This commit is contained in:
Eddie Hung 2018-12-07 14:37:53 -08:00
commit 16e001b679
25 changed files with 1424 additions and 201 deletions

11
.cirrus.yml Normal file
View File

@ -0,0 +1,11 @@
task:
name: build-test-ubuntu1604
container:
cpu: 4
memory: 16
dockerfile: .cirrus/Dockerfile.ubuntu16.04
build_script: mkdir build && cd build && cmake .. -DARCH=all -DTRELLIS_ROOT=/usr/local/src/prjtrellis -DBUILD_TESTS=on && make -j $(nproc)
test_generic_script: cd build && ./nextpnr-generic-test
test_ice40_script: cd build && ./nextpnr-ice40-test
test_ecp5_script: cd build && ./nextpnr-ecp5-test

View File

@ -0,0 +1,33 @@
FROM ubuntu:xenial-20181113
ENV DEBIAN_FRONTEND=noninteractive
RUN set -e -x ;\
apt-get -y update ;\
apt-get -y upgrade ;\
apt-get -y install \
build-essential cmake clang python3-dev libboost-all-dev qt5-default git
RUN set -e -x ;\
apt-get -y install \
libftdi-dev pkg-config
RUN set -e -x ;\
mkdir -p /usr/local/src ;\
cd /usr/local/src ;\
git clone --recursive https://github.com/cliffordwolf/icestorm.git ;\
cd icestorm ;\
git reset --hard 9671b760f84ca4006f0ef101a3e3b201df4eabb5 ;\
make -j $(nproc) ;\
make install
RUN set -e -x ;\
mkdir -p /usr/local/src ;\
cd /usr/local/src ;\
git clone --recursive https://github.com/SymbiFlow/prjtrellis.git ;\
cd prjtrellis ;\
git reset --hard de035a6e5e5818804a66b9408f0ad381b10957db ;\
cd libtrellis ;\
cmake -DCMAKE_INSTALL_PREFIX=/usr . ;\
make -j $(nproc) ;\
make install

View File

@ -48,8 +48,8 @@ set(CMAKE_CONFIGURATION_TYPES "Debug;Release" CACHE STRING "" FORCE)
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /D_DEBUG /W4 /wd4100 /wd4244 /wd4125 /wd4800 /wd4456 /wd4458 /wd4305 /wd4459 /wd4121 /wd4996")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /W4 /wd4100 /wd4244 /wd4125 /wd4800 /wd4456 /wd4458 /wd4305 /wd4459 /wd4121 /wd4996 /wd4127")
else()
set(CMAKE_CXX_FLAGS_DEBUG "-Wall -fPIC -ggdb")
set(CMAKE_CXX_FLAGS_RELEASE "-Wall -fPIC -O3 -g")
set(CMAKE_CXX_FLAGS_DEBUG "-Wall -fPIC -ggdb -pipe")
set(CMAKE_CXX_FLAGS_RELEASE "-Wall -fPIC -O3 -g -pipe")
endif()
set(CMAKE_DEFIN)

View File

@ -131,9 +131,9 @@ void CommandHandler::setupContext(Context *ctx)
}
if (vm.count("quiet")) {
log_streams.push_back(std::make_pair(&std::cerr, LogLevel::WARNING));
log_streams.push_back(std::make_pair(&std::cerr, LogLevel::WARNING_MSG));
} else {
log_streams.push_back(std::make_pair(&std::cerr, LogLevel::LOG));
log_streams.push_back(std::make_pair(&std::cerr, LogLevel::LOG_MSG));
}
if (vm.count("log")) {
@ -141,7 +141,7 @@ void CommandHandler::setupContext(Context *ctx)
logfile = std::ofstream(logfilename);
if (!logfile)
log_error("Failed to open log file '%s' for writing.\n", logfilename.c_str());
log_streams.push_back(std::make_pair(&logfile, LogLevel::LOG));
log_streams.push_back(std::make_pair(&logfile, LogLevel::LOG_MSG));
}
if (vm.count("force")) {
@ -285,8 +285,8 @@ void CommandHandler::conflicting_options(const boost::program_options::variables
void CommandHandler::printFooter()
{
int warning_count = get_or_default(message_count_by_level, LogLevel::WARNING, 0),
error_count = get_or_default(message_count_by_level, LogLevel::ERROR, 0);
int warning_count = get_or_default(message_count_by_level, LogLevel::WARNING_MSG, 0),
error_count = get_or_default(message_count_by_level, LogLevel::ERROR_MSG, 0);
if (warning_count > 0 || error_count > 0)
log_always("%d warning%s, %d error%s\n", warning_count, warning_count == 1 ? "" : "s", error_count,
error_count == 1 ? "" : "s");

View File

@ -84,7 +84,7 @@ std::string vstringf(const char *fmt, va_list ap)
return string;
}
void logv(const char *format, va_list ap, LogLevel level = LogLevel::LOG)
void logv(const char *format, va_list ap, LogLevel level = LogLevel::LOG_MSG)
{
//
// Trim newlines from the beginning
@ -132,7 +132,7 @@ void log_always(const char *format, ...)
{
va_list ap;
va_start(ap, format);
logv(format, ap, LogLevel::ALWAYS);
logv(format, ap, LogLevel::ALWAYS_MSG);
va_end(ap);
}
@ -140,7 +140,7 @@ void log(const char *format, ...)
{
va_list ap;
va_start(ap, format);
logv(format, ap, LogLevel::LOG);
logv(format, ap, LogLevel::LOG_MSG);
va_end(ap);
}
@ -148,7 +148,7 @@ void log_info(const char *format, ...)
{
va_list ap;
va_start(ap, format);
logv_prefixed("Info: ", format, ap, LogLevel::INFO);
logv_prefixed("Info: ", format, ap, LogLevel::INFO_MSG);
va_end(ap);
}
@ -156,7 +156,7 @@ void log_warning(const char *format, ...)
{
va_list ap;
va_start(ap, format);
logv_prefixed("Warning: ", format, ap, LogLevel::WARNING);
logv_prefixed("Warning: ", format, ap, LogLevel::WARNING_MSG);
va_end(ap);
}
@ -164,7 +164,7 @@ void log_error(const char *format, ...)
{
va_list ap;
va_start(ap, format);
logv_prefixed("ERROR: ", format, ap, LogLevel::ERROR);
logv_prefixed("ERROR: ", format, ap, LogLevel::ERROR_MSG);
if (log_error_atexit)
log_error_atexit();
@ -184,7 +184,7 @@ void log_nonfatal_error(const char *format, ...)
{
va_list ap;
va_start(ap, format);
logv_prefixed("ERROR: ", format, ap, LogLevel::ERROR);
logv_prefixed("ERROR: ", format, ap, LogLevel::ERROR_MSG);
va_end(ap);
had_nonfatal_error = true;
}

View File

@ -44,11 +44,11 @@ struct log_execution_error_exception
enum class LogLevel
{
LOG,
INFO,
WARNING,
ERROR,
ALWAYS
LOG_MSG,
INFO_MSG,
WARNING_MSG,
ERROR_MSG,
ALWAYS_MSG
};
extern std::vector<std::pair<std::ostream *, LogLevel>> log_streams;

View File

@ -9,7 +9,7 @@ bool check_all_nets_driven(Context *ctx)
{
const bool debug = false;
log_info("Rule checker, Verifying pre-placed design\n");
log_info("Rule checker, verifying imported design\n");
for (auto &cell_entry : ctx->cells) {
CellInfo *cell = cell_entry.second.get();

View File

@ -86,6 +86,7 @@ struct CriticalPath
};
typedef std::unordered_map<ClockPair, CriticalPath> CriticalPathMap;
typedef std::unordered_map<IdString, NetCriticalityInfo> NetCriticalityMap;
struct Timing
{
@ -95,6 +96,7 @@ struct Timing
delay_t min_slack;
CriticalPathMap *crit_path;
DelayFrequency *slack_histogram;
NetCriticalityMap *net_crit;
IdString async_clock;
struct TimingData
@ -105,13 +107,15 @@ struct Timing
unsigned max_path_length = 0;
delay_t min_remaining_budget;
bool false_startpoint = false;
std::vector<delay_t> min_required;
std::unordered_map<ClockEvent, delay_t> arrival_time;
};
Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr,
DelayFrequency *slack_histogram = nullptr)
DelayFrequency *slack_histogram = nullptr, NetCriticalityMap *net_crit = nullptr)
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq),
crit_path(crit_path), slack_histogram(slack_histogram), async_clock(ctx->id("$async$"))
crit_path(crit_path), slack_histogram(slack_histogram), net_crit(net_crit),
async_clock(ctx->id("$async$"))
{
}
@ -454,6 +458,180 @@ struct Timing
std::reverse(cp_ports.begin(), cp_ports.end());
}
}
if (net_crit) {
NPNR_ASSERT(crit_path);
// Go through in reverse topographical order to set required times
for (auto net : boost::adaptors::reverse(topographical_order)) {
if (!net_data.count(net))
continue;
auto &nd_map = net_data.at(net);
for (auto &startdomain : nd_map) {
auto &nd = startdomain.second;
if (nd.false_startpoint)
continue;
if (startdomain.first.clock == async_clock)
continue;
if (nd.min_required.empty())
nd.min_required.resize(net->users.size(), std::numeric_limits<delay_t>::max());
delay_t net_min_required = std::numeric_limits<delay_t>::max();
for (size_t i = 0; i < net->users.size(); i++) {
auto &usr = net->users.at(i);
auto net_delay = ctx->getNetinfoRouteDelay(net, usr);
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
delay_t period;
// Set default period
if (edge == startdomain.first.edge) {
period = clk_period;
} else {
period = clk_period / 2;
}
if (clksig != async_clock) {
if (ctx->nets.at(clksig)->clkconstr) {
if (edge == startdomain.first.edge) {
// same edge
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
} else if (edge == RISING_EDGE) {
// falling -> rising
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
} else if (edge == FALLING_EDGE) {
// rising -> falling
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
}
}
}
nd.min_required.at(i) = std::min(period - setup, nd.min_required.at(i));
};
if (portClass == TMG_REGISTER_INPUT) {
for (int j = 0; j < port_clocks; j++) {
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, j);
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
IdString clksig = clknet ? clknet->name : async_clock;
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE,
clkInfo.setup.maxDelay());
}
} else {
process_endpoint(async_clock, RISING_EDGE, 0);
}
}
net_min_required = std::min(net_min_required, nd.min_required.at(i) - net_delay);
}
PortRef &drv = net->driver;
if (drv.cell == nullptr)
continue;
for (const auto &port : drv.cell->ports) {
if (port.second.type != PORT_IN || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(drv.cell, port.first, drv.port, comb_delay);
if (!is_path)
continue;
int cc;
auto pclass = ctx->getPortTimingClass(drv.cell, port.first, cc);
if (pclass != TMG_COMB_INPUT)
continue;
NetInfo *sink_net = port.second.net;
if (net_data.count(sink_net) && net_data.at(sink_net).count(startdomain.first)) {
auto &sink_nd = net_data.at(sink_net).at(startdomain.first);
if (sink_nd.min_required.empty())
sink_nd.min_required.resize(sink_net->users.size(),
std::numeric_limits<delay_t>::max());
for (size_t i = 0; i < sink_net->users.size(); i++) {
auto &user = sink_net->users.at(i);
if (user.cell == drv.cell && user.port == port.first) {
sink_nd.min_required.at(i) = net_min_required - comb_delay.maxDelay();
break;
}
}
}
}
}
}
std::unordered_map<ClockEvent, delay_t> worst_slack;
// Assign slack values
for (auto &net_entry : net_data) {
const NetInfo *net = net_entry.first;
for (auto &startdomain : net_entry.second) {
auto &nd = startdomain.second;
if (startdomain.first.clock == async_clock)
continue;
if (nd.min_required.empty())
continue;
auto &nc = (*net_crit)[net->name];
if (nc.slack.empty())
nc.slack.resize(net->users.size(), std::numeric_limits<delay_t>::max());
#if 0
if (ctx->debug)
log_info("Net %s cd %s\n", net->name.c_str(ctx), startdomain.first.clock.c_str(ctx));
#endif
for (size_t i = 0; i < net->users.size(); i++) {
delay_t slack = nd.min_required.at(i) -
(nd.max_arrival + ctx->getNetinfoRouteDelay(net, net->users.at(i)));
#if 0
if (ctx->debug)
log_info(" user %s.%s required %.02fns arrival %.02f route %.02f slack %.02f\n",
net->users.at(i).cell->name.c_str(ctx), net->users.at(i).port.c_str(ctx),
ctx->getDelayNS(nd.min_required.at(i)), ctx->getDelayNS(nd.max_arrival),
ctx->getDelayNS(ctx->getNetinfoRouteDelay(net, net->users.at(i))), ctx->getDelayNS(slack));
#endif
if (worst_slack.count(startdomain.first))
worst_slack.at(startdomain.first) = std::min(worst_slack.at(startdomain.first), slack);
else
worst_slack[startdomain.first] = slack;
nc.slack.at(i) = slack;
}
if (ctx->debug)
log_break();
}
}
// Assign criticality values
for (auto &net_entry : net_data) {
const NetInfo *net = net_entry.first;
for (auto &startdomain : net_entry.second) {
if (startdomain.first.clock == async_clock)
continue;
auto &nd = startdomain.second;
if (nd.min_required.empty())
continue;
auto &nc = (*net_crit)[net->name];
if (nc.slack.empty())
continue;
if (nc.criticality.empty())
nc.criticality.resize(net->users.size(), 0);
// Only consider intra-clock paths for criticality
if (!crit_path->count(ClockPair{startdomain.first, startdomain.first}))
continue;
delay_t dmax = crit_path->at(ClockPair{startdomain.first, startdomain.first}).path_delay;
for (size_t i = 0; i < net->users.size(); i++) {
float criticality = 1.0f - (float(nc.slack.at(i) - worst_slack.at(startdomain.first)) / dmax);
nc.criticality.at(i) = criticality;
}
nc.max_path_length = nd.max_path_length;
nc.cd_worst_slack = worst_slack.at(startdomain.first);
}
}
#if 0
if (ctx->debug) {
for (auto &nc : *net_crit) {
NetInfo *net = ctx->nets.at(nc.first).get();
log_info("Net %s maxlen %d worst_slack %.02fns: \n", nc.first.c_str(ctx), nc.second.max_path_length,
ctx->getDelayNS(nc.second.cd_worst_slack));
if (!nc.second.criticality.empty() && !nc.second.slack.empty()) {
for (size_t i = 0; i < net->users.size(); i++) {
log_info(" user %s.%s slack %.02fns crit %.03f\n", net->users.at(i).cell->name.c_str(ctx),
net->users.at(i).port.c_str(ctx), ctx->getDelayNS(nc.second.slack.at(i)),
nc.second.criticality.at(i));
}
}
log_break();
}
}
#endif
}
return min_slack;
}
@ -766,4 +944,12 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
}
}
void get_criticalities(Context *ctx, NetCriticalityMap *net_crit)
{
CriticalPathMap crit_paths;
net_crit->clear();
Timing timing(ctx, true, true, &crit_paths, nullptr, net_crit);
timing.walk_paths();
}
NEXTPNR_NAMESPACE_END

View File

@ -32,6 +32,19 @@ void assign_budget(Context *ctx, bool quiet = false);
void timing_analysis(Context *ctx, bool slack_histogram = true, bool print_fmax = true, bool print_path = false,
bool warn_on_failure = false);
// Data for the timing optimisation algorithm
struct NetCriticalityInfo
{
// One each per user
std::vector<delay_t> slack;
std::vector<float> criticality;
unsigned max_path_length = 0;
delay_t cd_worst_slack = std::numeric_limits<delay_t>::max();
};
typedef std::unordered_map<IdString, NetCriticalityInfo> NetCriticalityMap;
void get_criticalities(Context *ctx, NetCriticalityMap *net_crit);
NEXTPNR_NAMESPACE_END
#endif

623
common/timing_opt.cc Normal file
View File

@ -0,0 +1,623 @@
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*
* Timing-optimised detailed placement algorithm using BFS of the neighbour graph created from cells
* on a critical path
*
* Based on "An Effective Timing-Driven Detailed Placement Algorithm for FPGAs"
* https://www.cerc.utexas.edu/utda/publications/C205.pdf
*
* Modifications made to deal with the smaller Bels that nextpnr uses instead of swapping whole tiles,
* and deal with the fact that not every cell on the crit path may be swappable.
*/
#include "timing_opt.h"
#include <boost/range/adaptor/reversed.hpp>
#include <queue>
#include "nextpnr.h"
#include "timing.h"
#include "util.h"
namespace std {
template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString>>
{
std::size_t
operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString> &idp) const
noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first));
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.second));
return seed;
}
};
template <> struct hash<std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId>>
{
std::size_t operator()(const std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<int>()(idp.first));
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second));
return seed;
}
};
template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId>>
{
std::size_t
operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first));
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second));
return seed;
}
};
} // namespace std
NEXTPNR_NAMESPACE_BEGIN
class TimingOptimiser
{
public:
TimingOptimiser(Context *ctx, TimingOptCfg cfg) : ctx(ctx), cfg(cfg){};
bool optimise()
{
log_info("Running timing-driven placement optimisation...\n");
if (ctx->verbose)
timing_analysis(ctx, false, true, false, false);
for (int i = 0; i < 30; i++) {
log_info(" Iteration %d...\n", i);
get_criticalities(ctx, &net_crit);
setup_delay_limits();
auto crit_paths = find_crit_paths(0.98, 50000);
for (auto &path : crit_paths)
optimise_path(path);
if (ctx->verbose)
timing_analysis(ctx, false, true, false, false);
}
return true;
}
private:
void setup_delay_limits()
{
max_net_delay.clear();
for (auto net : sorted(ctx->nets)) {
NetInfo *ni = net.second;
for (auto usr : ni->users) {
max_net_delay[std::make_pair(usr.cell->name, usr.port)] = std::numeric_limits<delay_t>::max();
}
if (!net_crit.count(net.first))
continue;
auto &nc = net_crit.at(net.first);
if (nc.slack.empty())
continue;
for (size_t i = 0; i < ni->users.size(); i++) {
auto &usr = ni->users.at(i);
delay_t net_delay = ctx->getNetinfoRouteDelay(ni, usr);
if (nc.max_path_length != 0) {
max_net_delay[std::make_pair(usr.cell->name, usr.port)] =
net_delay + ((nc.slack.at(i) - nc.cd_worst_slack) / 10);
}
}
}
}
bool check_cell_delay_limits(CellInfo *cell)
{
for (const auto &port : cell->ports) {
int nc;
if (ctx->getPortTimingClass(cell, port.first, nc) == TMG_IGNORE)
continue;
NetInfo *net = port.second.net;
if (net == nullptr)
continue;
if (port.second.type == PORT_IN) {
if (net->driver.cell == nullptr || net->driver.cell->bel == BelId())
continue;
for (auto user : net->users) {
if (user.cell == cell && user.port == port.first) {
if (ctx->predictDelay(net, user) >
1.1 * max_net_delay.at(std::make_pair(cell->name, port.first)))
return false;
}
}
} else if (port.second.type == PORT_OUT) {
for (auto user : net->users) {
// This could get expensive for high-fanout nets??
BelId dstBel = user.cell->bel;
if (dstBel == BelId())
continue;
if (ctx->predictDelay(net, user) >
1.1 * max_net_delay.at(std::make_pair(user.cell->name, user.port))) {
return false;
}
}
}
}
return true;
}
BelId cell_swap_bel(CellInfo *cell, BelId newBel)
{
BelId oldBel = cell->bel;
if (oldBel == newBel)
return oldBel;
CellInfo *other_cell = ctx->getBoundBelCell(newBel);
NPNR_ASSERT(other_cell == nullptr || other_cell->belStrength <= STRENGTH_WEAK);
ctx->unbindBel(oldBel);
if (other_cell != nullptr) {
ctx->unbindBel(newBel);
ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK);
}
ctx->bindBel(newBel, cell, STRENGTH_WEAK);
return oldBel;
}
// Check that a series of moves are both legal and remain within maximum delay bounds
// Moves are specified as a vector of pairs <cell, oldBel>
bool acceptable_move(std::vector<std::pair<CellInfo *, BelId>> &move, bool check_delays = true)
{
for (auto &entry : move) {
if (!ctx->isBelLocationValid(entry.first->bel))
return false;
if (!ctx->isBelLocationValid(entry.second))
return false;
if (!check_delays)
continue;
if (!check_cell_delay_limits(entry.first))
return false;
// We might have swapped another cell onto the original bel. Check this for max delay violations
// too
CellInfo *swapped = ctx->getBoundBelCell(entry.second);
if (swapped != nullptr && !check_cell_delay_limits(swapped))
return false;
}
return true;
}
int find_neighbours(CellInfo *cell, IdString prev_cell, int d, bool allow_swap)
{
BelId curr = cell->bel;
Loc curr_loc = ctx->getBelLocation(curr);
int found_count = 0;
cell_neighbour_bels[cell->name] = std::unordered_set<BelId>{};
for (int dy = -d; dy <= d; dy++) {
for (int dx = -d; dx <= d; dx++) {
// Go through all the Bels at this location
// First, find all bels of the correct type that are either unbound or bound normally
// Strongly bound bels are ignored
// FIXME: This means that we cannot touch carry chains or similar relatively constrained macros
std::vector<BelId> free_bels_at_loc;
std::vector<BelId> bound_bels_at_loc;
for (auto bel : ctx->getBelsByTile(curr_loc.x + dx, curr_loc.y + dy)) {
if (ctx->getBelType(bel) != cell->type)
continue;
CellInfo *bound = ctx->getBoundBelCell(bel);
if (bound == nullptr) {
free_bels_at_loc.push_back(bel);
} else if (bound->belStrength <= STRENGTH_WEAK && bound->constr_parent == nullptr &&
bound->constr_children.empty()) {
bound_bels_at_loc.push_back(bel);
}
}
BelId candidate;
while (!free_bels_at_loc.empty() || !bound_bels_at_loc.empty()) {
BelId try_bel;
if (!free_bels_at_loc.empty()) {
int try_idx = ctx->rng(int(free_bels_at_loc.size()));
try_bel = free_bels_at_loc.at(try_idx);
free_bels_at_loc.erase(free_bels_at_loc.begin() + try_idx);
} else {
int try_idx = ctx->rng(int(bound_bels_at_loc.size()));
try_bel = bound_bels_at_loc.at(try_idx);
bound_bels_at_loc.erase(bound_bels_at_loc.begin() + try_idx);
}
if (bel_candidate_cells.count(try_bel) && !allow_swap) {
// Overlap is only allowed if it is with the previous cell (this is handled by removing those
// edges in the graph), or if allow_swap is true to deal with cases where overlap means few
// neighbours are identified
if (bel_candidate_cells.at(try_bel).size() > 1 ||
(bel_candidate_cells.at(try_bel).size() == 1 &&
*(bel_candidate_cells.at(try_bel).begin()) != prev_cell))
continue;
}
// TODO: what else to check here?
candidate = try_bel;
break;
}
if (candidate != BelId()) {
cell_neighbour_bels[cell->name].insert(candidate);
bel_candidate_cells[candidate].insert(cell->name);
// Work out if we need to delete any overlap
std::vector<IdString> overlap;
for (auto other : bel_candidate_cells[candidate])
if (other != cell->name && other != prev_cell)
overlap.push_back(other);
if (overlap.size() > 0)
NPNR_ASSERT(allow_swap);
for (auto ov : overlap) {
bel_candidate_cells[candidate].erase(ov);
cell_neighbour_bels[ov].erase(candidate);
}
}
}
}
return found_count;
}
std::vector<std::vector<PortRef *>> find_crit_paths(float crit_thresh, size_t max_count)
{
std::vector<std::vector<PortRef *>> crit_paths;
std::vector<std::pair<NetInfo *, int>> crit_nets;
std::vector<IdString> netnames;
std::transform(ctx->nets.begin(), ctx->nets.end(), std::back_inserter(netnames),
[](const std::pair<const IdString, std::unique_ptr<NetInfo>> &kv) { return kv.first; });
ctx->sorted_shuffle(netnames);
for (auto net : netnames) {
if (crit_nets.size() >= max_count)
break;
if (!net_crit.count(net))
continue;
auto crit_user = std::max_element(net_crit[net].criticality.begin(), net_crit[net].criticality.end());
if (*crit_user > crit_thresh)
crit_nets.push_back(
std::make_pair(ctx->nets[net].get(), crit_user - net_crit[net].criticality.begin()));
}
auto port_user_index = [](CellInfo *cell, PortInfo &port) -> size_t {
NPNR_ASSERT(port.net != nullptr);
for (size_t i = 0; i < port.net->users.size(); i++) {
auto &usr = port.net->users.at(i);
if (usr.cell == cell && usr.port == port.name)
return i;
}
NPNR_ASSERT_FALSE("port user not found on net");
};
std::unordered_set<PortRef *> used_ports;
for (auto crit_net : crit_nets) {
if (used_ports.count(&(crit_net.first->users.at(crit_net.second))))
continue;
std::deque<PortRef *> crit_path;
// FIXME: This will fail badly on combinational loops
// Iterate backwards following greatest criticality
NetInfo *back_cursor = crit_net.first;
while (back_cursor != nullptr) {
float max_crit = 0;
std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
CellInfo *cell = back_cursor->driver.cell;
if (cell == nullptr)
break;
for (auto port : cell->ports) {
if (port.second.type != PORT_IN)
continue;
NetInfo *pn = port.second.net;
if (pn == nullptr)
continue;
if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty())
continue;
int ccount;
DelayInfo combDelay;
TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
if (tpclass != TMG_COMB_INPUT)
continue;
bool is_path = ctx->getCellDelay(cell, port.first, back_cursor->driver.port, combDelay);
if (!is_path)
continue;
size_t user_idx = port_user_index(cell, port.second);
float usr_crit = net_crit.at(pn->name).criticality.at(user_idx);
if (used_ports.count(&(pn->users.at(user_idx))))
continue;
if (usr_crit >= max_crit) {
max_crit = usr_crit;
crit_sink = std::make_pair(pn, user_idx);
}
}
if (crit_sink.first != nullptr) {
crit_path.push_front(&(crit_sink.first->users.at(crit_sink.second)));
used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
}
back_cursor = crit_sink.first;
}
// Iterate forwards following greatest criticiality
PortRef *fwd_cursor = &(crit_net.first->users.at(crit_net.second));
while (fwd_cursor != nullptr) {
crit_path.push_back(fwd_cursor);
float max_crit = 0;
std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
CellInfo *cell = fwd_cursor->cell;
for (auto port : cell->ports) {
if (port.second.type != PORT_OUT)
continue;
NetInfo *pn = port.second.net;
if (pn == nullptr)
continue;
if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty())
continue;
int ccount;
DelayInfo combDelay;
TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
if (tpclass != TMG_COMB_OUTPUT && tpclass != TMG_REGISTER_OUTPUT)
continue;
bool is_path = ctx->getCellDelay(cell, fwd_cursor->port, port.first, combDelay);
if (!is_path)
continue;
auto &crits = net_crit.at(pn->name).criticality;
for (size_t i = 0; i < crits.size(); i++) {
if (used_ports.count(&(pn->users.at(i))))
continue;
if (crits.at(i) >= max_crit) {
max_crit = crits.at(i);
crit_sink = std::make_pair(pn, i);
}
}
}
if (crit_sink.first != nullptr) {
fwd_cursor = &(crit_sink.first->users.at(crit_sink.second));
used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
} else {
fwd_cursor = nullptr;
}
}
std::vector<PortRef *> crit_path_vec;
std::copy(crit_path.begin(), crit_path.end(), std::back_inserter(crit_path_vec));
crit_paths.push_back(crit_path_vec);
}
return crit_paths;
}
void optimise_path(std::vector<PortRef *> &path)
{
path_cells.clear();
cell_neighbour_bels.clear();
bel_candidate_cells.clear();
if (ctx->debug)
log_info("Optimising the following path: \n");
auto front_port = path.front();
NetInfo *front_net = front_port->cell->ports.at(front_port->port).net;
if (front_net != nullptr && front_net->driver.cell != nullptr) {
auto front_cell = front_net->driver.cell;
if (front_cell->belStrength <= STRENGTH_WEAK && cfg.cellTypes.count(front_cell->type) &&
front_cell->constr_parent == nullptr && front_cell->constr_children.empty()) {
path_cells.push_back(front_cell->name);
}
}
for (auto port : path) {
if (ctx->debug) {
float crit = 0;
NetInfo *pn = port->cell->ports.at(port->port).net;
if (net_crit.count(pn->name) && !net_crit.at(pn->name).criticality.empty())
for (size_t i = 0; i < pn->users.size(); i++)
if (pn->users.at(i).cell == port->cell && pn->users.at(i).port == port->port)
crit = net_crit.at(pn->name).criticality.at(i);
log_info(" %s.%s at %s crit %0.02f\n", port->cell->name.c_str(ctx), port->port.c_str(ctx),
ctx->getBelName(port->cell->bel).c_str(ctx), crit);
}
if (std::find(path_cells.begin(), path_cells.end(), port->cell->name) != path_cells.end())
continue;
if (port->cell->belStrength > STRENGTH_WEAK || !cfg.cellTypes.count(port->cell->type) ||
port->cell->constr_parent != nullptr || !port->cell->constr_children.empty())
continue;
if (ctx->debug)
log_info(" can move\n");
path_cells.push_back(port->cell->name);
}
if (path_cells.size() < 2) {
if (ctx->debug) {
log_info("Too few moveable cells; skipping path\n");
log_break();
}
return;
}
// Calculate original delay before touching anything
delay_t original_delay = 0;
for (size_t i = 0; i < path.size(); i++) {
NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net;
for (size_t j = 0; j < pn->users.size(); j++) {
auto &usr = pn->users.at(j);
if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) {
original_delay += ctx->predictDelay(pn, usr);
break;
}
}
}
IdString last_cell;
const int d = 2; // FIXME: how to best determine d
for (auto cell : path_cells) {
// FIXME: when should we allow swapping due to a lack of candidates
find_neighbours(ctx->cells[cell].get(), last_cell, d, false);
last_cell = cell;
}
if (ctx->debug) {
for (auto cell : path_cells) {
log_info("Candidate neighbours for %s (%s):\n", cell.c_str(ctx),
ctx->getBelName(ctx->cells[cell]->bel).c_str(ctx));
for (auto neigh : cell_neighbour_bels.at(cell)) {
log_info(" %s\n", ctx->getBelName(neigh).c_str(ctx));
}
}
}
// Actual BFS path optimisation algorithm
std::unordered_map<IdString, std::unordered_map<BelId, delay_t>> cumul_costs;
std::unordered_map<std::pair<IdString, BelId>, std::pair<IdString, BelId>> backtrace;
std::queue<std::pair<int, BelId>> visit;
std::unordered_set<std::pair<int, BelId>> to_visit;
for (auto startbel : cell_neighbour_bels[path_cells.front()]) {
// Swap for legality check
CellInfo *cell = ctx->cells.at(path_cells.front()).get();
BelId origBel = cell_swap_bel(cell, startbel);
std::vector<std::pair<CellInfo *, BelId>> move{std::make_pair(cell, origBel)};
if (acceptable_move(move)) {
auto entry = std::make_pair(0, startbel);
visit.push(entry);
cumul_costs[path_cells.front()][startbel] = 0;
}
// Swap back
cell_swap_bel(cell, origBel);
}
while (!visit.empty()) {
auto entry = visit.front();
visit.pop();
auto cellname = path_cells.at(entry.first);
if (entry.first == int(path_cells.size()) - 1)
continue;
std::vector<std::pair<CellInfo *, BelId>> move;
// Apply the entire backtrace for accurate legality and delay checks
// This is probably pretty expensive (but also probably pales in comparison to the number of swaps
// SA will make...)
std::vector<std::pair<IdString, BelId>> route_to_entry;
auto cursor = std::make_pair(cellname, entry.second);
route_to_entry.push_back(cursor);
while (backtrace.count(cursor)) {
cursor = backtrace.at(cursor);
route_to_entry.push_back(cursor);
}
for (auto rt_entry : boost::adaptors::reverse(route_to_entry)) {
CellInfo *cell = ctx->cells.at(rt_entry.first).get();
BelId origBel = cell_swap_bel(cell, rt_entry.second);
move.push_back(std::make_pair(cell, origBel));
}
// Have a look at where we can travel from here
for (auto neighbour : cell_neighbour_bels.at(path_cells.at(entry.first + 1))) {
// Edges between overlapping bels are deleted
if (neighbour == entry.second)
continue;
// Experimentally swap the next path cell onto the neighbour bel we are trying
IdString ncname = path_cells.at(entry.first + 1);
CellInfo *next_cell = ctx->cells.at(ncname).get();
BelId origBel = cell_swap_bel(next_cell, neighbour);
move.push_back(std::make_pair(next_cell, origBel));
delay_t total_delay = 0;
for (size_t i = 0; i < path.size(); i++) {
NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net;
for (size_t j = 0; j < pn->users.size(); j++) {
auto &usr = pn->users.at(j);
if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) {
total_delay += ctx->predictDelay(pn, usr);
break;
}
}
if (path.at(i)->cell == next_cell)
break;
}
// First, check if the move is actually worthwhile from a delay point of view before the expensive
// legality check
if (!cumul_costs.count(ncname) || !cumul_costs.at(ncname).count(neighbour) ||
cumul_costs.at(ncname).at(neighbour) > total_delay) {
// Now check that the swaps we have made to get here are legal and meet max delay requirements
if (acceptable_move(move)) {
cumul_costs[ncname][neighbour] = total_delay;
backtrace[std::make_pair(ncname, neighbour)] = std::make_pair(cellname, entry.second);
if (!to_visit.count(std::make_pair(entry.first + 1, neighbour)))
visit.push(std::make_pair(entry.first + 1, neighbour));
}
}
// Revert the experimental swap
cell_swap_bel(move.back().first, move.back().second);
move.pop_back();
}
// Revert move by swapping cells back to their original order
// Execute swaps in reverse order to how we made them originally
for (auto move_entry : boost::adaptors::reverse(move)) {
cell_swap_bel(move_entry.first, move_entry.second);
}
}
// Did we find a solution??
if (cumul_costs.count(path_cells.back())) {
// Find the end position with the lowest total delay
auto &end_options = cumul_costs.at(path_cells.back());
auto lowest = std::min_element(end_options.begin(), end_options.end(),
[](const std::pair<BelId, delay_t> &a, const std::pair<BelId, delay_t> &b) {
return a.second < b.second;
});
NPNR_ASSERT(lowest != end_options.end());
std::vector<std::pair<IdString, BelId>> route_to_solution;
auto cursor = std::make_pair(path_cells.back(), lowest->first);
route_to_solution.push_back(cursor);
while (backtrace.count(cursor)) {
cursor = backtrace.at(cursor);
route_to_solution.push_back(cursor);
}
if (ctx->debug)
log_info("Found a solution with cost %.02f ns (existing path %.02f ns)\n",
ctx->getDelayNS(lowest->second), ctx->getDelayNS(original_delay));
for (auto rt_entry : boost::adaptors::reverse(route_to_solution)) {
CellInfo *cell = ctx->cells.at(rt_entry.first).get();
cell_swap_bel(cell, rt_entry.second);
if (ctx->debug)
log_info(" %s at %s\n", rt_entry.first.c_str(ctx), ctx->getBelName(rt_entry.second).c_str(ctx));
}
} else {
if (ctx->debug)
log_info("Solution was not found\n");
}
if (ctx->debug)
log_break();
}
// Current candidate Bels for cells (linked in both direction>
std::vector<IdString> path_cells;
std::unordered_map<IdString, std::unordered_set<BelId>> cell_neighbour_bels;
std::unordered_map<BelId, std::unordered_set<IdString>> bel_candidate_cells;
// Map cell ports to net delay limit
std::unordered_map<std::pair<IdString, IdString>, delay_t> max_net_delay;
// Criticality data from timing analysis
NetCriticalityMap net_crit;
Context *ctx;
TimingOptCfg cfg;
};
bool timing_opt(Context *ctx, TimingOptCfg cfg) { return TimingOptimiser(ctx, cfg).optimise(); }
NEXTPNR_NAMESPACE_END

37
common/timing_opt.h Normal file
View File

@ -0,0 +1,37 @@
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "nextpnr.h"
#include "settings.h"
NEXTPNR_NAMESPACE_BEGIN
struct TimingOptCfg : public Settings
{
TimingOptCfg(Context *ctx) : Settings(ctx) {}
// The timing optimiser will *only* optimise cells of these types
// Normally these would only be logic cells (or tiles if applicable), the algorithm makes little sense
// for other cell types
std::unordered_set<IdString> cellTypes;
};
extern bool timing_opt(Context *ctx, TimingOptCfg cfg);
NEXTPNR_NAMESPACE_END

View File

@ -670,7 +670,8 @@ TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, in
}
return TMG_IGNORE;
} else {
NPNR_ASSERT_FALSE_STR("no timing data for cell type '" + cell->type.str(this) + "'");
log_error("cell type '%s' is unsupported (instantiated as '%s')\n", cell->type.c_str(this),
cell->name.c_str(this));
}
}

View File

@ -298,6 +298,8 @@ class Ecp5GlobalRouter
} else {
// Check for dedicated routing
if (has_short_route(ctx->getBelPinWire(drv_bel, drv.port), ctx->getBelPinWire(dcc->bel, id_CLKI))) {
// log_info("dedicated route %s -> %s\n", ctx->getWireName(ctx->getBelPinWire(drv_bel,
// drv.port)).c_str(ctx), ctx->getBelName(dcc->bel).c_str(ctx));
return 0;
}
// Driver is locked
@ -308,7 +310,7 @@ class Ecp5GlobalRouter
}
// Return true if a short (<5) route exists between two wires
bool has_short_route(WireId src, WireId dst, int thresh = 5)
bool has_short_route(WireId src, WireId dst, int thresh = 7)
{
std::queue<WireId> visit;
std::unordered_map<WireId, PipId> backtrace;
@ -316,7 +318,7 @@ class Ecp5GlobalRouter
WireId cursor;
while (true) {
if (visit.empty() || visit.size() > 1000) {
if (visit.empty() || visit.size() > 10000) {
// log_info ("dist %s -> %s = inf\n", ctx->getWireName(src).c_str(ctx),
// ctx->getWireName(dst).c_str(ctx));
return false;

View File

@ -1323,6 +1323,60 @@ class Ecp5Packer
}
}
// Preplace PLL
void preplace_plls()
{
std::set<BelId> available_plls;
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) == id_EHXPLLL && ctx->checkBelAvail(bel))
available_plls.insert(bel);
}
for (auto cell : sorted(ctx->cells)) {
CellInfo *ci = cell.second;
if (ci->type == id_EHXPLLL && ci->attrs.count(ctx->id("BEL")))
available_plls.erase(ctx->getBelByName(ctx->id(ci->attrs.at(ctx->id("BEL")))));
}
// Place PLL connected to fixed drivers such as IO close to their source
for (auto cell : sorted(ctx->cells)) {
CellInfo *ci = cell.second;
if (ci->type == id_EHXPLLL && !ci->attrs.count(ctx->id("BEL"))) {
const NetInfo *drivernet = net_or_nullptr(ci, id_CLKI);
if (drivernet == nullptr || drivernet->driver.cell == nullptr)
continue;
const CellInfo *drivercell = drivernet->driver.cell;
if (!drivercell->attrs.count(ctx->id("BEL")))
continue;
BelId drvbel = ctx->getBelByName(ctx->id(drivercell->attrs.at(ctx->id("BEL"))));
Loc drvloc = ctx->getBelLocation(drvbel);
BelId closest_pll;
int closest_distance = std::numeric_limits<int>::max();
for (auto bel : available_plls) {
Loc pllloc = ctx->getBelLocation(bel);
int distance = std::abs(drvloc.x - pllloc.x) + std::abs(drvloc.y - pllloc.y);
if (distance < closest_distance) {
closest_pll = bel;
closest_distance = distance;
}
}
if (closest_pll == BelId())
log_error("failed to place PLL '%s'\n", ci->name.c_str(ctx));
available_plls.erase(closest_pll);
ci->attrs[ctx->id("BEL")] = ctx->getBelName(closest_pll).str(ctx);
}
}
// Place PLLs driven by logic, etc, randomly
for (auto cell : sorted(ctx->cells)) {
CellInfo *ci = cell.second;
if (ci->type == id_EHXPLLL && !ci->attrs.count(ctx->id("BEL"))) {
if (available_plls.empty())
log_error("failed to place PLL '%s'\n", ci->name.c_str(ctx));
BelId next_pll = *(available_plls.begin());
available_plls.erase(next_pll);
ci->attrs[ctx->id("BEL")] = ctx->getBelName(next_pll).str(ctx);
}
}
}
public:
void pack()
{
@ -1330,6 +1384,7 @@ class Ecp5Packer
pack_ebr();
pack_dsps();
pack_dcus();
preplace_plls();
pack_constants();
pack_dram();
pack_carries();

View File

@ -41,6 +41,7 @@ Application::Application(int &argc, char **argv) : QApplication(argc, argv)
{
QSurfaceFormat fmt;
fmt.setSamples(10);
fmt.setProfile(QSurfaceFormat::CoreProfile);
QSurfaceFormat::setDefaultFormat(fmt);
#ifdef _WIN32
SetConsoleCtrlHandler((PHANDLER_ROUTINE)WinHandler, TRUE);

View File

@ -126,6 +126,7 @@ TaskManager::TaskManager() : toTerminate(false), toPause(false)
TaskManager::~TaskManager()
{
log_write_function = nullptr;
if (workerThread.isRunning())
terminate_thread();
workerThread.quit();

View File

@ -26,6 +26,7 @@
#include "nextpnr.h"
#include "placer1.h"
#include "router1.h"
#include "timing_opt.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
@ -626,7 +627,18 @@ bool Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay
// -----------------------------------------------------------------------
bool Arch::place() { return placer1(getCtx(), Placer1Cfg(getCtx())); }
bool Arch::place()
{
if (!placer1(getCtx(), Placer1Cfg(getCtx())))
return false;
if (bool_or_default(settings, id("opt_timing"), false)) {
TimingOptCfg tocfg(getCtx());
tocfg.cellTypes.insert(id_ICESTORM_LC);
return timing_opt(getCtx(), tocfg);
} else {
return true;
}
}
bool Arch::route() { return router1(getCtx(), Router1Cfg(getCtx())); }
@ -950,8 +962,12 @@ TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, in
if (port == id_RGB0 || port == id_RGB1 || port == id_RGB2)
return TMG_IGNORE;
return TMG_ENDPOINT;
} else if (cell->type == id_SB_LEDDA_IP) {
if (port == id_CLK || port == id_CLOCK)
return TMG_CLOCK_INPUT;
return TMG_IGNORE;
}
log_error("no timing info for port '%s' of cell type '%s'\n", port.c_str(this), cell->type.c_str(this));
log_error("cell type '%s' is unsupported (instantiated as '%s')\n", cell->type.c_str(this), cell->name.c_str(this));
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const

View File

@ -156,7 +156,9 @@ void configure_extra_cell(chipconfig_t &config, const Context *ctx, CellInfo *ce
// Lattice's weird string style params, not sure if
// prefixes other than 0b should be supported, only 0b features in docs
std::string raw = get_param_str_or_def(cell, ctx->id(p.first), "0b0");
assert(raw.substr(0, 2) == "0b");
if (raw.substr(0, 2) != "0b")
log_error("expected configuration string starting with '0b' for parameter '%s' on cell '%s'\n",
p.first.c_str(), cell->name.c_str(ctx));
raw = raw.substr(2);
value.resize(raw.length());
for (int i = 0; i < (int)raw.length(); i++) {
@ -168,7 +170,13 @@ void configure_extra_cell(chipconfig_t &config, const Context *ctx, CellInfo *ce
}
}
} else {
int ival = get_param_or_def(cell, ctx->id(p.first), 0);
int ival;
try {
ival = get_param_or_def(cell, ctx->id(p.first), 0);
} catch (std::invalid_argument &e) {
log_error("expected numeric value for parameter '%s' on cell '%s'\n", p.first.c_str(),
cell->name.c_str(ctx));
}
for (int i = 0; i < p.second; i++)
value.push_back((ival >> i) & 0x1);
@ -486,7 +494,7 @@ void write_asc(const Context *ctx, std::ostream &out)
unsigned pin_type = get_param_or_def(cell.second.get(), ctx->id("PIN_TYPE"));
bool neg_trigger = get_param_or_def(cell.second.get(), ctx->id("NEG_TRIGGER"));
bool pullup = get_param_or_def(cell.second.get(), ctx->id("PULLUP"));
bool lvds = get_param_str_or_def(cell.second.get(), ctx->id("IO_STANDARD")) == "SB_LVDS_INPUT";
bool lvds = cell.second->ioInfo.lvds;
bool used_by_pll_out = sb_io_used_by_pll_out.count(Loc(x, y, z)) > 0;
bool used_by_pll_pad = sb_io_used_by_pll_pad.count(Loc(x, y, z)) > 0;
@ -495,64 +503,64 @@ void write_asc(const Context *ctx, std::ostream &out)
set_config(ti, config.at(y).at(x), "IOB_" + std::to_string(z) + ".PINTYPE_" + std::to_string(i), val);
}
set_config(ti, config.at(y).at(x), "NegClk", neg_trigger);
auto ieren = get_ieren(bi, x, y, z);
int iex, iey, iez;
std::tie(iex, iey, iez) = ieren;
NPNR_ASSERT(iez != -1);
bool input_en;
if (lvds) {
input_en = false;
pullup = false;
} else {
if ((ctx->wire_to_net[ctx->getBelPinWire(bel, id_D_IN_0).index] != nullptr) ||
(ctx->wire_to_net[ctx->getBelPinWire(bel, id_D_IN_1).index] != nullptr)) {
input_en = true;
} else {
input_en = false;
}
bool input_en = false;
if ((ctx->wire_to_net[ctx->getBelPinWire(bel, id_D_IN_0).index] != nullptr) ||
(ctx->wire_to_net[ctx->getBelPinWire(bel, id_D_IN_1).index] != nullptr)) {
input_en = true;
}
input_en = (input_en & !used_by_pll_out) | used_by_pll_pad;
input_en |= cell.second->ioInfo.global;
if (ctx->args.type == ArchArgs::LP1K || ctx->args.type == ArchArgs::HX1K) {
set_config(ti, config.at(iey).at(iex), "IoCtrl.IE_" + std::to_string(iez), !input_en);
set_config(ti, config.at(iey).at(iex), "IoCtrl.REN_" + std::to_string(iez), !pullup);
} else {
set_config(ti, config.at(iey).at(iex), "IoCtrl.IE_" + std::to_string(iez), input_en);
set_config(ti, config.at(iey).at(iex), "IoCtrl.REN_" + std::to_string(iez), !pullup);
}
if (ctx->args.type == ArchArgs::UP5K) {
if (iez == 0) {
set_config(ti, config.at(iey).at(iex), "IoCtrl.cf_bit_39", !pullup);
} else if (iez == 1) {
set_config(ti, config.at(iey).at(iex), "IoCtrl.cf_bit_35", !pullup);
}
}
if (lvds) {
NPNR_ASSERT(z == 0);
set_config(ti, config.at(y).at(x), "IoCtrl.LVDS", true);
// Set comp IO config
auto comp_ieren = get_ieren(bi, x, y, 1);
int ciex, ciey, ciez;
std::tie(ciex, ciey, ciez) = comp_ieren;
if (!lvds) {
auto ieren = get_ieren(bi, x, y, z);
int iex, iey, iez;
std::tie(iex, iey, iez) = ieren;
NPNR_ASSERT(iez != -1);
if (ctx->args.type == ArchArgs::LP1K || ctx->args.type == ArchArgs::HX1K) {
set_config(ti, config.at(ciey).at(ciex), "IoCtrl.IE_" + std::to_string(ciez), !input_en);
set_config(ti, config.at(ciey).at(ciex), "IoCtrl.REN_" + std::to_string(ciez), !pullup);
set_config(ti, config.at(iey).at(iex), "IoCtrl.IE_" + std::to_string(iez), !input_en);
set_config(ti, config.at(iey).at(iex), "IoCtrl.REN_" + std::to_string(iez), !pullup);
} else {
set_config(ti, config.at(ciey).at(ciex), "IoCtrl.IE_" + std::to_string(ciez), input_en);
set_config(ti, config.at(ciey).at(ciex), "IoCtrl.REN_" + std::to_string(ciez), !pullup);
set_config(ti, config.at(iey).at(iex), "IoCtrl.IE_" + std::to_string(iez), input_en);
set_config(ti, config.at(iey).at(iex), "IoCtrl.REN_" + std::to_string(iez), !pullup);
}
if (ctx->args.type == ArchArgs::UP5K) {
if (ciez == 0) {
set_config(ti, config.at(ciey).at(ciex), "IoCtrl.cf_bit_39", !pullup);
if (iez == 0) {
set_config(ti, config.at(iey).at(iex), "IoCtrl.cf_bit_39", !pullup);
} else if (iez == 1) {
set_config(ti, config.at(ciey).at(ciex), "IoCtrl.cf_bit_35", !pullup);
set_config(ti, config.at(iey).at(iex), "IoCtrl.cf_bit_35", !pullup);
}
}
} else {
NPNR_ASSERT(z == 0);
// Only enable the actual LVDS buffer if input is used for something
set_config(ti, config.at(y).at(x), "IoCtrl.LVDS", input_en);
// Set both IO config
for (int cz = 0; cz < 2; cz++) {
auto ieren = get_ieren(bi, x, y, cz);
int iex, iey, iez;
std::tie(iex, iey, iez) = ieren;
NPNR_ASSERT(iez != -1);
pullup &= !input_en; /* If input is used, force disable pullups */
if (ctx->args.type == ArchArgs::LP1K || ctx->args.type == ArchArgs::HX1K) {
set_config(ti, config.at(iey).at(iex), "IoCtrl.IE_" + std::to_string(iez), true);
set_config(ti, config.at(iey).at(iex), "IoCtrl.REN_" + std::to_string(iez), !pullup);
} else {
set_config(ti, config.at(iey).at(iex), "IoCtrl.IE_" + std::to_string(iez), false);
set_config(ti, config.at(iey).at(iex), "IoCtrl.REN_" + std::to_string(iez), !pullup);
}
if (ctx->args.type == ArchArgs::UP5K) {
if (iez == 0) {
set_config(ti, config.at(iey).at(iex), "IoCtrl.cf_bit_39", !pullup);
} else if (iez == 1) {
set_config(ti, config.at(iey).at(iex), "IoCtrl.cf_bit_35", !pullup);
}
}
}
}
@ -591,7 +599,8 @@ void write_asc(const Context *ctx, std::ostream &out)
{"CURRENT_MODE", 1}, {"RGB0_CURRENT", 6}, {"RGB1_CURRENT", 6}, {"RGB2_CURRENT", 6}};
configure_extra_cell(config, ctx, cell.second.get(), rgba_params, true, std::string("IpConfig."));
set_ec_cbit(config, ctx, get_ec_config(ctx->chip_info, cell.second->bel), "RGBA_DRV_EN", true, "IpConfig.");
} else if (cell.second->type == ctx->id("SB_WARMBOOT") || cell.second->type == ctx->id("ICESTORM_LFOSC")) {
} else if (cell.second->type == ctx->id("SB_WARMBOOT") || cell.second->type == ctx->id("ICESTORM_LFOSC") ||
cell.second->type == ctx->id("SB_LEDDA_IP")) {
// No config needed
} else if (cell.second->type == ctx->id("ICESTORM_SPRAM")) {
const BelInfoPOD &beli = ci.bel_data[bel.index];
@ -688,7 +697,7 @@ void write_asc(const Context *ctx, std::ostream &out)
int iex, iey, iez;
std::tie(iex, iey, iez) = ieren;
if (iez != -1) {
// IO is not actually unused if part of an LVDS pair
// If IO is in LVDS pair, it will be configured by the other pair
if (z == 1) {
BelId lvds0 = ctx->getBelByLocation(Loc{x, y, 0});
const CellInfo *lvds0cell = ctx->getBoundBelCell(lvds0);

View File

@ -260,6 +260,21 @@ std::unique_ptr<CellInfo> create_ice_cell(Context *ctx, IdString type, std::stri
add_port(ctx, new_cell.get(), "RGB0", PORT_OUT);
add_port(ctx, new_cell.get(), "RGB1", PORT_OUT);
add_port(ctx, new_cell.get(), "RGB2", PORT_OUT);
} else if (type == ctx->id("SB_LEDDA_IP")) {
add_port(ctx, new_cell.get(), "LEDDCS", PORT_IN);
add_port(ctx, new_cell.get(), "LEDDCLK", PORT_IN);
for (int i = 0; i < 8; i++)
add_port(ctx, new_cell.get(), "LEDDDAT" + std::to_string(i), PORT_IN);
for (int i = 0; i < 3; i++)
add_port(ctx, new_cell.get(), "LEDDADDR" + std::to_string(i), PORT_IN);
add_port(ctx, new_cell.get(), "LEDDDEN", PORT_IN);
add_port(ctx, new_cell.get(), "LEDDEXE", PORT_IN);
add_port(ctx, new_cell.get(), "LEDDRST", PORT_IN); // doesn't actually exist, for icecube code compatibility
// only
add_port(ctx, new_cell.get(), "PWMOUT0", PORT_OUT);
add_port(ctx, new_cell.get(), "PWMOUT1", PORT_OUT);
add_port(ctx, new_cell.get(), "PWMOUT2", PORT_OUT);
add_port(ctx, new_cell.get(), "LEDDON", PORT_OUT);
} else {
log_error("unable to create iCE40 cell of type %s", type.c_str(ctx));
}

View File

@ -76,6 +76,8 @@ inline bool is_sb_mac16(const BaseCtx *ctx, const CellInfo *cell) { return cell-
inline bool is_sb_rgba_drv(const BaseCtx *ctx, const CellInfo *cell) { return cell->type == ctx->id("SB_RGBA_DRV"); }
inline bool is_sb_ledda_ip(const BaseCtx *ctx, const CellInfo *cell) { return cell->type == ctx->id("SB_LEDDA_IP"); }
inline bool is_sb_pll40(const BaseCtx *ctx, const CellInfo *cell)
{
return cell->type == ctx->id("SB_PLL40_PAD") || cell->type == ctx->id("SB_PLL40_2_PAD") ||

View File

@ -62,7 +62,7 @@ class ChainConstrainer
bool split_chain = (!ctx->logicCellsCompatible(tile.data(), tile.size())) ||
(int(chains.back().cells.size()) > max_length);
if (split_chain) {
CellInfo *passout = make_carry_pass_out(cell->ports.at(ctx->id("COUT")));
CellInfo *passout = make_carry_pass_out((*(curr_cell - 1))->ports.at(ctx->id("COUT")));
tile.pop_back();
chains.back().cells.back() = passout;
start_of_chain = true;
@ -74,10 +74,10 @@ class ChainConstrainer
(net_only_drives(ctx, carry_net, is_lc, ctx->id("I3"), false) !=
net_only_drives(ctx, carry_net, is_lc, ctx->id("CIN"), false)) ||
(at_end && !net_only_drives(ctx, carry_net, is_lc, ctx->id("I3"), true))) {
CellInfo *passout = make_carry_pass_out(cell->ports.at(ctx->id("COUT")));
CellInfo *passout = make_carry_pass_out(cell->ports.at(ctx->id("COUT")),
at_end ? nullptr : *(curr_cell + 1));
chains.back().cells.push_back(passout);
tile.push_back(passout);
start_of_chain = true;
}
}
++curr_cell;
@ -87,30 +87,75 @@ class ChainConstrainer
}
// Insert a logic cell to legalise a COUT->fabric connection
CellInfo *make_carry_pass_out(PortInfo &cout_port)
CellInfo *make_carry_pass_out(PortInfo &cout_port, CellInfo *cin_cell = nullptr)
{
NPNR_ASSERT(cout_port.net != nullptr);
std::unique_ptr<CellInfo> lc = create_ice_cell(ctx, ctx->id("ICESTORM_LC"));
lc->params[ctx->id("LUT_INIT")] = "65280"; // 0xff00: O = I3
lc->params[ctx->id("CARRY_ENABLE")] = "1";
lc->ports.at(ctx->id("O")).net = cout_port.net;
lc->ports.at(id_O).net = cout_port.net;
std::unique_ptr<NetInfo> co_i3_net(new NetInfo());
co_i3_net->name = ctx->id(lc->name.str(ctx) + "$I3");
co_i3_net->driver = cout_port.net->driver;
PortRef i3_r;
i3_r.port = ctx->id("I3");
i3_r.port = id_I3;
i3_r.cell = lc.get();
co_i3_net->users.push_back(i3_r);
PortRef o_r;
o_r.port = ctx->id("O");
o_r.port = id_O;
o_r.cell = lc.get();
cout_port.net->driver = o_r;
lc->ports.at(ctx->id("I3")).net = co_i3_net.get();
lc->ports.at(id_I3).net = co_i3_net.get();
cout_port.net = co_i3_net.get();
IdString co_i3_name = co_i3_net->name;
NPNR_ASSERT(ctx->nets.find(co_i3_name) == ctx->nets.end());
ctx->nets[co_i3_name] = std::move(co_i3_net);
// If COUT also connects to a CIN; preserve the carry chain
if (cin_cell) {
std::unique_ptr<NetInfo> co_cin_net(new NetInfo());
co_cin_net->name = ctx->id(lc->name.str(ctx) + "$COUT");
// Connect I1 to 1 to preserve carry chain
NetInfo *vcc = ctx->nets.at(ctx->id("$PACKER_VCC_NET")).get();
lc->ports.at(id_I1).net = vcc;
PortRef i1_r;
i1_r.port = id_I1;
i1_r.cell = lc.get();
vcc->users.push_back(i1_r);
// Connect co_cin_net to the COUT of the LC
PortRef co_r;
co_r.port = id_COUT;
co_r.cell = lc.get();
co_cin_net->driver = co_r;
lc->ports.at(id_COUT).net = co_cin_net.get();
// Find the user corresponding to the next CIN
int replaced_ports = 0;
if (ctx->debug)
log_info("cell: %s\n", cin_cell->name.c_str(ctx));
for (auto port : {id_CIN, id_I3}) {
auto &usr = lc->ports.at(id_O).net->users;
if (ctx->debug)
for (auto user : usr)
log_info("%s.%s\n", user.cell->name.c_str(ctx), user.port.c_str(ctx));
auto fnd_user = std::find_if(usr.begin(), usr.end(),
[&](const PortRef &pr) { return pr.cell == cin_cell && pr.port == port; });
if (fnd_user != usr.end()) {
co_cin_net->users.push_back(*fnd_user);
usr.erase(fnd_user);
cin_cell->ports.at(port).net = co_cin_net.get();
++replaced_ports;
}
}
NPNR_ASSERT(replaced_ports > 0);
IdString co_cin_name = co_cin_net->name;
NPNR_ASSERT(ctx->nets.find(co_cin_name) == ctx->nets.end());
ctx->nets[co_cin_name] = std::move(co_cin_net);
}
IdString name = lc->name;
ctx->assignCellInfo(lc.get());
ctx->cells[lc->name] = std::move(lc);
@ -163,29 +208,31 @@ class ChainConstrainer
void process_carries()
{
std::vector<CellChain> carry_chains =
find_chains(ctx, [](const Context *ctx, const CellInfo *cell) { return is_lc(ctx, cell); },
[](const Context *ctx, const
std::vector<CellChain> carry_chains = find_chains(
ctx, [](const Context *ctx, const CellInfo *cell) { return is_lc(ctx, cell); },
[](const Context *ctx, const
CellInfo *cell) {
CellInfo *carry_prev =
net_driven_by(ctx, cell->ports.at(ctx->id("CIN")).net, is_lc, ctx->id("COUT"));
if (carry_prev != nullptr)
return carry_prev;
/*CellInfo *i3_prev = net_driven_by(ctx, cell->ports.at(ctx->id("I3")).net, is_lc,
ctx->id("COUT")); if (i3_prev != nullptr) return i3_prev;*/
return (CellInfo *)nullptr;
},
[](const Context *ctx, const CellInfo *cell) {
CellInfo *carry_next = net_only_drives(ctx, cell->ports.at(ctx->id("COUT")).net, is_lc,
ctx->id("CIN"), false);
if (carry_next != nullptr)
return carry_next;
/*CellInfo *i3_next =
net_only_drives(ctx, cell->ports.at(ctx->id("COUT")).net, is_lc, ctx->id("I3"),
false); if (i3_next != nullptr) return i3_next;*/
return (CellInfo *)nullptr;
});
CellInfo *cell) {
CellInfo *carry_prev =
net_driven_by(ctx, cell->ports.at(ctx->id("CIN")).net, is_lc, ctx->id("COUT"));
if (carry_prev != nullptr)
return carry_prev;
CellInfo *i3_prev = net_driven_by(ctx, cell->ports.at(ctx->id("I3")).net, is_lc, ctx->id("COUT"));
if (i3_prev != nullptr)
return i3_prev;
return (CellInfo *)nullptr;
},
[](const Context *ctx, const CellInfo *cell) {
CellInfo *carry_next =
net_only_drives(ctx, cell->ports.at(ctx->id("COUT")).net, is_lc, ctx->id("CIN"), false);
if (carry_next != nullptr)
return carry_next;
CellInfo *i3_next =
net_only_drives(ctx, cell->ports.at(ctx->id("COUT")).net, is_lc, ctx->id("I3"), false);
if (i3_next != nullptr)
return i3_next;
return (CellInfo *)nullptr;
});
std::unordered_set<IdString> chained;
for (auto &base_chain : carry_chains) {
for (auto c : base_chain.cells)

View File

@ -65,6 +65,10 @@ po::options_description Ice40CommandHandler::getArchOptions()
specific.add_options()("pcf", po::value<std::string>(), "PCF constraints file to ingest");
specific.add_options()("asc", po::value<std::string>(), "asc bitstream file to write");
specific.add_options()("read", po::value<std::string>(), "asc bitstream file to read");
specific.add_options()("promote-logic",
"enable promotion of 'logic' globals (in addition to clk/ce/sr by default)");
specific.add_options()("no-promote-globals", "disable all global promotion");
specific.add_options()("opt-timing", "run post-placement timing optimisation pass (experimental)");
specific.add_options()("tmfuzz", "run path delay estimate fuzzer");
return specific;
}
@ -152,7 +156,15 @@ std::unique_ptr<Context> Ice40CommandHandler::createContext()
if (vm.count("package"))
chipArgs.package = vm["package"].as<std::string>();
return std::unique_ptr<Context>(new Context(chipArgs));
auto ctx = std::unique_ptr<Context>(new Context(chipArgs));
if (vm.count("promote-logic"))
ctx->settings[ctx->id("promote_logic")] = "1";
if (vm.count("no-promote-globals"))
ctx->settings[ctx->id("no_promote_globals")] = "1";
if (vm.count("opt-timing"))
ctx->settings[ctx->id("opt_timing")] = "1";
return ctx;
}
int main(int argc, char *argv[])

View File

@ -478,6 +478,9 @@ static void pack_io(Context *ctx)
}
packed_cells.insert(ci->name);
std::copy(ci->attrs.begin(), ci->attrs.end(), std::inserter(sb->attrs, sb->attrs.begin()));
if (!sb->attrs.count(ctx->id("BEL")))
log_warning("IO '%s' is not constrained to a pin and will be automatically placed\n",
ci->name.c_str(ctx));
} else if (is_sb_io(ctx, ci) || is_sb_gb_io(ctx, ci)) {
NetInfo *net = ci->ports.at(ctx->id("PACKAGE_PIN")).net;
if ((net != nullptr) && (net->users.size() > 1))
@ -518,10 +521,10 @@ static bool is_logic_port(BaseCtx *ctx, const PortRef &port)
!is_sb_pll40(ctx, port.cell);
}
static void insert_global(Context *ctx, NetInfo *net, bool is_reset, bool is_cen, bool is_logic)
static void insert_global(Context *ctx, NetInfo *net, bool is_reset, bool is_cen, bool is_logic, int fanout)
{
log_info("promoting %s%s%s%s\n", net->name.c_str(ctx), is_reset ? " [reset]" : "", is_cen ? " [cen]" : "",
is_logic ? " [logic]" : "");
log_info("promoting %s%s%s%s (fanout %d)\n", net->name.c_str(ctx), is_reset ? " [reset]" : "",
is_cen ? " [cen]" : "", is_logic ? " [logic]" : "", fanout);
std::string glb_name = net->name.str(ctx) + std::string("_$glb_") + (is_reset ? "sr" : (is_cen ? "ce" : "clk"));
std::unique_ptr<CellInfo> gb = create_ice_cell(ctx, ctx->id("SB_GB"), "$gbuf_" + glb_name);
@ -565,7 +568,8 @@ static void promote_globals(Context *ctx)
{
log_info("Promoting globals..\n");
const int logic_fanout_thresh = 15;
const int enable_fanout_thresh = 5;
const int enable_fanout_thresh = 15;
const int reset_fanout_thresh = 15;
std::map<IdString, int> clock_count, reset_count, cen_count, logic_count;
for (auto net : sorted(ctx->nets)) {
NetInfo *ni = net.second;
@ -637,18 +641,20 @@ static void promote_globals(Context *ctx)
});
if (global_clock->second == 0 && prom_logics < 4 && global_logic->second > logic_fanout_thresh &&
(global_logic->second > global_cen->second || prom_cens >= cens_available) &&
(global_logic->second > global_reset->second || prom_resets >= resets_available)) {
(global_logic->second > global_reset->second || prom_resets >= resets_available) &&
bool_or_default(ctx->settings, ctx->id("promote_logic"), false)) {
NetInfo *logicnet = ctx->nets[global_logic->first].get();
insert_global(ctx, logicnet, false, false, true);
insert_global(ctx, logicnet, false, false, true, global_logic->second);
++prom_globals;
++prom_logics;
clock_count.erase(logicnet->name);
reset_count.erase(logicnet->name);
cen_count.erase(logicnet->name);
logic_count.erase(logicnet->name);
} else if (global_reset->second > global_clock->second && prom_resets < resets_available) {
} else if (global_reset->second > global_clock->second && prom_resets < resets_available &&
global_reset->second > reset_fanout_thresh) {
NetInfo *rstnet = ctx->nets[global_reset->first].get();
insert_global(ctx, rstnet, true, false, false);
insert_global(ctx, rstnet, true, false, false, global_reset->second);
++prom_globals;
++prom_resets;
clock_count.erase(rstnet->name);
@ -658,7 +664,7 @@ static void promote_globals(Context *ctx)
} else if (global_cen->second > global_clock->second && prom_cens < cens_available &&
global_cen->second > enable_fanout_thresh) {
NetInfo *cennet = ctx->nets[global_cen->first].get();
insert_global(ctx, cennet, false, true, false);
insert_global(ctx, cennet, false, true, false, global_cen->second);
++prom_globals;
++prom_cens;
clock_count.erase(cennet->name);
@ -667,7 +673,7 @@ static void promote_globals(Context *ctx)
logic_count.erase(cennet->name);
} else if (global_clock->second != 0) {
NetInfo *clknet = ctx->nets[global_clock->first].get();
insert_global(ctx, clknet, false, false, false);
insert_global(ctx, clknet, false, false, false, global_clock->second);
++prom_globals;
clock_count.erase(clknet->name);
reset_count.erase(clknet->name);
@ -679,6 +685,202 @@ static void promote_globals(Context *ctx)
}
}
// Figure out where to place PLLs
static void place_plls(Context *ctx)
{
std::map<BelId, std::pair<BelPin, BelPin>> pll_all_bels;
std::map<BelId, CellInfo *> pll_used_bels;
std::vector<CellInfo *> pll_cells;
std::map<BelId, CellInfo *> bel2io;
log_info("Placing PLLs..\n");
// Find all the PLLs BELs and matching IO sites
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_ICESTORM_PLL)
continue;
if (ctx->isBelLocked(bel))
continue;
auto io_a_pin = ctx->getIOBSharingPLLPin(bel, id_PLLOUT_A);
auto io_b_pin = ctx->getIOBSharingPLLPin(bel, id_PLLOUT_B);
pll_all_bels[bel] = std::make_pair(io_a_pin, io_b_pin);
}
// Find all the PLLs cells we need to place and do pre-checks
for (auto cell : sorted(ctx->cells)) {
CellInfo *ci = cell.second;
if (!is_sb_pll40(ctx, ci))
continue;
// If it's constrained already, add to already used list
if (ci->attrs.count(ctx->id("BEL"))) {
BelId bel_constrain = ctx->getBelByName(ctx->id(ci->attrs[ctx->id("BEL")]));
if (pll_all_bels.count(bel_constrain) == 0)
log_error("PLL '%s' is constrained to invalid BEL '%s'\n", ci->name.c_str(ctx),
ci->attrs[ctx->id("BEL")].c_str());
pll_used_bels[bel_constrain] = ci;
}
// Add it to our list of PLLs to process
pll_cells.push_back(ci);
}
// Scan all the PAD PLLs
for (auto ci : pll_cells) {
if (!is_sb_pll40_pad(ctx, ci))
continue;
// Check PACKAGEPIN connection
if (!ci->ports.count(ctx->id("PACKAGEPIN")))
log_error("PLL '%s' is of PAD type but doesn't have a PACKAGEPIN port\n", ci->name.c_str(ctx));
NetInfo *ni = ci->ports.at(ctx->id("PACKAGEPIN")).net;
if (ni == nullptr || ni->driver.cell == nullptr)
log_error("PLL '%s' is of PAD type but doesn't have a valid PACKAGEPIN connection\n", ci->name.c_str(ctx));
CellInfo *io_cell = ni->driver.cell;
if (io_cell->type != id_SB_IO || ni->driver.port != id_D_IN_0)
log_error("PLL '%s' has a PACKAGEPIN driven by an %s, should be directly connected to an input "
"SB_IO.D_IN_0 port\n",
ci->name.c_str(ctx), io_cell->type.c_str(ctx));
if (ni->users.size() != 1)
log_error("PLL '%s' clock input '%s' can only drive PLL\n", ci->name.c_str(ctx), ni->name.c_str(ctx));
if (!io_cell->attrs.count(ctx->id("BEL")))
log_error("PLL '%s' PACKAGEPIN SB_IO '%s' is unconstrained\n", ci->name.c_str(ctx),
io_cell->name.c_str(ctx));
BelId io_bel = ctx->getBelByName(ctx->id(io_cell->attrs.at(ctx->id("BEL"))));
BelId found_bel;
// Find the PLL BEL that would suit that connection
for (auto pll_bel : pll_all_bels) {
if (std::get<0>(pll_bel.second).bel == io_bel) {
found_bel = pll_bel.first;
break;
}
}
if (found_bel == BelId())
log_error("PLL '%s' PACKAGEPIN SB_IO '%s' is not connected to any PLL BEL\n", ci->name.c_str(ctx),
io_cell->name.c_str(ctx));
if (pll_used_bels.count(found_bel)) {
CellInfo *conflict_cell = pll_used_bels.at(found_bel);
log_error("PLL '%s' PACKAGEPIN forces it to BEL %s but BEL is already assigned to PLL '%s'\n",
ci->name.c_str(ctx), ctx->getBelName(found_bel).c_str(ctx), conflict_cell->name.c_str(ctx));
}
// Is it user constrained ?
if (ci->attrs.count(ctx->id("BEL"))) {
// Yes. Check it actually matches !
BelId bel_constrain = ctx->getBelByName(ctx->id(ci->attrs[ctx->id("BEL")]));
if (bel_constrain != found_bel)
log_error("PLL '%s' is user constrained to %s but can only be placed in %s based on its PACKAGEPIN "
"connection\n",
ci->name.c_str(ctx), ctx->getBelName(bel_constrain).c_str(ctx),
ctx->getBelName(found_bel).c_str(ctx));
} else {
// No, we can constrain it ourselves
ci->attrs[ctx->id("BEL")] = ctx->getBelName(found_bel).str(ctx);
pll_used_bels[found_bel] = ci;
}
// Inform user
log_info(" constrained PLL '%s' to %s\n", ci->name.c_str(ctx), ctx->getBelName(found_bel).c_str(ctx));
}
// Scan all SB_IOs to check for conflict with PLL BELs
for (auto io_cell : sorted(ctx->cells)) {
CellInfo *io_ci = io_cell.second;
if (!is_sb_io(ctx, io_ci))
continue;
// Only consider bound IO that are used as inputs
if (!io_ci->attrs.count(ctx->id("BEL")))
continue;
if ((!io_ci->ports.count(id_D_IN_0) || (io_ci->ports[id_D_IN_0].net == nullptr)) &&
(!io_ci->ports.count(id_D_IN_1) || (io_ci->ports[id_D_IN_1].net == nullptr)))
continue;
// Check all placed PLL (either forced by user, or forced by PACKAGEPIN)
BelId io_bel = ctx->getBelByName(ctx->id(io_ci->attrs[ctx->id("BEL")]));
for (auto placed_pll : pll_used_bels) {
BelPin pll_io_a, pll_io_b;
std::tie(pll_io_a, pll_io_b) = pll_all_bels[placed_pll.first];
if (io_bel == pll_io_a.bel) {
// All the PAD type PLL stuff already checked above,so only
// check for conflict with a user placed CORE PLL
if (!is_sb_pll40_pad(ctx, placed_pll.second))
log_error("PLL '%s' A output conflict with SB_IO '%s' that's used as input\n",
placed_pll.second->name.c_str(ctx), io_cell.second->name.c_str(ctx));
} else if (io_bel == pll_io_b.bel) {
if (is_sb_pll40_dual(ctx, placed_pll.second))
log_error("PLL '%s' B output conflicts with SB_IO '%s' that's used as input\n",
placed_pll.second->name.c_str(ctx), io_cell.second->name.c_str(ctx));
}
}
// Save for later checks
bel2io[io_bel] = io_ci;
}
// Scan all the CORE PLLs and place them in remaining available PLL BELs
// (in two pass ... first do the dual ones, harder to place, then single port)
for (int i = 0; i < 2; i++) {
for (auto ci : pll_cells) {
if (is_sb_pll40_pad(ctx, ci))
continue;
if (is_sb_pll40_dual(ctx, ci) ^ i)
continue;
// Check REFERENCECLK connection
if (!ci->ports.count(id_REFERENCECLK))
log_error("PLL '%s' is of CORE type but doesn't have a REFERENCECLK port\n", ci->name.c_str(ctx));
NetInfo *ni = ci->ports.at(id_REFERENCECLK).net;
if (ni == nullptr || ni->driver.cell == nullptr)
log_error("PLL '%s' is of CORE type but doesn't have a valid REFERENCECLK connection\n",
ci->name.c_str(ctx));
// Could this be a PAD PLL ?
bool could_be_pad = false;
BelId pad_bel;
if (ni->users.size() == 1 && is_sb_io(ctx, ni->driver.cell) && ni->driver.cell->attrs.count(ctx->id("BEL")))
pad_bel = ctx->getBelByName(ctx->id(ni->driver.cell->attrs[ctx->id("BEL")]));
// Find a BEL for it
BelId found_bel;
for (auto bel_pll : pll_all_bels) {
BelPin pll_io_a, pll_io_b;
std::tie(pll_io_a, pll_io_b) = bel_pll.second;
if (bel2io.count(pll_io_a.bel)) {
if (pll_io_a.bel == pad_bel)
could_be_pad = !bel2io.count(pll_io_b.bel) || !is_sb_pll40_dual(ctx, ci);
continue;
}
if (bel2io.count(pll_io_b.bel) && is_sb_pll40_dual(ctx, ci))
continue;
found_bel = bel_pll.first;
break;
}
// Apply constrain & Inform user of result
if (found_bel == BelId())
log_error("PLL '%s' couldn't be placed anywhere, no suitable BEL found.%s\n", ci->name.c_str(ctx),
could_be_pad ? " Did you mean to use a PAD PLL ?" : "");
log_info(" constrained PLL '%s' to %s\n", ci->name.c_str(ctx), ctx->getBelName(found_bel).c_str(ctx));
if (could_be_pad)
log_info(" (given its connections, this PLL could have been a PAD PLL)\n");
ci->attrs[ctx->id("BEL")] = ctx->getBelName(found_bel).str(ctx);
pll_used_bels[found_bel] = ci;
}
}
}
// spliceLUT adds a pass-through LUT LC between the given cell's output port
// and either all users or only non_LUT users.
static std::unique_ptr<CellInfo> spliceLUT(Context *ctx, CellInfo *ci, IdString portId, bool onlyNonLUTs)
@ -844,6 +1046,10 @@ static void pack_special(Context *ctx)
ci->ports.erase(ctx->id("RGB0"));
ci->ports.erase(ctx->id("RGB1"));
ci->ports.erase(ctx->id("RGB2"));
} else if (is_sb_ledda_ip(ctx, ci)) {
/* Force placement (no choices anyway) */
cell_place_unique(ctx, ci);
} else if (is_sb_pll40(ctx, ci)) {
bool is_pad = is_sb_pll40_pad(ctx, ci);
bool is_core = !is_pad;
@ -877,13 +1083,17 @@ static void pack_special(Context *ctx)
}
auto feedback_path = packed->params[ctx->id("FEEDBACK_PATH")];
packed->params[ctx->id("FEEDBACK_PATH")] =
feedback_path == "DELAY"
? "0"
: feedback_path == "SIMPLE" ? "1"
: feedback_path == "PHASE_AND_DELAY"
? "2"
: feedback_path == "EXTERNAL" ? "6" : feedback_path;
std::string fbp_value = feedback_path == "DELAY"
? "0"
: feedback_path == "SIMPLE"
? "1"
: feedback_path == "PHASE_AND_DELAY"
? "2"
: feedback_path == "EXTERNAL" ? "6" : feedback_path;
if (!std::all_of(fbp_value.begin(), fbp_value.end(), isdigit))
log_error("PLL '%s' has unsupported FEEDBACK_PATH value '%s'\n", ci->name.c_str(ctx),
feedback_path.c_str());
packed->params[ctx->id("FEEDBACK_PATH")] = fbp_value;
packed->params[ctx->id("PLLTYPE")] = std::to_string(sb_pll40_type(ctx, ci));
NetInfo *pad_packagepin_net = nullptr;
@ -939,82 +1149,25 @@ static void pack_special(Context *ctx)
replace_port(ci, ctx->id(pi.name.c_str(ctx)), packed.get(), ctx->id(newname));
}
// If PLL is not constrained already, do that - we need this
// information to then constrain the LOCK LUT.
BelId pll_bel;
bool constrained = false;
if (packed->attrs.find(ctx->id("BEL")) == packed->attrs.end()) {
for (auto bel : ctx->getBels()) {
if (ctx->getBelType(bel) != id_ICESTORM_PLL)
continue;
if (ctx->isBelLocked(bel))
continue;
// PLL must have been placed already in place_plls()
BelId pll_bel = ctx->getBelByName(ctx->id(packed->attrs[ctx->id("BEL")]));
NPNR_ASSERT(pll_bel != BelId());
// A PAD PLL must have its' PACKAGEPIN on the SB_IO that's shared
// with PLLOUT_A.
if (is_pad) {
auto pll_sb_io_belpin = ctx->getIOBSharingPLLPin(bel, id_PLLOUT_A);
NPNR_ASSERT(pad_packagepin_net != nullptr);
auto pll_packagepin_driver = pad_packagepin_net->driver;
NPNR_ASSERT(pll_packagepin_driver.cell != nullptr);
if (pll_packagepin_driver.cell->type != ctx->id("SB_IO")) {
log_error("PLL '%s' has a PACKAGEPIN driven by "
"an %s, should be directly connected to an input SB_IO\n",
ci->name.c_str(ctx), pll_packagepin_driver.cell->type.c_str(ctx));
}
// Deal with PAD PLL peculiarities
if (is_pad) {
NPNR_ASSERT(pad_packagepin_net != nullptr);
auto pll_packagepin_driver = pad_packagepin_net->driver;
NPNR_ASSERT(pll_packagepin_driver.cell != nullptr);
auto packagepin_cell = pll_packagepin_driver.cell;
auto packagepin_bel_name = packagepin_cell->attrs.find(ctx->id("BEL"));
auto packagepin_cell = pll_packagepin_driver.cell;
auto packagepin_bel_name = packagepin_cell->attrs.find(ctx->id("BEL"));
if (packagepin_bel_name == packagepin_cell->attrs.end()) {
log_error("PLL '%s' PACKAGEPIN SB_IO '%s' is unconstrained\n", ci->name.c_str(ctx),
packagepin_cell->name.c_str(ctx));
}
auto packagepin_bel = ctx->getBelByName(ctx->id(packagepin_bel_name->second));
if (pll_sb_io_belpin.bel != packagepin_bel) {
log_error("PLL '%s' PACKAGEPIN is connected to pin %s, can only be pin %s\n",
ci->name.c_str(ctx), ctx->getBelPackagePin(packagepin_bel).c_str(),
ctx->getBelPackagePin(pll_sb_io_belpin.bel).c_str());
}
if (pad_packagepin_net->users.size() != 1) {
log_error("PLL '%s' clock input '%s' can only drive PLL\n", ci->name.c_str(ctx),
pad_packagepin_net->name.c_str(ctx));
}
// Set an attribute about this PLL's PAD SB_IO.
packed->attrs[ctx->id("BEL_PAD_INPUT")] = packagepin_bel_name->second;
// Remove the connection from the SB_IO to the PLL.
packagepin_cell->ports.erase(pll_packagepin_driver.port);
}
// Set an attribute about this PLL's PAD SB_IO.
packed->attrs[ctx->id("BEL_PAD_INPUT")] = packagepin_bel_name->second;
log_info(" constrained PLL '%s' to %s\n", packed->name.c_str(ctx),
ctx->getBelName(bel).c_str(ctx));
packed->attrs[ctx->id("BEL")] = ctx->getBelName(bel).str(ctx);
pll_bel = bel;
constrained = true;
break;
}
if (!constrained) {
log_error("Could not constrain PLL '%s' to any PLL Bel (too many PLLs?)\n",
packed->name.c_str(ctx));
}
} else {
pll_bel = ctx->getBelByName(ctx->id(packed->attrs[ctx->id("BEL")]));
if (ctx->getBelType(pll_bel) != id_ICESTORM_PLL)
log_error("PLL '%s' is constrained to BEL %s which isn't a ICESTORM_PLL BEL\n",
packed->name.c_str(ctx), ctx->getBelName(pll_bel).c_str(ctx));
if (ctx->isBelLocked(pll_bel))
log_error("PLL '%s' is constrained to locked BEL %s\n", packed->name.c_str(ctx),
ctx->getBelName(pll_bel).c_str(ctx));
log_info(" constrained PLL '%s' to %s\n", packed->name.c_str(ctx),
ctx->getBelName(pll_bel).c_str(ctx));
}
// Delete the original PACKAGEPIN net if needed.
if (pad_packagepin_net != nullptr) {
for (auto user : pad_packagepin_net->users) {
// Disconnect PACKAGEPIN (it's a physical HW link)
for (auto user : pad_packagepin_net->users)
user.cell->ports.erase(user.port);
}
if (pad_packagepin_net->driver.cell != nullptr)
pad_packagepin_net->driver.cell->ports.erase(pad_packagepin_net->driver.port);
packagepin_cell->ports.erase(pll_packagepin_driver.port);
ctx->nets.erase(pad_packagepin_net->name);
pad_packagepin_net = nullptr;
}
@ -1118,8 +1271,10 @@ bool Arch::pack()
pack_nonlut_ffs(ctx);
pack_carries(ctx);
pack_ram(ctx);
place_plls(ctx);
pack_special(ctx);
promote_globals(ctx);
if (!bool_or_default(ctx->settings, ctx->id("no_promote_globals"), false))
promote_globals(ctx);
ctx->assignArchInfo();
constrain_chains(ctx);
ctx->assignArchInfo();

View File

@ -22,7 +22,7 @@ for i in range(num_runs):
ascfile = "picorv32_work/picorv32_s{}.asc".format(run)
if path.exists(ascfile):
os.remove(ascfile)
result = subprocess.run(["../nextpnr-ice40", "--hx8k", "--seed", str(run), "--json", "picorv32.json", "--asc", ascfile, "--freq", "70"], stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL)
result = subprocess.run(["../nextpnr-ice40", "--hx8k", "--seed", str(run), "--json", "picorv32.json", "--asc", ascfile, "--freq", "40", "--opt-timing"], stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL)
if result.returncode != 0:
print("Run {} failed!".format(run))
else:

View File

@ -594,7 +594,11 @@ void json_import_cell(Context *ctx, string modname, const std::vector<IdString>
if (type == PORT_IN || type == PORT_INOUT) {
net->users.push_back(pr);
} else if (type == PORT_OUT) {
assert(net->driver.cell == nullptr);
if (net->driver.cell != nullptr)
log_error("multiple drivers on net '%s' (%s.%s and %s.%s)\n",
net->name.c_str(ctx), net->driver.cell->name.c_str(ctx),
net->driver.port.c_str(ctx), pr.cell->name.c_str(ctx),
pr.port.c_str(ctx));
net->driver = pr;
}
}