Add generation of models to tmfuzz

Signed-off-by: Clifford Wolf <clifford@clifford.at>
This commit is contained in:
Clifford Wolf 2018-08-04 16:54:12 +02:00
parent bd36cc1275
commit 31fe52581b
3 changed files with 187 additions and 12 deletions

View File

@ -651,6 +651,7 @@ delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
return 250;
}
#if 1
int xd = sink_loc.x - driver_loc.x, yd = sink_loc.y - driver_loc.y;
int xscale = 120, yscale = 120, offset = 0;
@ -665,6 +666,35 @@ delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
offset += 260;
return xscale * abs(xd) + yscale * abs(yd) + offset;
#else
float model1_param_offset = 902.1066988;
float model1_param_norm1 = 169.80428447;
float model1_param_norm2 = -503.28635487;
float model1_param_norm3 = 402.96583807;
float model2_param_offset = -1.09578873e+03;
float model2_param_linear = 5.01094876e-01;
float model2_param_sqrt = 4.71761281e+01;
float dx = fabsf(sink_loc.x - driver_loc.x);
float dy = fabsf(sink_loc.y - driver_loc.y);
float norm1 = dx + dy;
float dx2 = dx * dx;
float dy2 = dy * dy;
float norm2 = sqrtf(dx2 + dy2);
float dx3 = dx2 * dx;
float dy3 = dy2 * dy;
float norm3 = powf(dx3 + dy3, 1.0/3.0);
float v = model1_param_offset;
v += model1_param_norm1 * norm1;
v += model1_param_norm2 * norm2;
v += model1_param_norm3 * norm3;
return model2_param_offset + model2_param_linear * v + model2_param_sqrt * sqrtf(v);
#endif
}
delay_t Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t budget) const

View File

@ -23,6 +23,8 @@
NEXTPNR_NAMESPACE_BEGIN
#define NUM_FUZZ_ROUTES 100000
void ice40DelayFuzzerMain(Context *ctx)
{
std::vector<WireId> srcWires, dstWires;
@ -53,17 +55,25 @@ void ice40DelayFuzzerMain(Context *ctx)
int index = 0;
int cnt = 0;
while (cnt < 1000)
while (cnt < NUM_FUZZ_ROUTES)
{
NPNR_ASSERT(index < int(srcWires.size()));
NPNR_ASSERT(index < int(dstWires.size()));
if (index >= int(srcWires.size()) || index >= int(dstWires.size())) {
index = 0;
ctx->shuffle(srcWires);
ctx->shuffle(dstWires);
}
WireId src = srcWires[index];
WireId dst = dstWires[index++];
std::unordered_map<WireId, PipId> route;
#if NUM_FUZZ_ROUTES <= 1000
if (!ctx->getActualRouteDelay(src, dst, nullptr, &route, false))
continue;
#else
if (!ctx->getActualRouteDelay(src, dst, nullptr, &route, true))
continue;
#endif
WireId cursor = dst;
delay_t delay = 0;
@ -85,6 +95,9 @@ void ice40DelayFuzzerMain(Context *ctx)
}
cnt++;
if (cnt % 100 == 0)
fprintf(stderr, "Fuzzed %d arcs.\n", cnt);
}
}

View File

@ -10,6 +10,8 @@ device = "hx8k"
sel_src_type = "LUTFF_OUT"
sel_dst_type = "LUTFF_IN_LUT"
#%% Read fuzz data
src_dst_pairs = defaultdict(lambda: 0)
delay_data = list()
@ -47,23 +49,153 @@ with open("tmfuzz_%s.txt" % device, "r") as f:
delay_data = np.array(delay_data)
#%%
#%% Apply simple low-weight bluring to fill gaps
for i in range(1):
neigh_sum = np.zeros((41, 41))
neigh_sum2 = np.zeros((41, 41))
neigh_count = np.zeros((41, 41))
for x in range(41):
for y in range(41):
for p in range(-1, 2):
for q in range(-1, 2):
if p == 0 and q == 0:
continue
if 0 <= (x+p) <= 40:
if 0 <= (y+q) <= 40:
neigh_sum[x, y] += delay_map_sum[x+p, y+q]
neigh_sum2[x, y] += delay_map_sum2[x+p, y+q]
neigh_count[x, y] += delay_map_count[x+p, y+q]
delay_map_sum += 0.1 * neigh_sum
delay_map_sum2 += 0.1 * neigh_sum2
delay_map_count += 0.1 * neigh_count
delay_map = delay_map_sum / delay_map_count
delay_map_std = np.sqrt(delay_map_count*delay_map_sum2 - delay_map_sum**2) / delay_map_count
#%% Print src-dst-pair summary
print("Src-Dst-Type pair summary:")
for cnt, src, dst in sorted([(v, k[0], k[1]) for k, v in src_dst_pairs.items()]):
print("%20s %20s %5d%s" % (src, dst, cnt, " *" if src == sel_src_type and dst == sel_dst_type else ""))
print()
#%%
plt.figure()
plt.imshow(delay_map_sum / delay_map_count)
plt.colorbar()
plt.show()
#%%
#%% Plot estimate vs actual delay
plt.figure()
plt.plot(delay_data[:,0], delay_data[:,1], ".")
plt.show()
#%% Plot delay heatmap and std dev heatmap
plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Actual Delay Map")
plt.imshow(delay_map)
plt.colorbar()
plt.subplot(122)
plt.title("Standard Deviation")
plt.imshow(delay_map_std)
plt.colorbar()
plt.show()
#%% Linear least-squares fits of delayEstimate models
def nonlinearPreprocessor1(dx, dy):
dx, dy = abs(dx), abs(dy)
values = [1.0]
values.append(dx + dy) # 1-norm
values.append((dx**2 + dy**2)**(1/2)) # 2-norm
values.append((dx**3 + dy**3)**(1/3)) # 3-norm
return np.array(values)
A = np.zeros((41*41, len(nonlinearPreprocessor1(0, 0))))
b = np.zeros(41*41)
index = 0
for x in range(41):
for y in range(41):
A[index, :] = nonlinearPreprocessor1(x-20, y-20)
b[index] = delay_map[x, y]
index += 1
model1_params, _, _, _ = np.linalg.lstsq(A, b)
print("Model #1 parameters:", model1_params)
model1_map = np.zeros((41, 41))
for x in range(41):
for y in range(41):
v = np.dot(model1_params, nonlinearPreprocessor1(x-20, y-20))
model1_map[x, y] = v
plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Model #1 Delay Map")
plt.imshow(model1_map)
plt.colorbar()
plt.subplot(122)
plt.title("Model #1 Error Map")
plt.imshow(model1_map - delay_map)
plt.colorbar()
plt.show()
plt.figure(figsize=(8, 3))
plt.title("Model #1 vs Actual Delay")
plt.plot(delay_map.flat, model1_map.flat, ".")
plt.plot([0, 4000], [0, 4000], "k")
plt.ylabel("Model #1 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()
print("Total RMS error: %f" % np.sqrt(np.mean((delay_map - model1_map)**2)))
print()
if True:
def nonlinearPreprocessor2(v):
return np.array([1, v, np.sqrt(v)])
A = np.zeros((41*41, len(nonlinearPreprocessor2(0))))
b = np.zeros(41*41)
index = 0
for x in range(41):
for y in range(41):
A[index, :] = nonlinearPreprocessor2(model1_map[x, y])
b[index] = delay_map[x, y]
index += 1
model2_params, _, _, _ = np.linalg.lstsq(A, b)
print("Model #2 parameters:", model2_params)
model2_map = np.zeros((41, 41))
for x in range(41):
for y in range(41):
v = np.dot(model1_params, nonlinearPreprocessor1(x-20, y-20))
v = np.dot(model2_params, nonlinearPreprocessor2(v))
model2_map[x, y] = v
plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Model #2 Delay Map")
plt.imshow(model2_map)
plt.colorbar()
plt.subplot(122)
plt.title("Model #2 Error Map")
plt.imshow(model2_map - delay_map)
plt.colorbar()
plt.show()
plt.figure(figsize=(8, 3))
plt.title("Model #2 vs Actual Delay")
plt.plot(delay_map.flat, model2_map.flat, ".")
plt.plot([0, 4000], [0, 4000], "k")
plt.ylabel("Model #2 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()
print("Total RMS error: %f" % np.sqrt(np.mean((delay_map - model2_map)**2)))
print()