tmg: Add net_timings, crit path and slack hist

This commit is contained in:
rowanG077 2023-06-01 18:00:35 +02:00 committed by myrtle
parent 8b51674a6b
commit 596873c302
4 changed files with 174 additions and 368 deletions

View File

@ -356,9 +356,14 @@ struct TimingResult
dict<IdString, CriticalPath> clock_paths;
// Cross-domain critical paths
std::vector<CriticalPath> xclock_paths;
// Domains with no interior paths
pool<IdString> empty_paths;
// Detailed net timing data
dict<IdString, std::vector<NetSinkTiming>> detailed_net_timings;
// Histogram of delays
dict<int, unsigned> delay_frequency;
};
// Represents the contents of a non-leaf cell in a design

View File

@ -50,17 +50,17 @@ TimingAnalyser::TimingAnalyser(Context *ctx) : ctx(ctx)
async_clock_id = 0;
};
void TimingAnalyser::setup()
void TimingAnalyser::setup(bool update_net_timings, bool update_histogram, bool update_crit_paths, bool update_route_delays)
{
init_ports();
get_cell_delays();
topo_sort();
setup_port_domains();
identify_related_domains();
run();
run(update_net_timings, update_histogram, update_crit_paths, update_route_delays);
}
void TimingAnalyser::run(bool update_route_delays)
void TimingAnalyser::run(bool update_net_timings, bool update_histogram, bool update_crit_paths, bool update_route_delays)
{
reset_times();
if (update_route_delays)
@ -69,6 +69,25 @@ void TimingAnalyser::run(bool update_route_delays)
walk_backward();
compute_slack();
compute_criticality();
// Ensure we clear all timing results if any of them has been marked as
// as to be updated. This is done so we ensure it's not possible to have
// timing_result which contains mixed reports
if (update_net_timings || update_histogram || update_crit_paths) {
ctx->timing_result = TimingResult();
}
if (update_net_timings) {
build_detailed_net_timing_report();
}
if (update_histogram) {
build_slack_histogram_report();
}
if (update_crit_paths) {
build_crit_path_reports();
}
}
void TimingAnalyser::init_ports()
@ -640,19 +659,21 @@ void TimingAnalyser::walk_backward()
}
}
dict<domain_id_t, delay_t> TimingAnalyser::max_delay_by_domain()
dict<domain_id_t, delay_t> TimingAnalyser::max_delay_by_domain_pairs()
{
dict<domain_id_t, delay_t> domain_delay;
for (auto p : topological_order) {
auto &pd = ports.at(p);
for (auto &req : pd.required) {
if (pd.arrival.count(req.first)) {
if (domains.at(req.first).key.is_async())
continue;
auto &arr = pd.arrival.at(req.first);
delay_t delay = arr.value.maxDelay() - req.second.value.minDelay();
if (!domain_delay.count(req.first) || domain_delay.at(req.first) < delay)
domain_delay[req.first] = delay;
auto &capture = req.first;
for (auto &arr : pd.arrival) {
auto &launch = arr.first;
auto dp = domain_pair_id(launch, capture);
delay_t delay = arr.second.value.maxDelay() - req.second.value.minDelay();
if (!domain_delay.count(dp) || domain_delay.at(dp) < delay)
domain_delay[dp] = delay;
}
}
}
@ -703,6 +724,7 @@ void TimingAnalyser::compute_criticality()
{
for (auto p : topological_order) {
auto &pd = ports.at(p);
for (auto &pdp : pd.domain_pairs) {
auto &dp = domain_pairs.at(pdp.first);
// Do not set criticality for asynchronous paths
@ -719,13 +741,51 @@ void TimingAnalyser::compute_criticality()
}
}
std::vector<CellPortKey> TimingAnalyser::get_failing_eps(domain_id_t domain_pair, int count)
void TimingAnalyser::build_detailed_net_timing_report()
{
std::vector<CellPortKey> failing_eps;
auto &net_timings = ctx->timing_result.detailed_net_timings;
for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
auto &dom = domains.at(dom_id);
for (auto &ep : dom.endpoints) {
auto &pd = ports.at(ep.first);
const NetInfo *net = port_info(ep.first).net;
for (auto &arr : pd.arrival) {
auto &launch = domains.at(arr.first).key;
for (auto &req : pd.required) {
auto &capture = domains.at(req.first).key;
NetSinkTiming sink_timing;
sink_timing.clock_pair = ClockPair {
.start = ClockEvent {
.clock = launch.clock,
.edge = launch.edge
},
.end = ClockEvent {
.clock = capture.clock,
.edge = capture.edge
}
};
sink_timing.cell_port = std::make_pair(pd.cell_port.cell, pd.cell_port.port);
sink_timing.delay = arr.second.value.max_delay;
log_info("update net_timings: %s: %f\n", net->name.c_str(ctx), (float) sink_timing.delay);
net_timings[net->name].push_back(sink_timing);
}
}
}
}
}
std::vector<CellPortKey> TimingAnalyser::get_worst_eps(domain_id_t domain_pair, int count)
{
std::vector<CellPortKey> worst_eps;
delay_t last_slack = std::numeric_limits<delay_t>::min();
auto &dp = domain_pairs.at(domain_pair);
auto &cap_d = domains.at(dp.key.capture);
while (int(failing_eps.size()) < count) {
while (int(worst_eps.size()) < count) {
CellPortKey next;
delay_t next_slack = std::numeric_limits<delay_t>::max();
for (auto ep : cap_d.endpoints) {
@ -740,35 +800,10 @@ std::vector<CellPortKey> TimingAnalyser::get_failing_eps(domain_id_t domain_pair
}
if (next == CellPortKey())
break;
failing_eps.push_back(next);
worst_eps.push_back(next);
last_slack = next_slack;
}
return failing_eps;
}
std::string tgp_to_string2(TimingPortClass c) {
switch (c) {
case TMG_CLOCK_INPUT:
return "TMG_CLOCK_INPUT";
case TMG_GEN_CLOCK:
return "TMG_GEN_CLOCK";
case TMG_REGISTER_INPUT:
return "TMG_REGISTER_INPUT";
case TMG_REGISTER_OUTPUT:
return "TMG_REGISTER_OUTPUT";
case TMG_COMB_INPUT:
return "TMG_COMB_INPUT";
case TMG_COMB_OUTPUT:
return "TMG_COMB_OUTPUT";
case TMG_STARTPOINT:
return "TMG_STARTPOINT";
case TMG_ENDPOINT:
return "TMG_ENDPOINT";
case TMG_IGNORE:
return "TMG_IGNORE";
}
return "UNKNOWN";
return worst_eps;
}
CriticalPath TimingAnalyser::build_critical_path_report(domain_id_t domain_pair, CellPortKey endpoint)
@ -852,8 +887,6 @@ CriticalPath TimingAnalyser::build_critical_path_report(domain_id_t domain_pair,
}
}
log_info("building critical path report for clocks: %s -> %s\n", launch.clock.c_str(ctx), capture.clock.c_str(ctx));
for (auto sink : crit_path) {
auto sink_cell = sink.cell;
auto &port = sink_cell->ports.at(sink.port);
@ -861,10 +894,6 @@ CriticalPath TimingAnalyser::build_critical_path_report(domain_id_t domain_pair,
auto &driver = net->driver;
auto driver_cell = driver.cell;
auto clockInfo0 = ctx->getPortTimingClass(driver_cell, driver.port, clock_start);
log_info("\t%s.%s, tmgPortClass: %s\n", sink_cell->name.c_str(ctx), port.name.c_str(ctx), tgp_to_string2(clockInfo0).c_str());
CriticalPath::Segment seg_logic;
DelayQuad comb_delay;
@ -920,22 +949,25 @@ CriticalPath TimingAnalyser::build_critical_path_report(domain_id_t domain_pair,
return report;
}
void TimingAnalyser::print_report()
void TimingAnalyser::build_crit_path_reports()
{
dict<IdString, CriticalPath> clock_reports;
std::vector<CriticalPath> xclock_reports;
dict<IdString, ClockFmax> clock_fmax;
std::set<IdString> empty_clocks;
auto &clock_reports = ctx->timing_result.clock_paths;
auto &xclock_reports = ctx->timing_result.xclock_paths;
auto &clock_fmax = ctx->timing_result.clock_fmax;
auto &empty_clocks = ctx->timing_result.empty_paths;
auto &clock_delays_ctx = ctx->timing_result.clock_delays;
auto delay_by_domain = max_delay_by_domain();
auto delay_by_domain = max_delay_by_domain_pairs();
auto uq_doms = ctx->timing_result.empty_paths;
auto clock_pairs = std::vector<std::pair<ClockDomainKey, ClockDomainKey>>();
for (int i = 0; i < int(domain_pairs.size()); i++) {
auto &dp = domain_pairs.at(i);
auto &launch = domains.at(dp.key.launch).key;
auto &capture = domains.at(dp.key.capture).key;
empty_clocks.insert(launch.clock);
empty_clocks.insert(capture.clock);
clock_pairs.emplace_back(std::make_pair(launch, capture));
}
for (int i = 0; i < int(domain_pairs.size()); i++) {
@ -943,7 +975,7 @@ void TimingAnalyser::print_report()
auto &launch = domains.at(dp.key.launch).key;
auto &capture = domains.at(dp.key.capture).key;
if (launch.clock != capture.clock || launch.clock == ctx->id("$async$"))
if (launch.clock != capture.clock || launch.is_async())
continue;
auto path_delay = delay_by_domain.at(dp.key.launch);
@ -957,9 +989,13 @@ void TimingAnalyser::print_report()
Fmax = 500 / ctx->getDelayNS(path_delay);
if (!clock_fmax.count(launch.clock) || Fmax < clock_fmax.at(launch.clock).achieved) {
float target = ctx->setting<float>("target_freq") / 1e6;
if (ctx->nets.at(launch.clock)->clkconstr)
target = 1000 / ctx->getDelayNS(ctx->nets.at(launch.clock)->clkconstr->period.minDelay());
clock_fmax[launch.clock].achieved = Fmax;
clock_fmax[launch.clock].constraint = 0.0f; // Will be filled later
auto worst_endpoint = get_failing_eps(i, 1).at(0);
clock_fmax[launch.clock].constraint = target;
auto worst_endpoint = get_worst_eps(i, 1).at(0);
clock_reports[launch.clock] = build_critical_path_report(i, worst_endpoint);
}
}
@ -969,17 +1005,13 @@ void TimingAnalyser::print_report()
auto &launch = domains.at(dp.key.launch).key;
auto &capture = domains.at(dp.key.capture).key;
if (launch.clock == capture.clock && launch.clock == ctx->id("$async$"))
if (launch.clock == capture.clock)
continue;
auto worst_endpoint = get_failing_eps(i, 1).at(0);
auto worst_endpoint = get_worst_eps(i, 1).at(0);
xclock_reports.emplace_back(build_critical_path_report(i, worst_endpoint));
}
if (clock_reports.empty() && xclock_reports.empty()) {
log_info("No Fmax available; no interior timing paths found in design.\n");
}
std::sort(xclock_reports.begin(), xclock_reports.end(), [&](const CriticalPath &ra, const CriticalPath &rb) {
const auto &a = ra.clock_pair;
const auto &b = rb.clock_pair;
@ -1008,13 +1040,13 @@ void TimingAnalyser::print_report()
clock_fmax[clock.first].constraint = target;
}
clock_delays_ctx = clock_delays;
}
auto print_path = true;
auto print_fmax =true;
auto format_event = [&](const ClockEvent &e, int field_width = 0) {
static std::string clock_event_name(const Context *ctx, const ClockDomainKey &e, int field_width = 0)
{
std::string value;
if (e.clock == ctx->id("$async$"))
if (e.clock == IdString() || e.clock == ctx->id("$async$"))
value = std::string("<async>");
else
value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
@ -1023,293 +1055,39 @@ void TimingAnalyser::print_report()
return value;
};
// Print critical paths
if (print_path) {
if (ctx->idstring_str_to_idx == nullptr) {
log_info("global: ctx->idstring_str_to_idx is nullptr\n");
} else {
for (const auto& kv : *ctx->idstring_str_to_idx) {
log_info("global: %s -> %d\n", kv.first.c_str(), kv.second);
}
}
void TimingAnalyser::build_slack_histogram_report()
{
auto& slack_histogram = ctx->timing_result.slack_histogram;
static auto print_net_source = [](Context* ctx, const NetInfo *net) {
// Check if this net is annotated with a source list
auto sources = net->attrs.find(ctx->id("src"));
if (sources == net->attrs.end()) {
// No sources for this net, can't print anything
return;
}
for (domain_id_t dom_id = 0; dom_id < domain_id_t(domains.size()); ++dom_id) {
for (auto &ep : domains.at(dom_id).endpoints) {
auto &pd = ports.at(ep.first);
// Sources are separated by pipe characters.
// There is no guaranteed ordering on sources, so we just print all
auto sourcelist = sources->second.as_string();
std::vector<std::string> source_entries;
size_t current = 0, prev = 0;
while ((current = sourcelist.find("|", prev)) != std::string::npos) {
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
prev = current + 1;
}
// Ensure we emplace the final entry
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
for (auto &req : pd.required) {
auto &capture = domains.at(req.first).key;
for (auto &arr : pd.arrival) {
auto &launch = domains.at(arr.first).key;
// Iterate and print our source list at the correct indentation level
log_info(" Defined in:\n");
for (auto entry : source_entries) {
log_info(" %s\n", entry.c_str());
}
};
// A helper function for reporting one critical path
auto print_path_report = [](Context* ctx, const CriticalPath &path) {
delay_t total = 0, logic_total = 0, route_total = 0;
log_info("curr total\n");
for (const auto &segment : path.segments) {
// log_info("processing segment %s\n", segment.net.c_str(ctx));
total += segment.delay;
if (segment.type == CriticalPath::Segment::Type::CLK_TO_Q ||
segment.type == CriticalPath::Segment::Type::SOURCE ||
segment.type == CriticalPath::Segment::Type::LOGIC ||
segment.type == CriticalPath::Segment::Type::SETUP) {
logic_total += segment.delay;
const std::string type_name =
(segment.type == CriticalPath::Segment::Type::SETUP) ? "Setup" : "Source";
log_info("%4.1f %4.1f %s %s.%s\n", ctx->getDelayNS(segment.delay), ctx->getDelayNS(total),
type_name.c_str(), segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
} else if (segment.type == CriticalPath::Segment::Type::ROUTING) {
route_total += segment.delay;
const auto &driver = ctx->cells.at(segment.from.first);
const auto &sink = ctx->cells.at(segment.to.first);
auto driver_loc = ctx->getBelLocation(driver->bel);
auto sink_loc = ctx->getBelLocation(sink->bel);
log_info("%4.1f %4.1f Net %s (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(segment.delay),
ctx->getDelayNS(total), segment.net.c_str(ctx),
driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y);
log_info(" Sink %s.%s\n", segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
const NetInfo *net = ctx->nets.at(segment.net).get();
if (ctx->verbose) {
PortRef sink_ref;
sink_ref.cell = sink.get();
sink_ref.port = segment.to.second;
auto driver_wire = ctx->getNetinfoSourceWire(net);
auto sink_wire = ctx->getNetinfoSinkWire(net, sink_ref, 0);
log_info(" prediction: %f ns estimate: %f ns\n",
ctx->getDelayNS(ctx->predictArcDelay(net, sink_ref)),
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
auto cursor = sink_wire;
delay_t delay;
while (driver_wire != cursor) {
#ifdef ARCH_ECP5
if (net->is_global)
break;
#endif
auto it = net->wires.find(cursor);
assert(it != net->wires.end());
auto pip = it->second.pip;
NPNR_ASSERT(pip != PipId());
delay = ctx->getPipDelay(pip).maxDelay();
log_info(" %1.3f %s\n", ctx->getDelayNS(delay), ctx->nameOfPip(pip));
cursor = ctx->getPipSrcWire(pip);
}
}
if (!ctx->disable_critical_path_source_print) {
print_net_source(ctx, net);
}
}
}
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
};
// Single domain paths
for (auto &clock : clock_reports) {
log_break();
std::string start = clock.second.clock_pair.start.edge == FALLING_EDGE ? std::string("negedge")
: std::string("posedge");
std::string end =
clock.second.clock_pair.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
end.c_str());
auto &report = clock.second;
print_path_report(ctx, report);
}
// Cross-domain paths
for (auto &report : xclock_reports) {
log_break();
std::string start = format_event(report.clock_pair.start);
std::string end = format_event(report.clock_pair.end);
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
print_path_report(ctx, report);
}
}
if (print_fmax) {
log_break();
unsigned max_width = 0;
for (auto &clock : clock_reports)
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
for (auto &clock : clock_reports) {
const auto &clock_name = clock.first.str(ctx);
const int width = max_width - clock_name.size();
float fmax = clock_fmax[clock.first].achieved;
float target = clock_fmax[clock.first].constraint;
bool passed = target < fmax;
if (passed)
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false))
log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
}
log_break();
// All clock to clock delays
const auto &clock_delays = get_clock_delays();
// Clock to clock delays for xpaths
dict<ClockPair, delay_t> xclock_delays;
for (auto &report : xclock_reports) {
const auto &clock1_name = report.clock_pair.start.clock;
const auto &clock2_name = report.clock_pair.end.clock;
const auto key = std::make_pair(clock1_name, clock2_name);
if (clock_delays.count(key)) {
xclock_delays[report.clock_pair] = clock_delays.at(key);
}
}
unsigned max_width_xca = 0;
unsigned max_width_xcb = 0;
for (auto &report : xclock_reports) {
max_width_xca = std::max((unsigned)format_event(report.clock_pair.start).length(), max_width_xca);
max_width_xcb = std::max((unsigned)format_event(report.clock_pair.end).length(), max_width_xcb);
}
// Check and report xpath delays for related clocks
if (!xclock_reports.empty()) {
for (auto &report : xclock_reports) {
const auto &clock_a = report.clock_pair.start.clock;
const auto &clock_b = report.clock_pair.end.clock;
const auto key = std::make_pair(clock_a, clock_b);
if (!clock_delays.count(key)) {
// @gatecat: old timing analysis includes async path
// The slack doesn' make much sense so I filter it out.
if (launch.clock != capture.clock || launch.is_async())
continue;
float clk_period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
if (ctx->nets.at(launch.clock)->clkconstr)
clk_period = ctx->nets.at(launch.clock)->clkconstr->period.minDelay();
if (launch.edge != capture.edge)
clk_period = clk_period / 2;
delay_t delay = arr.second.value.maxDelay() - req.second.value.minDelay();
delay_t slack = clk_period - delay;
int slack_ps = ctx->getDelayNS(slack) * 1000;
slack_histogram[slack_ps]++;
}
delay_t path_delay = 0;
for (const auto &segment : report.segments) {
path_delay += segment.delay;
}
// Compensate path delay for clock-to-clock delay. If the
// result is negative then only the latter matters. Otherwise
// the compensated path delay is taken.
auto clock_delay = clock_delays.at(key);
path_delay -= clock_delay;
float fmax = std::numeric_limits<float>::infinity();
if (path_delay < 0) {
fmax = 1e3f / ctx->getDelayNS(clock_delay);
} else if (path_delay > 0) {
fmax = 1e3f / ctx->getDelayNS(path_delay);
}
// Both clocks are related so they should have the same
// frequency. However, they may get different constraints from
// user input. In case of only one constraint preset take it,
// otherwise get the worst case (min.)
float target;
if (clock_fmax.count(clock_a) && !clock_fmax.count(clock_b)) {
target = clock_fmax.at(clock_a).constraint;
} else if (!clock_fmax.count(clock_a) && clock_fmax.count(clock_b)) {
target = clock_fmax.at(clock_b).constraint;
} else {
target = std::min(clock_fmax.at(clock_a).constraint, clock_fmax.at(clock_b).constraint);
}
bool passed = target < fmax;
auto ev_a = format_event(report.clock_pair.start, max_width_xca);
auto ev_b = format_event(report.clock_pair.end, max_width_xcb);
if (passed)
log_info("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(), ev_b.c_str(),
fmax, passed ? "PASS" : "FAIL", target);
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false) ||
bool_or_default(ctx->settings, ctx->id("timing/ignoreRelClk"), false))
log_warning("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(),
ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(),
ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
}
log_break();
}
// Report clock delays for xpaths
if (!clock_delays.empty()) {
for (auto &pair : xclock_delays) {
auto ev_a = format_event(pair.first.start, max_width_xca);
auto ev_b = format_event(pair.first.end, max_width_xcb);
delay_t delay = pair.second;
if (pair.first.start.edge != pair.first.end.edge) {
delay /= 2;
}
log_info("Clock to clock delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(),
ctx->getDelayNS(delay));
}
log_break();
}
for (auto &eclock : empty_clocks) {
if (eclock != ctx->id("$async$"))
log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx));
}
log_break();
int start_field_width = 0, end_field_width = 0;
for (auto &report : xclock_reports) {
start_field_width = std::max((int)format_event(report.clock_pair.start).length(), start_field_width);
end_field_width = std::max((int)format_event(report.clock_pair.end).length(), end_field_width);
}
for (auto &report : xclock_reports) {
const ClockEvent &a = report.clock_pair.start;
const ClockEvent &b = report.clock_pair.end;
delay_t path_delay = 0;
for (const auto &segment : report.segments) {
path_delay += segment.delay;
}
auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width);
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path_delay));
}
log_break();
}
}
@ -1317,6 +1095,7 @@ domain_id_t TimingAnalyser::domain_id(IdString cell, IdString clock_port, ClockE
{
return domain_id(ctx->cells.at(cell)->ports.at(clock_port).net, edge);
}
domain_id_t TimingAnalyser::domain_id(const NetInfo *net, ClockEdge edge)
{
NPNR_ASSERT(net != nullptr);
@ -1327,6 +1106,7 @@ domain_id_t TimingAnalyser::domain_id(const NetInfo *net, ClockEdge edge)
}
return inserted.first->second;
}
domain_id_t TimingAnalyser::domain_pair_id(domain_id_t launch, domain_id_t capture)
{
ClockDomainPairKey key{launch, capture};

View File

@ -74,9 +74,8 @@ struct TimingAnalyser
{
public:
TimingAnalyser(Context *ctx);
void setup();
void run(bool update_route_delays = true);
void print_report();
void setup(bool update_net_timings = false, bool update_histogram = false, bool update_crit_paths = false, bool update_route_delays = true);
void run(bool update_net_timings = false, bool update_histogram = false, bool update_crit_paths = false, bool update_route_delays = true);
// This is used when routers etc are not actually binding detailed routing (due to congestion or an abstracted
// model), but want to re-run STA with their own calculated delays
@ -115,17 +114,20 @@ struct TimingAnalyser
void compute_slack();
void compute_criticality();
dict<domain_id_t, delay_t> max_delay_by_domain();
void build_detailed_net_timing_report();
// Build up CriticalPathData
CriticalPath build_critical_path_report(domain_id_t domain_pair, CellPortKey endpoint);
void build_crit_path_reports();
void build_slack_histogram_report();
dict<domain_id_t, delay_t> max_delay_by_domain_pairs();
// get the N most failing endpoints for a given domain pair
std::vector<CellPortKey> get_failing_eps(domain_id_t domain_pair, int count);
std::vector<CellPortKey> get_worst_eps(domain_id_t domain_pair, int count);
// print the critical path for an endpoint and domain pair
void print_critical_path(CellPortKey endpoint, domain_id_t domain_pair);
// Build up CriticalPathData
// Build critical path report
CriticalPath build_critical_path_report(domain_id_t domain_pair, CellPortKey endpoint);
const DelayPair init_delay{std::numeric_limits<delay_t>::max(), std::numeric_limits<delay_t>::lowest()};
// Set arrival/required times if more/less than the current value

View File

@ -26,6 +26,8 @@
#include "log.h"
#include "timing.h"
#include "util.h"
#include <fstream>
#include <iostream>
NEXTPNR_NAMESPACE_BEGIN
@ -606,6 +608,10 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
DelayFrequency slack_histogram;
DetailedNetTimings detailed_net_timings;
print_path = true;
update_results = true;
print_histogram = true;
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
print_histogram ? &slack_histogram : nullptr,
(update_results && ctx->detailed_timing_report) ? &detailed_net_timings : nullptr);
@ -613,12 +619,18 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
// Use TimingAnalyser to determine clock-to-clock relations
TimingAnalyser timingAnalyser(ctx);
timingAnalyser.setup();
timingAnalyser.setup(true, true, true, true);
log("start timingAnalyser.print_report();\n\n");
timingAnalyser.print_report();
// timingAnalyser.print_report();
log("end timingAnalyser.print_report();\n\n");
std::string filename = "timingAnalyser.json";
std::ofstream f(filename);
if (!f)
log_error("Failed to open report file '%s' for writing.\n", filename.c_str());
ctx->writeReport(f);
bool report_critical_paths = print_path || print_fmax || update_results;
dict<IdString, CriticalPath> clock_reports;
@ -633,6 +645,7 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
const ClockEvent &b = path.first.end;
empty_clocks.insert(a.clock);
empty_clocks.insert(b.clock);
log_info("timing_old: clock pair: %s -> %s\n", a.clock.c_str(ctx), b.clock.c_str(ctx));
}
for (auto path : crit_paths) {
const ClockEvent &a = path.first.start;
@ -1023,6 +1036,12 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
results.detailed_net_timings = std::move(detailed_net_timings);
}
std::string filename2 = "timing_old.json";
std::ofstream f2(filename2);
if (!f)
log_error("Failed to open report file '%s' for writing.\n", filename.c_str());
ctx->writeReport(f2);
}
NEXTPNR_NAMESPACE_END