Moved timing result report storage to the context, added its writeout to the current utilization and fmax report

Signed-off-by: Maciej Kurc <mkurc@antmicro.com>
This commit is contained in:
Maciej Kurc 2021-09-28 17:01:28 +02:00
parent c6dc1f535a
commit 6deff56e83
6 changed files with 279 additions and 282 deletions

View File

@ -183,9 +183,6 @@ po::options_description CommandHandler::getGeneralOptions()
general.add_options()("placed-svg", po::value<std::string>(), "write render of placement to SVG file"); general.add_options()("placed-svg", po::value<std::string>(), "write render of placement to SVG file");
general.add_options()("routed-svg", po::value<std::string>(), "write render of routing to SVG file"); general.add_options()("routed-svg", po::value<std::string>(), "write render of routing to SVG file");
general.add_options()("timing-report", po::value<std::string>(),
"write timing analysis report in CSV format to file");
return general; return general;
} }
@ -252,11 +249,6 @@ void CommandHandler::setupContext(Context *ctx)
ctx->settings[ctx->id("timing/allowFail")] = true; ctx->settings[ctx->id("timing/allowFail")] = true;
} }
if (vm.count("timing-report")) {
std::string filename = vm["timing-report"].as<std::string>();
ctx->settings[ctx->id("timing/reportFile")] = filename;
}
if (vm.count("placer")) { if (vm.count("placer")) {
std::string placer = vm["placer"].as<std::string>(); std::string placer = vm["placer"].as<std::string>();
if (std::find(Arch::availablePlacers.begin(), Arch::availablePlacers.end(), placer) == if (std::find(Arch::availablePlacers.begin(), Arch::availablePlacers.end(), placer) ==

View File

@ -223,10 +223,81 @@ struct ClockFmax
float constraint; float constraint;
}; };
struct ClockEvent
{
IdString clock;
ClockEdge edge;
bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; }
unsigned int hash() const { return mkhash(clock.hash(), int(edge)); }
};
struct ClockPair
{
ClockEvent start, end;
bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; }
unsigned int hash() const { return mkhash(start.hash(), end.hash()); }
};
struct CriticalPath
{
struct Segment {
// Segment type
enum class Type {
LOGIC,
ROUTING
};
// Type
Type type;
// Net name (routing only)
IdString net;
// From cell.port
std::pair<IdString, IdString> from;
// To cell.port
std::pair<IdString, IdString> to;
// Segment delay
delay_t delay;
// Segment budget (routing only)
delay_t budget;
};
// Clock pair
ClockPair clock_pair;
// Total path delay
delay_t delay;
// Period (max allowed delay)
delay_t period;
// Individual path segments
std::vector<Segment> segments;
};
// Holds timing information of a single source to sink path of a net
struct NetSinkTiming
{
// Clock event pair
ClockPair clock_pair;
// Cell and port (the sink)
std::pair<IdString, IdString> cell_port;
// Delay
delay_t delay;
// Delay budget
delay_t budget;
};
struct TimingResult struct TimingResult
{ {
// Achieved and target Fmax for all clock domains // Achieved and target Fmax for all clock domains
dict<IdString, ClockFmax> clock_fmax; dict<IdString, ClockFmax> clock_fmax;
// Single domain critical paths
dict<IdString, CriticalPath> clock_paths;
// Cross-domain critical paths
std::vector<CriticalPath> xclock_paths;
// Detailed net timing data
dict<IdString, std::vector<NetSinkTiming>> detailed_net_timings;
}; };
// Represents the contents of a non-leaf cell in a design // Represents the contents of a non-leaf cell in a design

View File

@ -40,6 +40,127 @@ dict<IdString, std::pair<int, int>> get_utilization(const Context *ctx)
return result; return result;
} }
} // namespace } // namespace
static std::string clock_event_name (const Context* ctx, const ClockEvent& e) {
std::string value;
if (e.clock == ctx->id("$async$"))
value = std::string("<async>");
else
value = (e.edge == FALLING_EDGE ? std::string("negedge ") :
std::string("posedge ")) + e.clock.str(ctx);
return value;
};
static Json::array report_critical_paths (const Context* ctx) {
auto report_critical_path = [ctx](const CriticalPath& report) {
Json::array pathJson;
for (const auto& segment : report.segments) {
const auto& driver = ctx->cells.at(segment.from.first);
const auto& sink = ctx->cells.at(segment.to.first);
auto fromLoc = ctx->getBelLocation(driver->bel);
auto toLoc = ctx->getBelLocation(sink->bel);
auto fromJson = Json::object({
{"cell", segment.from.first.c_str(ctx)},
{"port", segment.from.second.c_str(ctx)},
{"loc", Json::array({fromLoc.x, fromLoc.y})}
});
auto toJson = Json::object({
{"cell", segment.to.first.c_str(ctx)},
{"port", segment.to.second.c_str(ctx)},
{"loc", Json::array({toLoc.x, toLoc.y})}
});
auto segmentJson = Json::object({
{"delay", ctx->getDelayNS(segment.delay)},
{"from", fromJson},
{"to", toJson},
});
if (segment.type == CriticalPath::Segment::Type::LOGIC) {
segmentJson["type"] = "logic";
}
else if (segment.type == CriticalPath::Segment::Type::ROUTING) {
segmentJson["type"] = "routing";
segmentJson["net"] = segment.net.c_str(ctx);
segmentJson["budget"] = ctx->getDelayNS(segment.budget);
}
pathJson.push_back(segmentJson);
}
return pathJson;
};
auto critPathsJson = Json::array();
// Critical paths
for (auto &report : ctx->timing_result.clock_paths) {
critPathsJson.push_back(Json::object({
{"from", clock_event_name(ctx, report.second.clock_pair.start)},
{"to", clock_event_name(ctx, report.second.clock_pair.end)},
{"path", report_critical_path(report.second)}
}));
}
// Cross-domain paths
for (auto &report : ctx->timing_result.xclock_paths) {
critPathsJson.push_back(Json::object({
{"from", clock_event_name(ctx, report.clock_pair.start)},
{"to", clock_event_name(ctx, report.clock_pair.end)},
{"path", report_critical_path(report)}
}));
}
return critPathsJson;
}
static Json::array report_detailed_net_timings (const Context* ctx) {
auto detailedNetTimingsJson = Json::array();
// Detailed per-net timing analysis
for (const auto& it : ctx->timing_result.detailed_net_timings) {
const NetInfo* net = ctx->nets.at(it.first).get();
ClockEvent start = it.second[0].clock_pair.start;
Json::array endpointsJson;
for (const auto& sink_timing : it.second) {
// FIXME: Is it possible that there are multiple different start
// events for a single net? It has a single driver
NPNR_ASSERT(sink_timing.clock_pair.start == start);
auto endpointJson = Json::object({
{"cell", sink_timing.cell_port.first.c_str(ctx)},
{"port", sink_timing.cell_port.second.c_str(ctx)},
{"event", clock_event_name(ctx, sink_timing.clock_pair.end)},
{"delay", ctx->getDelayNS(sink_timing.delay)},
{"budget", ctx->getDelayNS(sink_timing.budget)}
});
endpointsJson.push_back(endpointJson);
}
auto netTimingJson = Json::object({
{"net", net->name.c_str(ctx)},
{"driver", net->driver.cell->name.c_str(ctx)},
{"port", net->driver.port.c_str(ctx)},
{"event", clock_event_name(ctx, start)},
{"endpoints", endpointsJson}
});
detailedNetTimingsJson.push_back(netTimingJson);
}
return detailedNetTimingsJson;
}
void Context::writeReport(std::ostream &out) const void Context::writeReport(std::ostream &out) const
{ {
auto util = get_utilization(this); auto util = get_utilization(this);
@ -60,6 +181,8 @@ void Context::writeReport(std::ostream &out) const
out << Json(Json::object{ out << Json(Json::object{
{"utilization", util_json}, {"utilization", util_json},
{"fmax", fmax_json}, {"fmax", fmax_json},
{"critical_paths", report_critical_paths(this)},
{"detailed_net_timings", report_detailed_net_timings(this)}
}) })
.dump() .dump()
<< std::endl; << std::endl;

View File

@ -874,7 +874,7 @@ bool router1(Context *ctx, const Router1Cfg &cfg)
log_info("Checksum: 0x%08x\n", ctx->checksum()); log_info("Checksum: 0x%08x\n", ctx->checksum());
timing_analysis(ctx, true /* slack_histogram */, true /* print_fmax */, true /* print_path */, timing_analysis(ctx, true /* slack_histogram */, true /* print_fmax */, true /* print_path */,
true /* warn_on_failure */, true /* write_report */); true /* warn_on_failure */, true /* update_results */);
return true; return true;
} catch (log_execution_error_exception) { } catch (log_execution_error_exception) {

View File

@ -26,12 +26,9 @@
#include <utility> #include <utility>
#include "log.h" #include "log.h"
#include "util.h" #include "util.h"
#include "json11.hpp"
NEXTPNR_NAMESPACE_BEGIN NEXTPNR_NAMESPACE_BEGIN
using namespace json11;
void TimingAnalyser::setup() void TimingAnalyser::setup()
{ {
init_ports(); init_ports();
@ -609,70 +606,19 @@ PortInfo &TimingAnalyser::port_info(const CellPortKey &key) { return ctx->cells.
/** LEGACY CODE BEGIN **/ /** LEGACY CODE BEGIN **/
namespace {
struct ClockEvent
{
IdString clock;
ClockEdge edge;
bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; }
unsigned int hash() const { return mkhash(clock.hash(), int(edge)); }
};
struct ClockPair
{
ClockEvent start, end;
bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; }
unsigned int hash() const { return mkhash(start.hash(), end.hash()); }
};
} // namespace
typedef std::vector<const PortRef *> PortRefVector; typedef std::vector<const PortRef *> PortRefVector;
typedef std::map<int, unsigned> DelayFrequency; typedef std::map<int, unsigned> DelayFrequency;
struct CriticalPath struct CriticalPathData
{ {
PortRefVector ports; PortRefVector ports;
delay_t path_delay; delay_t path_delay;
delay_t path_period; delay_t path_period;
}; };
typedef dict<ClockPair, CriticalPath> CriticalPathMap; typedef dict<ClockPair, CriticalPathData> CriticalPathDataMap;
struct CriticalPathSegment typedef dict<IdString, std::vector<NetSinkTiming>> DetailedNetTimings;
{
enum class Type {
LOGIC,
ROUTING
};
std::pair<CellInfo*,IdString> from;
std::pair<CellInfo*,IdString> to;
Type type;
const NetInfo* net;
delay_t delay;
delay_t budget;
};
typedef std::vector<CriticalPathSegment> CriticalPathSegments;
struct CriticalPathReport
{
ClockPair clock_pair;
CriticalPathSegments segments;
delay_t period;
};
typedef dict<ClockPair, CriticalPathReport> CriticalPathReportMap;
struct NetSinkTiming
{
ClockPair clock_pair;
PortRef sink;
delay_t delay;
delay_t budget;
};
typedef dict<const NetInfo*, std::vector<NetSinkTiming>, hash_ptr_ops> DetailedNetTimings;
struct Timing struct Timing
{ {
@ -680,7 +626,7 @@ struct Timing
bool net_delays; bool net_delays;
bool update; bool update;
delay_t min_slack; delay_t min_slack;
CriticalPathMap *crit_path; CriticalPathDataMap *crit_path;
DelayFrequency *slack_histogram; DelayFrequency *slack_histogram;
DetailedNetTimings *detailed_net_timings; DetailedNetTimings *detailed_net_timings;
IdString async_clock; IdString async_clock;
@ -697,7 +643,7 @@ struct Timing
dict<ClockEvent, delay_t> arrival_time; dict<ClockEvent, delay_t> arrival_time;
}; };
Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr, Timing(Context *ctx, bool net_delays, bool update, CriticalPathDataMap *crit_path = nullptr,
DelayFrequency *slack_histogram = nullptr, DelayFrequency *slack_histogram = nullptr,
DetailedNetTimings *detailed_net_timings = nullptr) DetailedNetTimings *detailed_net_timings = nullptr)
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->setting<float>("target_freq")), : ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->setting<float>("target_freq")),
@ -992,11 +938,11 @@ struct Timing
if (detailed_net_timings) { if (detailed_net_timings) {
NetSinkTiming sink_timing; NetSinkTiming sink_timing;
sink_timing.clock_pair = clockPair; sink_timing.clock_pair = clockPair;
sink_timing.sink = usr; sink_timing.cell_port = std::make_pair(usr.cell->name, usr.port);
sink_timing.delay = endpoint_arrival; sink_timing.delay = endpoint_arrival;
sink_timing.budget = period; sink_timing.budget = period;
(*detailed_net_timings)[net].push_back(sink_timing); (*detailed_net_timings)[net->name].push_back(sink_timing);
} }
if (crit_path) { if (crit_path) {
@ -1162,17 +1108,9 @@ void assign_budget(Context *ctx, bool quiet)
log_info("Checksum: 0x%08x\n", ctx->checksum()); log_info("Checksum: 0x%08x\n", ctx->checksum());
} }
void write_timing_report( CriticalPath build_critical_path_report(Context* ctx, ClockPair &clocks, const PortRefVector &crit_path) {
Context* ctx,
const std::string& file_name,
const std::map<IdString, CriticalPathReport> clock_reports,
const std::vector<CriticalPathReport> xclock_reports,
const DetailedNetTimings& detailed_net_timings
);
CriticalPathReport build_critical_path_report(Context* ctx, ClockPair &clocks, const PortRefVector &crit_path) { CriticalPath report;
CriticalPathReport report;
report.clock_pair = clocks; report.clock_pair = clocks;
auto &front = crit_path.front(); auto &front = crit_path.front();
@ -1217,24 +1155,24 @@ CriticalPathReport build_critical_path_report(Context* ctx, ClockPair &clocks, c
ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay); ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
} }
CriticalPathSegment seg_logic; CriticalPath::Segment seg_logic;
seg_logic.type = CriticalPathSegment::Type::LOGIC; seg_logic.type = CriticalPath::Segment::Type::LOGIC;
seg_logic.delay = comb_delay.maxDelay(); seg_logic.delay = comb_delay.maxDelay();
seg_logic.budget = 0; seg_logic.budget = 0;
seg_logic.from = std::make_pair(const_cast<CellInfo*>(last_cell), last_port); seg_logic.from = std::make_pair(last_cell->name, last_port);
seg_logic.to = std::make_pair(driver_cell, driver.port); seg_logic.to = std::make_pair(driver_cell->name, driver.port);
seg_logic.net = nullptr; seg_logic.net = IdString();
report.segments.push_back(seg_logic); report.segments.push_back(seg_logic);
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink); auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
CriticalPathSegment seg_route; CriticalPath::Segment seg_route;
seg_route.type = CriticalPathSegment::Type::ROUTING; seg_route.type = CriticalPath::Segment::Type::ROUTING;
seg_route.delay = net_delay; seg_route.delay = net_delay;
seg_route.budget = sink->budget; seg_route.budget = sink->budget;
seg_route.from = std::make_pair(driver_cell, driver.port); seg_route.from = std::make_pair(driver_cell->name, driver.port);
seg_route.to = std::make_pair(sink_cell, sink->port); seg_route.to = std::make_pair(sink_cell->name, sink->port);
seg_route.net = net; seg_route.net = net->name;
report.segments.push_back(seg_route); report.segments.push_back(seg_route);
last_cell = sink_cell; last_cell = sink_cell;
@ -1247,20 +1185,20 @@ CriticalPathReport build_critical_path_report(Context* ctx, ClockPair &clocks, c
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0); auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
delay_t setup = sinkClockInfo.setup.maxDelay(); delay_t setup = sinkClockInfo.setup.maxDelay();
CriticalPathSegment seg_logic; CriticalPath::Segment seg_logic;
seg_logic.type = CriticalPathSegment::Type::LOGIC; seg_logic.type = CriticalPath::Segment::Type::LOGIC;
seg_logic.delay = setup; seg_logic.delay = setup;
seg_logic.budget = 0; seg_logic.budget = 0;
seg_logic.from = std::make_pair(const_cast<CellInfo*>(last_cell), last_port); seg_logic.from = std::make_pair(last_cell->name, last_port);
seg_logic.to = seg_logic.from; seg_logic.to = seg_logic.from;
seg_logic.net = nullptr; seg_logic.net = IdString();
report.segments.push_back(seg_logic); report.segments.push_back(seg_logic);
} }
return report; return report;
} }
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure, bool write_report) void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure, bool update_results)
{ {
auto format_event = [ctx](const ClockEvent &e, int field_width = 0) { auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
std::string value; std::string value;
@ -1273,20 +1211,19 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
return value; return value;
}; };
CriticalPathMap crit_paths; CriticalPathDataMap crit_paths;
DelayFrequency slack_histogram; DelayFrequency slack_histogram;
DetailedNetTimings detailed_net_timings; DetailedNetTimings detailed_net_timings;
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr, Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
print_histogram ? &slack_histogram : nullptr, write_report ? &detailed_net_timings : nullptr); print_histogram ? &slack_histogram : nullptr, update_results ? &detailed_net_timings : nullptr);
timing.walk_paths(); timing.walk_paths();
bool report_critical_paths = print_path || print_fmax || write_report; bool report_critical_paths = print_path || print_fmax || update_results;
std::map<IdString, CriticalPathReport> clock_reports; dict<IdString, CriticalPath> clock_reports;
std::vector<CriticalPathReport> xclock_reports; std::vector<CriticalPath> xclock_reports;
dict<IdString, ClockFmax> clock_fmax;
std::map<IdString, double> clock_fmax;
std::set<IdString> empty_clocks; // set of clocks with no interior paths std::set<IdString> empty_clocks; // set of clocks with no interior paths
if (report_critical_paths) { if (report_critical_paths) {
@ -1308,8 +1245,9 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
Fmax = 1000 / ctx->getDelayNS(path.second.path_delay); Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
else else
Fmax = 500 / ctx->getDelayNS(path.second.path_delay); Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) { if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock).achieved) {
clock_fmax[a.clock] = Fmax; clock_fmax[a.clock].achieved = Fmax;
clock_fmax[a.clock].constraint = 0.0f; // Will be filled later
clock_reports[a.clock] = build_critical_path_report(ctx, path.first, path.second.ports); clock_reports[a.clock] = build_critical_path_report(ctx, path.first, path.second.ports);
clock_reports[a.clock].period = path.second.path_period; clock_reports[a.clock].period = path.second.path_period;
} }
@ -1330,7 +1268,7 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
log_info("No Fmax available; no interior timing paths found in design.\n"); log_info("No Fmax available; no interior timing paths found in design.\n");
} }
std::sort(xclock_reports.begin(), xclock_reports.end(), [ctx](const CriticalPathReport &ra, const CriticalPathReport &rb) { std::sort(xclock_reports.begin(), xclock_reports.end(), [ctx](const CriticalPath &ra, const CriticalPath &rb) {
const auto& a = ra.clock_pair; const auto& a = ra.clock_pair;
const auto& b = rb.clock_pair; const auto& b = rb.clock_pair;
@ -1351,26 +1289,45 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
return true; return true;
return false; return false;
}); });
for (auto &clock : clock_reports) {
float target = ctx->setting<float>("target_freq") / 1e6;
if (ctx->nets.at(clock.first)->clkconstr)
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
clock_fmax[clock.first].constraint = target;
}
}
// Update timing results in the context
if (update_results) {
auto& results = ctx->timing_result;
results.clock_fmax = std::move(clock_fmax);
results.clock_paths = std::move(clock_reports);
results.xclock_paths = std::move(xclock_reports);
results.detailed_net_timings = std::move(detailed_net_timings);
} }
// Print critical paths // Print critical paths
if (print_path) { if (print_path) {
auto print_path_report = [ctx](const CriticalPathReport& report) { // A helper function for reporting one critical path
auto print_path_report = [ctx](const CriticalPath& path) {
delay_t total = 0, logic_total = 0, route_total = 0; delay_t total = 0, logic_total = 0, route_total = 0;
log_info("curr total\n"); log_info("curr total\n");
for (const auto& segment : report.segments) { for (const auto& segment : path.segments) {
total += segment.delay; total += segment.delay;
if (segment.type == CriticalPathSegment::Type::LOGIC) { if (segment.type == CriticalPath::Segment::Type::LOGIC) {
logic_total += segment.delay; logic_total += segment.delay;
if (segment.from != segment.to) { if (segment.from != segment.to) {
log_info("%4.1f %4.1f Source %s.%s\n", log_info("%4.1f %4.1f Source %s.%s\n",
ctx->getDelayNS(segment.delay), ctx->getDelayNS(segment.delay),
ctx->getDelayNS(total), ctx->getDelayNS(total),
segment.from.first->name.c_str(ctx), segment.from.first.c_str(ctx),
segment.from.second.c_str(ctx) segment.from.second.c_str(ctx)
); );
} }
@ -1378,43 +1335,46 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
log_info("%4.1f %4.1f Setup %s.%s\n", log_info("%4.1f %4.1f Setup %s.%s\n",
ctx->getDelayNS(segment.delay), ctx->getDelayNS(segment.delay),
ctx->getDelayNS(total), ctx->getDelayNS(total),
segment.to.first->name.c_str(ctx), segment.to.first.c_str(ctx),
segment.to.second.c_str(ctx) segment.to.second.c_str(ctx)
); );
} }
} }
if (segment.type == CriticalPathSegment::Type::ROUTING) { if (segment.type == CriticalPath::Segment::Type::ROUTING) {
route_total += segment.delay; route_total += segment.delay;
auto driver_loc = ctx->getBelLocation(segment.from.first->bel); const auto& driver = ctx->cells.at(segment.from.first);
auto sink_loc = ctx->getBelLocation(segment.to.first->bel); const auto& sink = ctx->cells.at(segment.to.first);
auto driver_loc = ctx->getBelLocation(driver->bel);
auto sink_loc = ctx->getBelLocation(sink->bel);
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n",
ctx->getDelayNS(segment.delay), ctx->getDelayNS(segment.delay),
ctx->getDelayNS(total), ctx->getDelayNS(total),
segment.net->name.c_str(ctx), segment.net.c_str(ctx),
ctx->getDelayNS(segment.budget), ctx->getDelayNS(segment.budget),
driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y
); );
log_info(" Sink %s.%s\n", log_info(" Sink %s.%s\n",
segment.to.first->name.c_str(ctx), segment.to.first.c_str(ctx),
segment.to.second.c_str(ctx) segment.to.second.c_str(ctx)
); );
if (ctx->verbose) { if (ctx->verbose) {
PortRef sink; PortRef sink_ref;
sink.cell = segment.to.first; sink_ref.cell = sink.get();
sink.port = segment.to.second; sink_ref.port = segment.to.second;
sink.budget = segment.budget; sink_ref.budget = segment.budget;
auto net = segment.net; const NetInfo* net = ctx->nets.at(segment.net).get();
auto driver_wire = ctx->getNetinfoSourceWire(net); auto driver_wire = ctx->getNetinfoSourceWire(net);
auto sink_wire = ctx->getNetinfoSinkWire(net, sink, 0); auto sink_wire = ctx->getNetinfoSinkWire(net, sink_ref, 0);
log_info(" prediction: %f ns estimate: %f ns\n", log_info(" prediction: %f ns estimate: %f ns\n",
ctx->getDelayNS(ctx->predictDelay(net, sink)), ctx->getDelayNS(ctx->predictDelay(net, sink_ref)),
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire))); ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
auto cursor = sink_wire; auto cursor = sink_wire;
delay_t delay; delay_t delay;
@ -1437,6 +1397,7 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total)); log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
}; };
// Single domain paths
for (auto &clock : clock_reports) { for (auto &clock : clock_reports) {
log_break(); log_break();
std::string start = std::string start =
@ -1449,6 +1410,7 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
print_path_report(report); print_path_report(report);
} }
// Cross-domain paths
for (auto &report : xclock_reports) { for (auto &report : xclock_reports) {
log_break(); log_break();
std::string start = format_event(report.clock_pair.start); std::string start = format_event(report.clock_pair.start);
@ -1460,31 +1422,28 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
if (print_fmax) { if (print_fmax) {
log_break(); log_break();
unsigned max_width = 0; unsigned max_width = 0;
auto &result = ctx->timing_result;
result.clock_fmax.clear();
for (auto &clock : clock_reports) for (auto &clock : clock_reports)
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size()); max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
for (auto &clock : clock_reports) { for (auto &clock : clock_reports) {
const auto &clock_name = clock.first.str(ctx); const auto &clock_name = clock.first.str(ctx);
const int width = max_width - clock_name.size(); const int width = max_width - clock_name.size();
float target = ctx->setting<float>("target_freq") / 1e6;
if (ctx->nets.at(clock.first)->clkconstr)
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
result.clock_fmax[clock.first].achieved = clock_fmax[clock.first]; float fmax = clock_fmax[clock.first].achieved;
result.clock_fmax[clock.first].constraint = target; float target = clock_fmax[clock.first].constraint;
bool passed = target < fmax;
bool passed = target < clock_fmax[clock.first];
if (!warn_on_failure || passed) if (!warn_on_failure || passed)
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "", log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target); clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false)) else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false))
log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "", log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target); clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else else
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "", log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target); clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
} }
for (auto &eclock : empty_clocks) { for (auto &eclock : empty_clocks) {
if (eclock != ctx->id("$async$")) if (eclock != ctx->id("$async$"))
@ -1540,154 +1499,6 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
std::string(bins[i] * bar_width / max_freq, '*').c_str(), std::string(bins[i] * bar_width / max_freq, '*').c_str(),
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' '); (bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
} }
// Write detailed timing analysis report to file
std::string report_file;
if (write_report) {
if (ctx->settings.count(ctx->id("timing/reportFile"))) {
report_file = ctx->settings[ctx->id("timing/reportFile")].as_string();
}
}
if (!report_file.empty()) {
log_break();
log_info("Writing timing analysis report...\n");
write_timing_report(ctx, report_file,
clock_reports,
xclock_reports,
detailed_net_timings);
}
}
void write_timing_report(
Context* ctx,
const std::string& file_name,
const std::map<IdString, CriticalPathReport> clock_reports,
const std::vector<CriticalPathReport> xclock_reports,
const DetailedNetTimings& detailed_net_timings
)
{
auto event_name = [ctx](const ClockEvent &e) {
std::string value;
if (e.clock == ctx->id("$async$"))
value = std::string("<async>");
else
value = (e.edge == FALLING_EDGE ? std::string("negedge ") :
std::string("posedge ")) + e.clock.str(ctx);
return value;
};
auto report_critical_path = [ctx](const CriticalPathReport& report) {
Json::array pathJson;
for (const auto& segment : report.segments) {
auto fromLoc = ctx->getBelLocation(segment.from.first->bel);
auto toLoc = ctx->getBelLocation(segment.to.first->bel);
auto fromJson = Json::object({
{"cell", segment.from.first->name.c_str(ctx)},
{"port", segment.from.second.c_str(ctx)},
{"loc", Json::array({fromLoc.x, fromLoc.y})}
});
auto toJson = Json::object({
{"cell", segment.to.first->name.c_str(ctx)},
{"port", segment.to.second.c_str(ctx)},
{"loc", Json::array({toLoc.x, toLoc.y})}
});
auto segmentJson = Json::object({
{"delay", ctx->getDelayNS(segment.delay)},
{"from", fromJson},
{"to", toJson},
});
if (segment.type == CriticalPathSegment::Type::LOGIC) {
segmentJson["type"] = "logic";
}
else if (segment.type == CriticalPathSegment::Type::ROUTING) {
segmentJson["type"] = "routing";
segmentJson["net"] = segment.net->name.c_str(ctx);
segmentJson["budget"] = ctx->getDelayNS(segment.budget);
}
pathJson.push_back(segmentJson);
}
return pathJson;
};
// Open the file
FILE* fp = fopen(file_name.c_str(), "w");
NPNR_ASSERT(fp != nullptr);
// Critical paths
auto critPathsJson = Json::array();
for (auto &report : clock_reports) {
critPathsJson.push_back(Json::object({
{"from", event_name(report.second.clock_pair.start)},
{"to", event_name(report.second.clock_pair.end)},
{"path", report_critical_path(report.second)}
}));
}
// Cross-domain paths
for (auto &report : xclock_reports) {
critPathsJson.push_back(Json::object({
{"from", event_name(report.clock_pair.start)},
{"to", event_name(report.clock_pair.end)},
{"path", report_critical_path(report)}
}));
}
// Detailed per-net timing analysis
auto detailedNetTimingsJson = Json::array();
for (const auto& it : detailed_net_timings) {
const NetInfo* net = it.first;
ClockEvent start = it.second[0].clock_pair.start;
Json::array endpointsJson;
for (const auto& sink_timing : it.second) {
// FIXME: Is it possible that there are multiple different start
// events for a single net? It has a single driver
NPNR_ASSERT(sink_timing.clock_pair.start == start);
auto endpointJson = Json::object({
{"cell", sink_timing.sink.cell->name.c_str(ctx)},
{"port", sink_timing.sink.port.c_str(ctx)},
{"event", event_name(sink_timing.clock_pair.end)},
{"delay", ctx->getDelayNS(sink_timing.delay)},
{"budget", ctx->getDelayNS(sink_timing.budget)}
});
endpointsJson.push_back(endpointJson);
}
auto netTimingJson = Json::object({
{"net", net->name.c_str(ctx)},
{"driver", net->driver.cell->name.c_str(ctx)},
{"port", net->driver.port.c_str(ctx)},
{"event", event_name(start)},
{"endpoints", endpointsJson}
});
detailedNetTimingsJson.push_back(netTimingJson);
}
auto analysisJson = Json::object({
{"critical_paths", Json(critPathsJson)},
{"detailed_net_timings", Json(detailedNetTimingsJson)}
});
// Assemble and serialize the final Json
auto jsonRoot = Json(Json::object({
{"timing_analysis", Json(analysisJson)}
}));
fputs(jsonRoot.dump().c_str(), fp);
fclose(fp);
} }
NEXTPNR_NAMESPACE_END NEXTPNR_NAMESPACE_END

View File

@ -252,7 +252,7 @@ void assign_budget(Context *ctx, bool quiet = false);
// Perform timing analysis and print out the fmax, and optionally the // Perform timing analysis and print out the fmax, and optionally the
// critical path // critical path
void timing_analysis(Context *ctx, bool slack_histogram = true, bool print_fmax = true, bool print_path = false, void timing_analysis(Context *ctx, bool slack_histogram = true, bool print_fmax = true, bool print_path = false,
bool warn_on_failure = false, bool write_report = false); bool warn_on_failure = false, bool update_results = false);
NEXTPNR_NAMESPACE_END NEXTPNR_NAMESPACE_END