i;
break;
}
}
NPNR_ASSERT(bel_pin_idx != -1);
if (bel_data.types[bel_pin_idx] != PORT_OUT) {
// Only care about output ports. Input ports may not be
// part of the pseudo pip.
continue;
}
PseudoPipBel bel;
bel.bel_index = bel_pin.bel_index;
bel.output_bel_pin = bel_pin_idx;
pseudo_pip_bels.push_back(bel);
}
}
std::pair<int32_t, int32_t> key{tile_type, pip_idx};
std::vector<size_t> &sites_for_pseudo_pip = possibles_sites_for_pip[key];
sites_for_pseudo_pip.clear();
sites_for_pseudo_pip.insert(sites_for_pseudo_pip.begin(), sites.begin(), sites.end());
std::sort(sites_for_pseudo_pip.begin(), sites_for_pseudo_pip.end());
// Initialize "logic_bels_for_pip" for every site that this pseudo pip
// appears. This means that if there are no pseudo_pip_bels, those
// vectors will be empty.
for (int32_t site : sites_for_pseudo_pip) {
logic_bels_for_pip[LogicBelKey{tile_type, pip_idx, site}].clear();
}
if (!pseudo_pip_bels.empty()) {
pool<int32_t> pseudo_cell_wires;
pseudo_cell_wires.insert(pip_data.pseudo_cell_wires.begin(), pip_data.pseudo_cell_wires.end());
// For each BEL, find the input bel pin used, and attach it to
// the vector for that site.
//
// Note: Intentially copying the bel for mutation, and then
// pushing onto vector.
for (PseudoPipBel bel : pseudo_pip_bels) {
const BelInfoPOD &bel_data = type_data.bel_data[bel.bel_index];
int32_t site = bel_data.site;
int32_t input_bel_pin = -1;
int32_t output_bel_pin = -1;
for (int32_t i = 0; i < bel_data.num_bel_wires; ++i) {
if (!pseudo_cell_wires.count(bel_data.wires[i])) {
continue;
}
if (bel_data.types[i] == PORT_OUT) {
NPNR_ASSERT(output_bel_pin == -1);
output_bel_pin = i;
}
if (bel_data.types[i] == PORT_IN && input_bel_pin == -1) {
// Take first input BEL pin
//
// FIXME: This heuristic feels fragile.
// This data oaught come from the database.
input_bel_pin = i;
}
}
NPNR_ASSERT(output_bel_pin == bel.output_bel_pin);
bel.input_bel_pin = input_bel_pin;
logic_bels_for_pip[LogicBelKey{tile_type, pip_idx, site}].push_back(bel);
}
}
}
max_pseudo_pip_for_tile_type[tile_type] = max_pseudo_pip_index;
}
const std::vector<size_t> &PseudoPipData::get_possible_sites_for_pip(const Context *ctx, PipId pip) const
{
int32_t tile_type = ctx->chip_info->tiles[pip.tile].type;
return possibles_sites_for_pip.at(std::make_pair(tile_type, pip.index));
}
size_t PseudoPipData::get_max_pseudo_pip(int32_t tile_type) const { return max_pseudo_pip_for_tile_type.at(tile_type); }
const std::vector<PseudoPipBel> &PseudoPipData::get_logic_bels_for_pip(const Context *ctx, int32_t site,
PipId pip) const
{
int32_t tile_type = ctx->chip_info->tiles[pip.tile].type;
return logic_bels_for_pip.at(LogicBelKey{tile_type, pip.index, site});
}
void PseudoPipModel::init(Context *ctx, int32_t tile_idx)
{
int32_t tile_type = ctx->chip_info->tiles[tile_idx].type;
this->tile = tile_idx;
allowed_pseudo_pips.resize(ctx->pseudo_pip_data.get_max_pseudo_pip(tile_type) + 1);
allowed_pseudo_pips.fill(true);
}
void PseudoPipModel::prepare_for_routing(const Context *ctx, const std::vector<SiteRouter> &sites)
{
// First determine which sites have placed cells, these sites are consider
// active.
pool<size_t> active_sites;
for (size_t site = 0; site < sites.size(); ++site) {
if (!sites[site].cells_in_site.empty()) {
active_sites.emplace(site);
}
}
// Assign each pseudo pip in this tile a site, which is either the active
// site (if the site / alt site is in use) or the first site that pseudo
// pip appears in.
int32_t tile_type = ctx->chip_info->tiles[tile].type;
const TileTypeInfoPOD &type_data = ctx->chip_info->tile_types[tile_type];
pseudo_pip_sites.clear();
site_to_pseudo_pips.clear();
for (size_t pip_idx = 0; pip_idx < type_data.pip_data.size(); ++pip_idx) {
const PipInfoPOD &pip_data = type_data.pip_data[pip_idx];
if (pip_data.pseudo_cell_wires.size() == 0) {
continue;
}
PipId pip;
pip.tile = tile;
pip.index = pip_idx;
const std::vector<size_t> &sites = ctx->pseudo_pip_data.get_possible_sites_for_pip(ctx, pip);
int32_t site_for_pip = -1;
for (size_t possible_site : sites) {
if (active_sites.count(possible_site)) {
site_for_pip = possible_site;
break;
}
}
if (site_for_pip < 0) {
site_for_pip = sites.at(0);
}
pseudo_pip_sites[pip_idx] = site_for_pip;
site_to_pseudo_pips[site_for_pip].push_back(pip_idx);
}
for (auto &site_pair : site_to_pseudo_pips) {
update_site(ctx, site_pair.first);
}
}
bool PseudoPipModel::checkPipAvail(const Context *ctx, PipId pip) const
{
bool allowed = allowed_pseudo_pips.get(pip.index);
if (!allowed) {
#ifdef DEBUG_PSEUDO_PIP
if (ctx->verbose) {
log_info("Pseudo pip %s not allowed\n", ctx->nameOfPip(pip));
}
#endif
}
return allowed;
}
void PseudoPipModel::bindPip(const Context *ctx, PipId pip)
{
// If pseudo_pip_sites is empty, then prepare_for_routing was never
// invoked. This is likely because PseudoPipModel was constructed during
// routing.
if (pseudo_pip_sites.empty()) {
prepare_for_routing(ctx, ctx->tileStatus.at(tile).sites);
}
// Do not allow pseudo pips to be bound if they are not allowed!
NPNR_ASSERT(allowed_pseudo_pips.get(pip.index));
// Mark that this pseudo pip is active.
auto result = active_pseudo_pips.emplace(pip.index);
NPNR_ASSERT(result.second);
// Update the site this pseudo pip is within.
size_t site = pseudo_pip_sites.at(pip.index);
update_site(ctx, site);
}
void PseudoPipModel::unbindPip(const Context *ctx, PipId pip)
{
// It should not be possible for unbindPip to be invoked with
// pseudo_pip_sites being empty.
NPNR_ASSERT(!pseudo_pip_sites.empty());
NPNR_ASSERT(active_pseudo_pips.erase(pip.index));
// Remove the site this pseudo pip is within.
size_t site = pseudo_pip_sites.at(pip.index);
update_site(ctx, site);
}
void PseudoPipModel::update_site(const Context *ctx, size_t site)
{
// update_site consists of several steps:
//
// - Find all BELs within the site used by pseudo pips.
// - Trivially marking other pseudo pips as unavailable if it requires
// logic BELs used by active pseudo pips (or bound by cells).
// - Determine if remaining pseudo pips can be legally placed. This
// generally consists of:
// - Checking LUT element
// - FIXME: Checking constraints (when metadata is available)
const std::vector<int32_t> pseudo_pips_for_site = site_to_pseudo_pips.at(site);
std::vector<int32_t> &unused_pseudo_pips = scratch;
unused_pseudo_pips.clear();
unused_pseudo_pips.reserve(pseudo_pips_for_site.size());
dict<int32_t, PseudoPipBel> used_bels;
for (int32_t pseudo_pip : pseudo_pips_for_site) {
if (!active_pseudo_pips.count(pseudo_pip)) {
unused_pseudo_pips.push_back(pseudo_pip);
continue;
}
PipId pip;
pip.tile = tile;
pip.index = pseudo_pip;
for (const PseudoPipBel &bel : ctx->pseudo_pip_data.get_logic_bels_for_pip(ctx, site, pip)) {
used_bels.emplace(bel.bel_index, bel);
}
}
if (unused_pseudo_pips.empty()) {
return;
}
int32_t tile_type = ctx->chip_info->tiles[tile].type;
const TileTypeInfoPOD &type_data = ctx->chip_info->tile_types[tile_type];
// This section builds up LUT mapping logic to determine which LUT wires
// are availble and which are not.
const std::vector<LutElement> &lut_elements = ctx->lut_elements.at(tile_type);
std::vector<LutMapper> lut_mappers;
lut_mappers.reserve(lut_elements.size());
for (size_t i = 0; i < lut_elements.size(); ++i) {
lut_mappers.push_back(LutMapper(lut_elements[i]));
}
const TileStatus &tile_status = ctx->tileStatus.at(tile);
for (CellInfo *cell : tile_status.sites[site].cells_in_site) {
if (cell->lut_cell.pins.empty()) {
continue;
}
BelId bel = cell->bel;
const auto &bel_data = bel_info(ctx->chip_info, bel);
if (bel_data.lut_element != -1) {
lut_mappers[bel_data.lut_element].cells.push_back(cell);
}
}
std::vector<CellInfo> lut_thru_cells;
lut_thru_cells.reserve(tile_status.sites[site].lut_thrus.size());
for (auto input_bel_pin : tile_status.sites[site].lut_thrus) {
if (ctx->wire_lut == nullptr)
break;
BelId bel;
bel.index = input_bel_pin.second;
bel.tile = tile;
const auto &bel_data = bel_info(ctx->chip_info, bel);
NPNR_ASSERT(bel_data.lut_element != -1);
lut_thru_cells.emplace_back();
CellInfo &cell = lut_thru_cells.back();
cell.bel = bel;
cell.type = IdString(ctx->wire_lut->cell);
NPNR_ASSERT(ctx->wire_lut->input_pins.size() == 1);
cell.lut_cell.pins.push_back(IdString(ctx->wire_lut->input_pins[0]));
cell.lut_cell.equation.resize(2);
cell.lut_cell.equation.set(0, false);
cell.lut_cell.equation.set(1, true);
cell.cell_bel_pins[IdString(ctx->wire_lut->input_pins[0])].push_back(input_bel_pin.first);
lut_mappers[bel_data.lut_element].cells.push_back(&cell);
}
std::vector<CellInfo> lut_cells;
lut_cells.reserve(used_bels.size());
for (const auto &bel_pair : used_bels) {
const PseudoPipBel &bel = bel_pair.second;
const BelInfoPOD &bel_data = type_data.bel_data[bel.bel_index];
// This used BEL isn't a LUT, skip it!
if (bel_data.lut_element == -1) {
continue;
}
lut_cells.emplace_back();
CellInfo &cell = lut_cells.back();
cell.bel.tile = tile;
cell.bel.index = bel_pair.first;
if (ctx->wire_lut == nullptr)
continue;
cell.type = IdString(ctx->wire_lut->cell);
NPNR_ASSERT(ctx->wire_lut->input_pins.size() == 1);
cell.lut_cell.pins.push_back(IdString(ctx->wire_lut->input_pins[0]));
if (bel.input_bel_pin == -1) {
// FIXME: currently assume that LUT route-throughs with no input pins are GND drivers as this is all we need
// for Nexus/Xilinx where Vcc is readily available and cheap This won't be true for other arches
cell.lut_cell.equation.resize(2);
cell.lut_cell.equation.set(0, false);
cell.lut_cell.equation.set(1, false);
} else {
cell.lut_cell.equation.resize(2);
cell.lut_cell.equation.set(0, false);
cell.lut_cell.equation.set(1, true);
// Map LUT input to input wire used by pseudo pip.
IdString input_bel_pin(bel_data.ports[bel.input_bel_pin]);
cell.cell_bel_pins[IdString(ctx->wire_lut->input_pins[0])].push_back(input_bel_pin);
}
lut_mappers[bel_data.lut_element].cells.push_back(&cell);
}
std::vector<uint32_t> lut_wires_unavailable;
lut_wires_unavailable.reserve(lut_elements.size());
for (LutMapper &lut_mapper : lut_mappers) {
lut_wires_unavailable.push_back(lut_mapper.check_wires(ctx));
}
// For unused pseudo pips, see if the BEL used is idle.
for (int32_t pseudo_pip : unused_pseudo_pips) {
PipId pip;
pip.tile = tile;
pip.index = pseudo_pip;
bool blocked_by_bel = false;
const std::vector<PseudoPipBel> &bels = ctx->pseudo_pip_data.get_logic_bels_for_pip(ctx, site, pip);
for (const PseudoPipBel &bel : bels) {
if (tile_status.boundcells[bel.bel_index] != nullptr) {
blocked_by_bel = true;
#ifdef DEBUG_PSEUDO_PIP
if (ctx->verbose) {
BelId abel;
abel.tile = tile;
abel.index = bel.bel_index;
log_info("Pseudo pip %s is block by a bound BEL %s\n", ctx->nameOfPip(pip), ctx->nameOfBel(abel));
}
#endif
break;
}
if (used_bels.count(bel.bel_index)) {
#ifdef DEBUG_PSEUDO_PIP
if (ctx->verbose) {
log_info("Pseudo pip %s is block by another pseudo pip\n", ctx->nameOfPip(pip));
}
#endif
blocked_by_bel = true;
break;
}
}
bool blocked_by_lut_eq = false;
// See if any BELs are part of a LUT element. If so, see if using
// that pseudo pip violates the LUT element equation.
for (const PseudoPipBel &bel : bels) {
const BelInfoPOD &bel_data = type_data.bel_data[bel.bel_index];
if (bel_data.lut_element == -1) {
continue;
}
// FIXME: Check if the pseudo cell satifies the constraint system.
// Will become important for LUT-RAM/SRL testing.
// FIXME: This lookup is static, consider moving to PseudoPipBel?
IdString bel_name(bel_data.name);
if (bel.input_bel_pin == -1) {
// No input bel pin (e.g. LUT as constant driver) - check that *any* input is available, i.e. there is
// some room in the LUT equation still
size_t pin_count = lut_elements.at(bel_data.lut_element).lut_bels.at(bel_name).pins.size();
uint32_t pin_mask = (1 << uint32_t(pin_count)) - 1;
uint32_t blocked_inputs = lut_wires_unavailable.at(bel_data.lut_element);
if ((blocked_inputs & pin_mask) == pin_mask) {
blocked_by_lut_eq = true;
break;
}
} else {
IdString input_bel_pin(bel_data.ports[bel.input_bel_pin]);
size_t pin_idx =
lut_elements.at(bel_data.lut_element).lut_bels.at(bel_name).pin_to_index.at(input_bel_pin);
uint32_t blocked_inputs = lut_wires_unavailable.at(bel_data.lut_element);
if ((blocked_inputs & (1 << pin_idx)) != 0) {
blocked_by_lut_eq = true;
break;
}
}
}
#ifdef DEBUG_PSEUDO_PIP
if (blocked_by_lut_eq && ctx->verbose) {
log_info("Pseudo pip %s is blocked by invalid LUT equation\n", ctx->nameOfPip(pip));
}
#endif
// Pseudo pip should be allowed, mark as such.
//
// FIXME: Handle non-LUT constraint cases, as needed.
bool allow_pip = !blocked_by_lut_eq && !blocked_by_bel;
allowed_pseudo_pips.set(pseudo_pip, allow_pip);
}
}
NEXTPNR_NAMESPACE_END