nextpnr/common/timing.cc

431 lines
19 KiB
C++
Raw Normal View History

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
2018-08-07 03:14:00 +08:00
* Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "timing.h"
#include <algorithm>
2018-08-07 08:35:23 +08:00
#include <boost/range/adaptor/reversed.hpp>
#include <unordered_map>
#include <utility>
#include "log.h"
2018-07-21 16:55:20 +08:00
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
2018-08-04 14:42:25 +08:00
typedef std::vector<const PortRef *> PortRefVector;
typedef std::map<int, unsigned> DelayFrequency;
2018-07-25 00:20:07 +08:00
2018-08-04 13:39:25 +08:00
struct Timing
{
2018-08-04 13:39:25 +08:00
Context *ctx;
bool net_delays;
2018-08-04 13:39:25 +08:00
bool update;
delay_t min_slack;
PortRefVector *crit_path;
DelayFrequency *slack_histogram;
2018-08-04 13:39:25 +08:00
2018-08-07 08:35:23 +08:00
struct TimingData
{
TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
delay_t max_arrival;
unsigned max_path_length = 0;
delay_t min_remaining_budget;
};
2018-08-06 22:19:32 +08:00
Timing(Context *ctx, bool net_delays, bool update, PortRefVector *crit_path = nullptr,
DelayFrequency *slack_histogram = nullptr)
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq),
crit_path(crit_path), slack_histogram(slack_histogram)
2018-08-04 14:42:25 +08:00
{
}
2018-08-04 13:39:25 +08:00
delay_t walk_paths()
{
const auto clk_period = delay_t(1.0e12 / ctx->target_freq);
2018-08-04 14:42:25 +08:00
2018-08-07 04:12:24 +08:00
// First, compute the topographical order of nets to walk through
// the circuit, assuming it is a _acyclic_ graph
2018-08-07 08:35:23 +08:00
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial
// loops
std::vector<NetInfo *> topographical_order;
std::unordered_map<const NetInfo *, TimingData> net_data;
2018-08-07 04:12:24 +08:00
// In lieu of deleting edges from the graph, simply count
// the number of fanins to each output port
2018-08-07 08:35:23 +08:00
std::unordered_map<const PortInfo *, unsigned> port_fanin;
std::vector<IdString> input_ports;
2018-08-07 08:35:23 +08:00
std::vector<const PortInfo *> output_ports;
for (auto &cell : ctx->cells) {
input_ports.clear();
output_ports.clear();
2018-08-07 08:35:23 +08:00
for (auto &port : cell.second->ports) {
if (!port.second.net)
continue;
if (port.second.type == PORT_OUT)
output_ports.push_back(&port.second);
else
input_ports.push_back(port.first);
}
2018-08-07 04:12:24 +08:00
bool is_io = ctx->isIOCell(cell.second.get());
for (auto o : output_ports) {
IdString clock_domain = ctx->getPortClock(cell.second.get(), o->name);
2018-08-07 04:12:24 +08:00
// If output port is influenced by a clock (e.g. FF output)
// then add it to the ordering as a timing start-point
if (clock_domain != IdString()) {
DelayInfo clkToQ;
ctx->getCellDelay(cell.second.get(), clock_domain, o->name, clkToQ);
topographical_order.emplace_back(o->net);
2018-08-07 08:35:23 +08:00
net_data.emplace(o->net, TimingData{clkToQ.maxDelay()});
} else {
2018-08-07 04:12:24 +08:00
// Also add I/O cells too
2018-08-07 08:35:23 +08:00
// TODO(eddieh): More generic way of detecting PLLs
if (is_io || cell.second->type == ctx->id("ICESTORM_PLL")) {
topographical_order.emplace_back(o->net);
net_data.emplace(o->net, TimingData{});
}
2018-08-07 04:12:24 +08:00
// Otherwise, for all driven input ports on this cell,
// if a timing arch exists between the input and
// the current output port, increment fanin counter
for (auto i : input_ports) {
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
if (is_path)
port_fanin[o]++;
}
}
}
}
2018-08-07 04:12:24 +08:00
// If these constant nets exist, add them to the topographical ordering too
auto it = ctx->nets.find(ctx->id("$PACKER_VCC_NET"));
if (it != ctx->nets.end()) {
topographical_order.emplace_back(it->second.get());
net_data.emplace(it->second.get(), TimingData{});
}
it = ctx->nets.find(ctx->id("$PACKER_GND_NET"));
if (it != ctx->nets.end()) {
topographical_order.emplace_back(it->second.get());
net_data.emplace(it->second.get(), TimingData{});
}
2018-08-07 08:35:23 +08:00
std::deque<NetInfo *> queue(topographical_order.begin(), topographical_order.end());
2018-08-07 08:35:23 +08:00
// Now walk the design, from the start points identified previously,
// building
2018-08-07 04:12:24 +08:00
// up a topographical order
while (!queue.empty()) {
const auto net = queue.front();
queue.pop_front();
DelayInfo clkToQ;
for (auto &usr : net->users) {
auto clock_domain = ctx->getPortClock(usr.cell, usr.port);
2018-08-07 08:35:23 +08:00
for (auto &port : usr.cell->ports) {
if (port.second.type == PORT_OUT && port.second.net) {
2018-08-07 04:12:24 +08:00
// Skip if this is a clocked output (but allow non-clocked ones)
if (clock_domain != IdString() && ctx->getCellDelay(usr.cell, clock_domain, port.first, clkToQ))
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (is_path) {
2018-08-07 04:12:24 +08:00
// Decrement the fanin count, and only add to topographical
// order if all its fanins have already been visited
auto it = port_fanin.find(&port.second);
NPNR_ASSERT(it != port_fanin.end());
if (--it->second == 0) {
topographical_order.emplace_back(port.second.net);
queue.emplace_back(port.second.net);
port_fanin.erase(it);
}
}
}
}
}
}
2018-08-07 04:12:24 +08:00
// Sanity check to ensure that all ports where fanins were recorded
// were indeed visited
NPNR_ASSERT(port_fanin.empty());
2018-08-07 04:12:24 +08:00
// Go forwards topographically to find the maximum arrival time
// and max path length for each net
for (auto net : topographical_order) {
auto &nd = net_data.at(net);
const auto net_arrival = nd.max_arrival;
const auto net_length_plus_one = nd.max_path_length + 1;
nd.min_remaining_budget = clk_period;
for (auto &usr : net->users) {
if (ctx->getPortClock(usr.cell, usr.port) != IdString()) {
} else {
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
auto usr_arrival = net_arrival + net_delay;
2018-08-07 04:12:24 +08:00
// Iterate over all output ports on the same cell as the sink
for (auto port : usr.cell->ports) {
if (port.second.type == PORT_OUT && port.second.net) {
DelayInfo comb_delay;
// Look up delay through this path
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (is_path) {
2018-08-07 08:35:23 +08:00
auto &data = net_data[port.second.net];
auto &arrival = data.max_arrival;
arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
2018-08-07 08:35:23 +08:00
if (!budget_override) { // Do not increment path length if
// budget overriden
// since it doesn't require a share of the slack
auto &path_length = data.max_path_length;
path_length = std::max(path_length, net_length_plus_one);
}
}
}
}
}
}
}
2018-08-07 08:35:23 +08:00
const NetInfo *crit_net = nullptr;
2018-08-07 05:14:41 +08:00
2018-08-07 04:12:24 +08:00
// Now go backwards topographically to determine the minimum path slack,
// and to distribute all path slack evenly between all nets on the path
for (auto net : boost::adaptors::reverse(topographical_order)) {
auto &nd = net_data.at(net);
const delay_t net_length_plus_one = nd.max_path_length + 1;
2018-08-07 08:35:23 +08:00
auto &net_min_remaining_budget = nd.min_remaining_budget;
for (auto &usr : net->users) {
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
if (ctx->getPortClock(usr.cell, usr.port) != IdString()) {
const auto net_arrival = nd.max_arrival;
auto path_budget = clk_period - (net_arrival + net_delay);
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
if (update)
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share);
2018-08-07 05:14:41 +08:00
if (path_budget < min_slack) {
min_slack = path_budget;
if (crit_path) {
crit_path->clear();
crit_path->push_back(&usr);
crit_net = net;
}
}
if (slack_histogram) {
int slack_ps = ctx->getDelayNS(path_budget) * 1000;
(*slack_histogram)[slack_ps]++;
}
} else {
2018-08-07 04:12:24 +08:00
// Iterate over all output ports on the same cell as the sink
2018-08-07 08:35:23 +08:00
for (const auto &port : usr.cell->ports) {
if (port.second.type == PORT_OUT && port.second.net) {
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (is_path) {
auto path_budget = net_data.at(port.second.net).min_remaining_budget;
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
if (update)
usr.budget = std::min(usr.budget, net_delay + budget_share);
2018-08-07 08:35:23 +08:00
net_min_remaining_budget =
std::min(net_min_remaining_budget, path_budget - budget_share);
}
}
}
}
}
}
2018-08-07 05:14:41 +08:00
if (crit_path) {
// Walk backwards from the most critical net
while (crit_net) {
2018-08-07 08:35:23 +08:00
const PortInfo *crit_ipin = nullptr;
2018-08-07 05:14:41 +08:00
delay_t max_arrival = std::numeric_limits<delay_t>::min();
// Look at all input ports on its driving cell
2018-08-07 08:35:23 +08:00
for (const auto &port : crit_net->driver.cell->ports) {
2018-08-07 05:14:41 +08:00
if (port.second.type == PORT_IN && port.second.net) {
DelayInfo comb_delay;
2018-08-07 08:35:23 +08:00
bool is_path =
ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
2018-08-07 05:14:41 +08:00
if (is_path) {
// If input port is influenced by a clock, skip
if (ctx->getPortClock(crit_net->driver.cell, port.first) != IdString())
continue;
// And find the fanin net with the latest arrival time
const auto net_arrival = net_data.at(port.second.net).max_arrival;
if (net_arrival > max_arrival) {
max_arrival = net_arrival;
crit_ipin = &port.second;
}
}
}
}
2018-08-07 08:35:23 +08:00
if (!crit_ipin)
break;
2018-08-07 05:14:41 +08:00
for (auto &usr : crit_ipin->net->users) {
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
crit_path->push_back(&usr);
break;
}
}
crit_net = crit_ipin->net;
}
std::reverse(crit_path->begin(), crit_path->end());
}
2018-08-04 13:39:25 +08:00
return min_slack;
}
2018-08-04 13:39:25 +08:00
void assign_budget()
{
// Clear delays to a very high value first
for (auto &net : ctx->nets) {
for (auto &usr : net.second->users) {
usr.budget = std::numeric_limits<delay_t>::max();
}
}
2018-08-04 13:39:25 +08:00
walk_paths();
}
};
void assign_budget(Context *ctx, bool quiet)
{
if (!quiet) {
log_break();
2018-08-06 22:19:32 +08:00
log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n", ctx->target_freq / 1e6);
}
Timing timing(ctx, ctx->slack_redist_iter > 0 /* net_delays */, true /* update */);
2018-08-04 13:39:25 +08:00
timing.assign_budget();
if (!quiet || ctx->verbose) {
2018-07-29 03:50:21 +08:00
for (auto &net : ctx->nets) {
for (auto &user : net.second->users) {
// Post-update check
2018-08-04 10:53:32 +08:00
if (!ctx->auto_freq && user.budget < 0)
log_warning("port %s.%s, connected to net '%s', has negative "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
else if (ctx->verbose)
log_info("port %s.%s, connected to net '%s', has "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
}
2018-07-21 16:55:20 +08:00
}
}
2018-08-01 10:07:39 +08:00
// For slack redistribution, if user has not specified a frequency
// dynamically adjust the target frequency to be the currently
// achieved maximum
2018-08-04 10:53:32 +08:00
if (ctx->auto_freq && ctx->slack_redist_iter > 0) {
2018-08-04 13:39:25 +08:00
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
ctx->target_freq = 1e12 / (default_slack - timing.min_slack);
if (ctx->verbose)
2018-08-04 14:42:25 +08:00
log_info("minimum slack for this assign = %d, target Fmax for next "
"update = %.2f MHz\n",
timing.min_slack, ctx->target_freq / 1e6);
}
if (!quiet)
log_info("Checksum: 0x%08x\n", ctx->checksum());
2018-07-21 16:55:20 +08:00
}
void timing_analysis(Context *ctx, bool print_histogram, bool print_path)
{
2018-08-04 13:39:25 +08:00
PortRefVector crit_path;
DelayFrequency slack_histogram;
2018-08-04 13:39:25 +08:00
Timing timing(ctx, true /* net_delays */, false /* update */, print_path ? &crit_path : nullptr,
2018-08-04 14:42:25 +08:00
print_histogram ? &slack_histogram : nullptr);
2018-08-04 13:39:25 +08:00
auto min_slack = timing.walk_paths();
if (print_path) {
if (crit_path.empty()) {
log_info("Design contains no timing paths\n");
} else {
delay_t total = 0;
log_break();
log_info("Critical path report:\n");
log_info("curr total\n");
auto &front = crit_path.front();
auto &front_port = front->cell->ports.at(front->port);
auto &front_driver = front_port.net->driver;
auto last_port = ctx->getPortClock(front_driver.cell, front_driver.port);
for (auto sink : crit_path) {
auto sink_cell = sink->cell;
auto &port = sink_cell->ports.at(sink->port);
auto net = port.net;
auto &driver = net->driver;
auto driver_cell = driver.cell;
DelayInfo comb_delay;
ctx->getCellDelay(sink_cell, last_port, driver.port, comb_delay);
total += comb_delay.maxDelay();
log_info("%4d %4d Source %s.%s\n", comb_delay.maxDelay(), total, driver_cell->name.c_str(ctx),
driver.port.c_str(ctx));
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
total += net_delay;
auto driver_loc = ctx->getBelLocation(driver_cell->bel);
auto sink_loc = ctx->getBelLocation(sink_cell->bel);
log_info("%4d %4d Net %s budget %d (%d,%d) -> (%d,%d)\n", net_delay, total, net->name.c_str(ctx),
sink->budget, driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y);
log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx));
last_port = sink->port;
}
log_break();
}
}
2018-08-04 13:39:25 +08:00
delay_t default_slack = delay_t(1.0e12 / ctx->target_freq);
log_info("estimated Fmax = %.2f MHz\n", 1e6 / (default_slack - min_slack));
if (print_histogram && slack_histogram.size() > 0) {
constexpr unsigned num_bins = 20;
unsigned bar_width = 60;
auto min_slack = slack_histogram.begin()->first;
auto max_slack = slack_histogram.rbegin()->first;
auto bin_size = (max_slack - min_slack) / num_bins;
2018-08-04 14:42:25 +08:00
std::vector<unsigned> bins(num_bins + 1);
unsigned max_freq = 0;
2018-08-04 14:42:25 +08:00
for (const auto &i : slack_histogram) {
auto &bin = bins[(i.first - min_slack) / bin_size];
bin += i.second;
max_freq = std::max(max_freq, bin);
}
bar_width = std::min(bar_width, max_freq);
log_break();
log_info("Slack histogram:\n");
log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
for (unsigned i = 0; i < bins.size(); ++i)
log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1),
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
}
}
NEXTPNR_NAMESPACE_END