interchange: add support for generating BEL clusters

Clustering greatly helps the placer to identify and pack together
specific cells at the same site (e.g. LUT+FF), or cells that are chained through
dedicated interconnections (e.g. CARRY CHAINS)

Signed-off-by: Alessandro Comodi <acomodi@antmicro.com>
This commit is contained in:
Alessandro Comodi 2021-06-02 09:49:30 +02:00
parent 7278d3c0ed
commit 104536b7aa
9 changed files with 713 additions and 24 deletions

View File

@ -758,6 +758,7 @@ bool Arch::pack()
pack_ports();
pack_default_conns();
expand_macros();
pack_cluster();
return true;
}

View File

@ -94,6 +94,15 @@ struct TileStatus
PseudoPipModel pseudo_pip_model;
};
struct Cluster
{
uint32_t index;
CellInfo *root;
std::vector<CellInfo *> cluster_nodes;
dict<IdString, IdString> cell_cluster_node_map;
dict<IdString, std::vector<std::pair<IdString, CellInfo *>>> cluster_node_cells;
};
struct Arch : ArchAPI<ArchRanges>
{
boost::iostreams::mapped_file_source blob_file;
@ -258,6 +267,20 @@ struct Arch : ArchAPI<ArchRanges>
map_cell_pins(cell, mapping, /*bind_constants=*/false);
}
constraints.bindBel(tile_status.tags.data(), get_cell_constraints(bel, cell->type));
// Clean previous cell placement in tile
if (cell->bel != BelId()) {
TileStatus &prev_tile_status = get_tile_status(cell->bel.tile);
NPNR_ASSERT(prev_tile_status.boundcells[cell->bel.index] != nullptr);
const auto &prev_bel_data = bel_info(chip_info, cell->bel);
NPNR_ASSERT(prev_bel_data.category == BEL_CATEGORY_LOGIC);
get_site_status(prev_tile_status, prev_bel_data).unbindBel(cell);
prev_tile_status.boundcells[cell->bel.index] = nullptr;
constraints.unbindBel(prev_tile_status.tags.data(), get_cell_constraints(cell->bel, cell->type));
}
} else {
map_port_pins(bel, cell);
// FIXME: Probably need to actually constraint io port cell/bel,
@ -687,7 +710,14 @@ struct Arch : ArchAPI<ArchRanges>
void place_iobufs(WireId pad_wire, NetInfo *net, const pool<CellInfo *, hash_ptr_ops> &tightly_attached_bels,
pool<CellInfo *, hash_ptr_ops> *placed_cells);
void pack_ports();
// Clusters
void pack_cluster();
void prepare_cluster(const ClusterPOD *cluster, uint32_t index);
dict<ClusterId, Cluster> clusters;
void decode_lut_cells();
const GlobalCellPOD *global_cell_info(IdString cell_type) const;
@ -821,10 +851,10 @@ struct Arch : ArchAPI<ArchRanges>
}
const TileStatus &tile_status = iter->second;
const CellInfo *cell = tile_status.boundcells[bel.index];
if (cell != nullptr) {
if (!dedicated_interconnect.isBelLocationValid(bel, cell)) {
if(cell->cluster == ClusterId() && !dedicated_interconnect.isBelLocationValid(bel, cell))
return false;
}
if (io_port_types.count(cell->type)) {
// FIXME: Probably need to actually constraint io port cell/bel,
@ -837,24 +867,21 @@ struct Arch : ArchAPI<ArchRanges>
return false;
}
}
// Still check site status if cell is nullptr; as other bels in the site could be illegal (for example when
// dedicated paths can no longer be used after ripping up a cell)
auto &bel_data = bel_info(chip_info, bel);
return get_site_status(tile_status, bel_data).checkSiteRouting(getCtx(), tile_status);
bool site_status = get_site_status(tile_status, bel_data).checkSiteRouting(getCtx(), tile_status);
return site_status;
}
// -------------------------------------------------
// TODO
CellInfo *getClusterRootCell(ClusterId cluster) const override { NPNR_ASSERT_FALSE("unimplemented"); }
ArcBounds getClusterBounds(ClusterId cluster) const override { NPNR_ASSERT_FALSE("unimplemented"); }
Loc getClusterOffset(const CellInfo *cell) const override { NPNR_ASSERT_FALSE("unimplemented"); }
bool isClusterStrict(const CellInfo *cell) const override { NPNR_ASSERT_FALSE("unimplemented"); }
CellInfo *getClusterRootCell(ClusterId cluster) const override;
ArcBounds getClusterBounds(ClusterId cluster) const override;
Loc getClusterOffset(const CellInfo *cell) const override;
bool isClusterStrict(const CellInfo *cell) const override;
bool getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const override
{
NPNR_ASSERT_FALSE("unimplemented");
}
std::vector<std::pair<CellInfo *, BelId>> &placement) const override;
IdString get_bel_tiletype(BelId bel) const { return IdString(loc_info(chip_info, bel).name); }

View File

@ -0,0 +1,584 @@
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 Symbiflow Authors
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "design_utils.h"
#include "log.h"
#include "nextpnr.h"
#include "arch.h"
#include "util.h"
#include <boost/algorithm/string.hpp>
#include <queue>
NEXTPNR_NAMESPACE_BEGIN
enum ClusterWireNodeState
{
IN_SINK_SITE = 0,
IN_ROUTING = 1,
IN_SOURCE_SITE = 2,
ONLY_IN_SOURCE_SITE = 3
};
enum ExpansionDirection
{
CLUSTER_UPHILL_DIR = 0,
CLUSTER_DOWNHILL_DIR = 1
};
struct ClusterWireNode {
WireId wire;
ClusterWireNodeState state;
int depth;
};
static void handle_expansion_node(const Context *ctx, WireId prev_wire, PipId pip, ClusterWireNode curr_node, std::vector<ClusterWireNode> &nodes_to_expand, pool<BelId> &bels, ExpansionDirection direction)
{
WireId wire;
if (direction == CLUSTER_UPHILL_DIR)
wire = ctx->getPipSrcWire(pip);
else
wire = ctx->getPipDstWire(pip);
if (wire == WireId())
return;
ClusterWireNode next_node;
next_node.wire = wire;
next_node.depth = curr_node.depth;
if (next_node.depth >= 2)
return;
auto const &wire_data = ctx->wire_info(wire);
bool expand_node = true;
if (ctx->is_site_port(pip)) {
switch (curr_node.state) {
case ONLY_IN_SOURCE_SITE:
expand_node = false;
break;
case IN_SOURCE_SITE:
NPNR_ASSERT(wire_data.site == -1);
next_node.state = IN_ROUTING;
break;
case IN_ROUTING:
NPNR_ASSERT(wire_data.site != -1);
next_node.state = IN_SINK_SITE;
break;
case IN_SINK_SITE:
expand_node = false;
break;
default:
// Unreachable!!!
NPNR_ASSERT(false);
}
} else {
if (next_node.state == IN_ROUTING)
next_node.depth++;
next_node.state = curr_node.state;
}
if (expand_node)
nodes_to_expand.push_back(next_node);
else
return;
if (next_node.state == IN_SINK_SITE || next_node.state == ONLY_IN_SOURCE_SITE) {
for (BelPin bel_pin : ctx->getWireBelPins(wire)) {
BelId bel = bel_pin.bel;
auto const &bel_data = bel_info(ctx->chip_info, bel);
if (bels.count(bel))
continue;
if (bel_data.category != BEL_CATEGORY_LOGIC)
return;
if (bel_data.synthetic)
return;
if (direction == CLUSTER_UPHILL_DIR) {
// Check that the BEL is indeed the one reached by backward exploration,
// by checking the previous visited wire.
for (IdString check_pin : ctx->getBelPins(bel)) {
if (prev_wire == ctx->getBelPinWire(bel, check_pin)) {
bels.insert(bel);
break;
}
}
} else {
bels.insert(bel);
}
}
}
return;
}
static pool<BelId> find_cluster_bels(const Context *ctx, WireId wire, ExpansionDirection direction, bool allow_out_of_site_expansion = false)
{
std::vector<ClusterWireNode> nodes_to_expand;
pool<BelId> bels;
const auto &wire_data = ctx->wire_info(wire);
NPNR_ASSERT(wire_data.site != -1);
ClusterWireNode wire_node;
wire_node.wire = wire;
wire_node.state = IN_SOURCE_SITE;
if (!allow_out_of_site_expansion)
wire_node.state = ONLY_IN_SOURCE_SITE;
wire_node.depth = 0;
nodes_to_expand.push_back(wire_node);
while (!nodes_to_expand.empty()) {
ClusterWireNode node_to_expand = nodes_to_expand.back();
WireId prev_wire = node_to_expand.wire;
nodes_to_expand.pop_back();
if (direction == CLUSTER_DOWNHILL_DIR) {
for (PipId pip : ctx->getPipsDownhill(node_to_expand.wire)) {
if (ctx->is_pip_synthetic(pip))
continue;
handle_expansion_node(ctx, prev_wire, pip, node_to_expand, nodes_to_expand, bels, direction);
}
} else {
NPNR_ASSERT(direction == CLUSTER_UPHILL_DIR);
for (PipId pip : ctx->getPipsUphill(node_to_expand.wire)) {
if (ctx->is_pip_synthetic(pip))
continue;
handle_expansion_node(ctx, prev_wire, pip, node_to_expand, nodes_to_expand, bels, direction);
}
}
}
return bels;
}
CellInfo* Arch::getClusterRootCell(ClusterId cluster) const
{
NPNR_ASSERT(cluster != ClusterId());
return clusters.at(cluster).root;
}
bool Arch::getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
const Context *ctx = getCtx();
const Cluster &packed_cluster = clusters.at(cluster);
IdString GND = id("GND");
IdString VCC = id("VCC");
// Place root
CellInfo *root_cell = getClusterRootCell(cluster);
if (!ctx->isValidBelForCellType(root_cell->type, root_bel))
return false;
BelId next_bel;
// Place cluster
for (CellInfo *cluster_node : packed_cluster.cluster_nodes) {
if (cluster_node == root_cell) {
next_bel = root_bel;
} else {
auto &cluster_data = cluster_info(chip_info, packed_cluster.index);
IdString next_bel_pin(cluster_data.chainable_ports[0].bel_source);
WireId next_bel_pin_wire = ctx->getBelPinWire(next_bel, next_bel_pin);
next_bel = BelId();
for (BelId bel : find_cluster_bels(ctx, next_bel_pin_wire, CLUSTER_DOWNHILL_DIR, true)) {
if (ctx->isValidBelForCellType(cluster_node->type, bel)) {
next_bel = bel;
break;
}
}
if (next_bel == BelId())
return false;
}
if (cluster_node->cell_bel_pins.empty()) {
int32_t mapping = bel_info(chip_info, next_bel).pin_map[get_cell_type_index(cluster_node->type)];
NPNR_ASSERT(mapping >= 0);
const CellBelMapPOD &cell_pin_map = chip_info->cell_map->cell_bel_map[mapping];
for (const auto &pin_map : cell_pin_map.common_pins) {
IdString cell_pin(pin_map.cell_pin);
IdString bel_pin(pin_map.bel_pin);
// Skip assigned LUT pins, as they are already mapped!
if (cluster_node->lut_cell.lut_pins.count(cell_pin) && cluster_node->cell_bel_pins.count(cell_pin))
continue;
if (cell_pin == GND || cell_pin == VCC)
continue;
cluster_node->cell_bel_pins[cell_pin].push_back(bel_pin);
}
}
placement.emplace_back(cluster_node, next_bel);
// Place cluster node cells
for (auto port_cell : packed_cluster.cluster_node_cells.at(cluster_node->name)) {
bool placed_cell = false;
IdString port = port_cell.first;
CellInfo *cell = port_cell.second;
PortType port_type = cluster_node->ports.at(port).type;
if (port_type == PORT_INOUT)
continue;
auto &cell_bel_pins = cluster_node->cell_bel_pins.at(port);
for (auto &bel_pin : cell_bel_pins) {
WireId bel_pin_wire = ctx->getBelPinWire(next_bel, bel_pin);
ExpansionDirection direction = port_type == PORT_IN ? CLUSTER_UPHILL_DIR : CLUSTER_DOWNHILL_DIR;
pool<BelId> cluster_bels = find_cluster_bels(ctx, bel_pin_wire, direction);
if (cluster_bels.size() == 0)
continue;
for (BelId bel : cluster_bels) {
if (ctx->isValidBelForCellType(cell->type, bel)) {
placement.emplace_back(cell, bel);
placed_cell = true;
break;
}
}
if (placed_cell)
break;
}
if (!placed_cell)
return false;
}
}
return true;
}
ArcBounds Arch::getClusterBounds(ClusterId cluster) const
{
// TODO: Implement this
ArcBounds bounds(0, 0, 0, 0);
return bounds;
}
Loc Arch::getClusterOffset(const CellInfo *cell) const
{
Loc offset;
CellInfo *root = getClusterRootCell(cell->cluster);
if (cell->bel != BelId() && root->bel != BelId()) {
Loc root_loc = getBelLocation(root->bel);
Loc cell_loc = getBelLocation(cell->bel);
offset.x = cell_loc.x - root_loc.x;
offset.y = cell_loc.y - root_loc.y;
offset.z = cell_loc.z - root_loc.z;
} else {
Cluster cluster = clusters.at(cell->cluster);
auto &cluster_data = cluster_info(chip_info, cluster.index);
if (cluster_data.chainable_ports.size() == 0)
return offset;
auto &chainable_port = cluster_data.chainable_ports[0];
IdString cluster_node = cluster.cell_cluster_node_map.at(cell->name);
CellInfo *cluster_node_cell = cells.at(cluster_node).get();
auto res = std::find(cluster.cluster_nodes.begin(), cluster.cluster_nodes.end(), cluster_node_cell);
NPNR_ASSERT(res != cluster.cluster_nodes.end());
auto distance = std::distance(cluster.cluster_nodes.begin(), res);
offset.x = chainable_port.avg_x_offset * distance;
offset.y = chainable_port.avg_y_offset * distance;
}
return offset;
}
bool Arch::isClusterStrict(const CellInfo *cell) const
{
return true;
}
void dump_clusters(const ChipInfoPOD *chip_info, Context *ctx)
{
for (size_t i = 0; i < chip_info->clusters.size(); ++i) {
const auto &cluster = chip_info->clusters[i];
IdString cluster_name(cluster.name);
log_info("Cluster '%s' loaded! Parameters:\n", cluster_name.c_str(ctx));
log_info(" - root cell types:\n");
for (auto cell : cluster.root_cell_types)
log_info(" - %s\n", IdString(cell).c_str(ctx));
for (auto chain_ports : cluster.chainable_ports)
log_info(" - chainable pair: source %s - sink %s\n",
IdString(chain_ports.cell_source).c_str(ctx),
IdString(chain_ports.cell_sink).c_str(ctx));
if (cluster.cluster_cells_map.size() != 0)
log_info(" - cell port maps:\n");
for (auto cluster_cell : cluster.cluster_cells_map) {
log_info(" - cell: %s - port: %s\n",
IdString(cluster_cell.cell).c_str(ctx),
IdString(cluster_cell.port).c_str(ctx));
}
}
}
static bool check_cluster_cells_compatibility(CellInfo *old_cell, CellInfo *new_cell, pool<IdString> &exclude_nets)
{
NPNR_ASSERT(new_cell->type == old_cell->type);
for (auto &new_port_pair : new_cell->ports) {
PortInfo new_port_info = new_port_pair.second;
PortInfo old_port_info = old_cell->ports.at(new_port_pair.first);
if (exclude_nets.count(new_port_info.net->name))
continue;
if (new_port_info.type != PORT_IN)
continue;
if (new_port_info.net != old_port_info.net)
return false;
}
return true;
}
void Arch::prepare_cluster(const ClusterPOD *cluster, uint32_t index)
{
Context *ctx = getCtx();
IdString cluster_name(cluster->name);
pool<IdString> cluster_cell_types;
for (auto cell_type : cluster->root_cell_types)
cluster_cell_types.insert(IdString(cell_type));
// Find cluster roots
std::vector<CellInfo *> roots;
for (auto &cell : cells) {
CellInfo *ci = cell.second.get();
if (ci->cluster != ClusterId())
continue;
if (!cluster_cell_types.count(ci->type))
continue;
if (cluster->chainable_ports.size() == 0) {
ci->cluster.set(ctx, ci->name.str(ctx));
roots.push_back(ci);
continue;
}
// Only one type of dedicated interconnect is allowed.
auto chain_ports = cluster->chainable_ports[0];
IdString source_port(chain_ports.cell_source);
IdString sink_port(chain_ports.cell_sink);
PortRef driver = ci->ports[sink_port].net->driver;
if (driver.cell == nullptr || driver.port != source_port) {
// We hit a root cell
ci->cluster.set(ctx, ci->name.c_str(ctx));
roots.push_back(ci);
// Chained cells use dedicated connections, usually not exposed to the
// general interconnect resources. The port disconnection is required for
// sink ports which are connected to GND or VCC by default, which are not
// reachable due to the fixed dedicated interconnect.
// E.g.: The CI input of carry chains in 7series corresponds to the CIN bel port,
// which can only be connected to the COUT output of the tile below.
disconnect_port(ctx, ci, sink_port);
}
}
dict<IdString, pool<IdString>> port_cell_maps;
for (auto cell_port_map : cluster->cluster_cells_map) {
IdString cell(cell_port_map.cell);
IdString port(cell_port_map.port);
pool<IdString> cells_pool({cell});
port_cell_maps.emplace(port, cells_pool).first->second.insert(cell);
}
// Generate unique clusters starting from each root
for (auto root : roots) {
Cluster cluster_info;
cluster_info.root = root;
cluster_info.index = index;
CellInfo *next_cluster_node = root;
if (ctx->verbose)
log_info(" - forming cluster starting from root cell: %s\n", next_cluster_node->name.c_str(ctx));
// counter to determine whether this cluster needs to exist
uint32_t count_cluster_cells = 0;
do {
std::vector<std::pair<IdString, CellInfo *>> cluster_cells;
// type -> cells map to verify compatibility of cells in the same cluster
dict<IdString, CellInfo *> cell_type_dict;
pool<IdString> exclude_nets;
count_cluster_cells++;
for (auto port : next_cluster_node->ports) {
if (!port_cell_maps.count(port.first))
continue;
PortInfo port_info = port.second;
if (port_info.type == PORT_OUT) {
exclude_nets.insert(port_info.net->name);
auto &users = port_info.net->users;
if (users.size() != 1)
continue;
CellInfo *user_cell = users[0].cell;
if (user_cell == nullptr)
continue;
if (!port_cell_maps.at(port.first).count(user_cell->type))
continue;
auto res = cell_type_dict.emplace(user_cell->type, user_cell);
bool compatible = true;
if (!res.second)
compatible = check_cluster_cells_compatibility(res.first->second, user_cell, exclude_nets);
if (!compatible) {
log_info("Not compatible! %s %s\n", user_cell->name.c_str(ctx), port_info.net->name.c_str(ctx));
continue;
}
user_cell->cluster = root->cluster;
cluster_cells.push_back(std::make_pair(port.first, user_cell));
cluster_info.cell_cluster_node_map.emplace(user_cell->name, next_cluster_node->name);
count_cluster_cells++;
if (ctx->verbose)
log_info(" - adding user cell: %s\n", user_cell->name.c_str(ctx));
} else if (port_info.type == PORT_IN) {
auto &driver = port_info.net->driver;
auto &users = port_info.net->users;
if (users.size() != 1)
continue;
CellInfo *driver_cell = driver.cell;
if (driver_cell == nullptr)
continue;
if (!port_cell_maps.at(port.first).count(driver_cell->type))
continue;
driver_cell->cluster = root->cluster;
cluster_cells.push_back(std::make_pair(port.first, driver_cell));
cluster_info.cell_cluster_node_map.emplace(driver_cell->name, next_cluster_node->name);
count_cluster_cells++;
if (ctx->verbose)
log_info(" - adding driver cell: %s\n", driver_cell->name.c_str(ctx));
}
}
cluster_info.cell_cluster_node_map.emplace(next_cluster_node->name, next_cluster_node->name);
cluster_info.cluster_nodes.push_back(next_cluster_node);
cluster_info.cluster_node_cells.emplace(next_cluster_node->name, cluster_cells);
if (cluster->chainable_ports.size() == 0)
break;
// Only one type of dedicated interconnect is allowed.
auto chain_ports = cluster->chainable_ports[0];
IdString source_port(chain_ports.cell_source);
IdString sink_port(chain_ports.cell_sink);
NetInfo *next_net = next_cluster_node->ports.at(source_port).net;
if (next_net == nullptr)
continue;
next_cluster_node = nullptr;
for (auto &user : next_net->users) {
CellInfo *user_cell = user.cell;
if (user_cell == nullptr)
continue;
if (cluster_cell_types.count(user_cell->type)) {
user_cell->cluster = root->cluster;
next_cluster_node = user_cell;
break;
}
}
if (next_cluster_node == nullptr)
break;
} while (true);
if (count_cluster_cells == 1 && cluster->chainable_ports.size() == 0) {
root->cluster = ClusterId();
continue;
}
clusters.emplace(root->cluster, cluster_info);
}
}
void Arch::pack_cluster()
{
Context *ctx = getCtx();
if (ctx->verbose)
dump_clusters(chip_info, ctx);
for (uint32_t i = 0; i < chip_info->clusters.size(); ++i) {
const auto &cluster = chip_info->clusters[i];
// Build clusters and find roots
prepare_cluster(&cluster, i);
}
}
NEXTPNR_NAMESPACE_END

View File

@ -402,6 +402,27 @@ NPNR_PACKED_STRUCT(struct MacroExpansionPOD {
RelSlice<MacroParamMapRulePOD> param_rules;
});
NPNR_PACKED_STRUCT(struct ClusterCellPortPOD {
uint32_t cell;
uint32_t port;
});
NPNR_PACKED_STRUCT(struct ChainablePortPOD {
uint32_t cell_source;
uint32_t cell_sink;
uint32_t bel_source;
uint32_t bel_sink;
int16_t avg_x_offset;
int16_t avg_y_offset;
});
NPNR_PACKED_STRUCT(struct ClusterPOD {
uint32_t name;
RelSlice<uint32_t> root_cell_types;
RelSlice<ChainablePortPOD> chainable_ports;
RelSlice<ClusterCellPortPOD> cluster_cells_map;
});
NPNR_PACKED_STRUCT(struct ChipInfoPOD {
RelPtr<char> name;
RelPtr<char> generator;
@ -421,6 +442,8 @@ NPNR_PACKED_STRUCT(struct ChipInfoPOD {
RelSlice<MacroPOD> macros;
RelSlice<MacroExpansionPOD> macro_rules;
RelSlice<ClusterPOD> clusters;
// BEL bucket constids.
RelSlice<int32_t> bel_buckets;
@ -460,6 +483,11 @@ inline const SiteInstInfoPOD &site_inst_info(const ChipInfoPOD *chip_info, int32
return chip_info->sites[chip_info->tiles[tile].sites[site]];
}
inline const ClusterPOD &cluster_info(const ChipInfoPOD *chip_info, int32_t cluster)
{
return chip_info->clusters[cluster];
}
enum SyntheticType
{
NOT_SYNTH = 0,

View File

@ -77,13 +77,14 @@ function(add_interchange_test)
# Synthesis
set(synth_json ${CMAKE_CURRENT_BINARY_DIR}/${name}.json)
set(synth_log ${CMAKE_CURRENT_BINARY_DIR}/${name}.json.log)
add_custom_command(
OUTPUT ${synth_json}
COMMAND ${CMAKE_COMMAND} -E env
SOURCES="${sources}"
OUT_JSON=${synth_json}
TECHMAP=${techmap}
yosys -c ${tcl}
yosys -c ${tcl} -l ${synth_log}
DEPENDS ${sources} ${techmap} ${tcl}
)
@ -134,6 +135,7 @@ function(add_interchange_test)
get_property(chipdb_bin_loc TARGET device-${device} PROPERTY CHIPDB_BIN_LOC)
set(phys ${CMAKE_CURRENT_BINARY_DIR}/${name}.phys)
set(phys_log ${CMAKE_CURRENT_BINARY_DIR}/${name}.phys.log)
add_custom_command(
OUTPUT ${phys}
COMMAND
@ -143,6 +145,7 @@ function(add_interchange_test)
--netlist ${netlist}
--phys ${phys}
--package ${package}
--log ${phys_log}
DEPENDS
nextpnr-fpga_interchange
${netlist}
@ -151,6 +154,7 @@ function(add_interchange_test)
${chipdb_bin_loc}
)
set(phys_verbose_log ${CMAKE_CURRENT_BINARY_DIR}/${name}.phys.verbose.log)
add_custom_target(
test-${family}-${name}-phys-verbose
COMMAND
@ -161,6 +165,7 @@ function(add_interchange_test)
--phys ${phys}
--package ${package}
--verbose
--log ${phys_verbose_log}
DEPENDS
${netlist}
${xdc}

View File

@ -539,10 +539,14 @@ void FpgaInterchange::write_physical_netlist(const Context * ctx, const std::str
auto net_iter = nets.begin();
for(auto & net_pair : ctx->nets) {
auto &net = *net_pair.second;
auto net_out = *net_iter++;
const CellInfo *driver_cell = net.driver.cell;
if (driver_cell == nullptr)
continue;
auto net_out = *net_iter++;
// Handle GND and VCC nets.
if(driver_cell->bel == ctx->get_gnd_bel()) {
IdString gnd_net_name(ctx->chip_info->constants->gnd_net_name);

View File

@ -60,7 +60,9 @@ bool check_initial_wires(const Context *ctx, SiteInformation *site_info)
if (!cell->ports.count(pin_pair.first))
continue;
const PortInfo &port = cell->ports.at(pin_pair.first);
NPNR_ASSERT(port.net != nullptr);
if (port.net == nullptr)
continue;
for (IdString bel_pin_name : pin_pair.second) {
BelPin bel_pin;
@ -297,7 +299,11 @@ struct SiteExpansionLoop
// already unroutable!
solution.clear();
solution.store_solution(ctx, node_storage, net->driver, completed_routes);
solution.verify(ctx, *net);
bool verify = solution.verify(ctx, *net);
if (!verify)
return false;
for (size_t route : completed_routes) {
SiteWire wire = node_storage->get_node(route)->wire;
targets.erase(wire);
@ -1086,6 +1092,40 @@ static void block_lut_outputs(SiteArch *site_arch, const pool<std::pair<IdString
}
}
// Block outputs of unavailable LUTs to prevent site router from using them.
static void block_cluster_wires(SiteArch *site_arch)
{
const Context *ctx = site_arch->site_info->ctx;
auto &cells_in_site = site_arch->site_info->cells_in_site;
for (auto &cell : cells_in_site) {
if (cell->cluster == ClusterId())
continue;
if (ctx->getClusterRootCell(cell->cluster) != cell)
continue;
Cluster cluster = ctx->clusters.at(cell->cluster);
uint32_t cluster_id = cluster.index;
auto &cluster_data = cluster_info(ctx->chip_info, cluster_id);
if (cluster_data.chainable_ports.size() == 0)
continue;
IdString cluster_chain_input(cluster_data.chainable_ports[0].cell_sink);
if (cluster_chain_input == IdString())
continue;
auto &cell_bel_pins = cell->cell_bel_pins.at(cluster_chain_input);
for (auto &bel_pin : cell_bel_pins) {
SiteWire bel_pin_wire = site_arch->getBelPinWire(cell->bel, bel_pin);
site_arch->bindWire(bel_pin_wire, &site_arch->blocking_site_net);
}
}
}
// Recursively visit downhill PIPs until a SITE_PORT_SINK is reached.
// Marks all PIPs for all valid paths.
static bool visit_downhill_pips(const SiteArch *site_arch, const SiteWire &site_wire, std::vector<PipId> &valid_pips)
@ -1205,6 +1245,7 @@ bool SiteRouter::checkSiteRouting(const Context *ctx, const TileStatus &tile_sta
// site_arch.archcheck();
block_lut_outputs(&site_arch, blocked_wires);
block_cluster_wires(&site_arch);
// Do a detailed routing check to see if the site has at least 1 valid
// routing solution.
@ -1264,6 +1305,7 @@ void SiteRouter::bindSiteRouting(Context *ctx)
SiteArch site_arch(&site_info);
block_lut_outputs(&site_arch, blocked_wires);
block_cluster_wires(&site_arch);
NPNR_ASSERT(route_site(&site_arch, &ctx->site_routing_cache, &ctx->node_storage, /*explain=*/false));
check_routing(site_arch);

View File

@ -68,7 +68,7 @@ void SiteRoutingSolution::store_solution(const SiteArch *ctx, const RouteNodeSto
solution_offsets.push_back(solution_storage.size());
}
void SiteRoutingSolution::verify(const SiteArch *ctx, const SiteNetInfo &net)
bool SiteRoutingSolution::verify(const SiteArch *ctx, const SiteNetInfo &net)
{
pool<SiteWire> seen_users;
for (size_t i = 0; i < num_solutions(); ++i) {
@ -88,7 +88,7 @@ void SiteRoutingSolution::verify(const SiteArch *ctx, const SiteNetInfo &net)
NPNR_ASSERT(net.driver == cursor);
}
NPNR_ASSERT(seen_users.size() == net.users.size());
return seen_users.size() == net.users.size();
}
SiteRoutingKey SiteRoutingKey::make(const SiteArch *ctx, const SiteNetInfo &site_net)
@ -194,9 +194,7 @@ bool SiteRoutingCache::get_solution(const SiteArch *ctx, const SiteNetInfo &net,
}
}
solution->verify(ctx, net);
return true;
return solution->verify(ctx, net);
}
void SiteRoutingCache::add_solutions(const SiteArch *ctx, const SiteNetInfo &net, const SiteRoutingSolution &solution)

View File

@ -32,7 +32,7 @@ struct SiteRoutingSolution
{
void store_solution(const SiteArch *ctx, const RouteNodeStorage *node_storage, const SiteWire &driver,
std::vector<size_t> solutions);
void verify(const SiteArch *ctx, const SiteNetInfo &net);
bool verify(const SiteArch *ctx, const SiteNetInfo &net);
void clear()
{