Moved timing result report storage to the context, added its writeout to the current utilization and fmax report
Signed-off-by: Maciej Kurc <mkurc@antmicro.com>
This commit is contained in:
parent
c6dc1f535a
commit
6deff56e83
@ -183,9 +183,6 @@ po::options_description CommandHandler::getGeneralOptions()
|
||||
general.add_options()("placed-svg", po::value<std::string>(), "write render of placement to SVG file");
|
||||
general.add_options()("routed-svg", po::value<std::string>(), "write render of routing to SVG file");
|
||||
|
||||
general.add_options()("timing-report", po::value<std::string>(),
|
||||
"write timing analysis report in CSV format to file");
|
||||
|
||||
return general;
|
||||
}
|
||||
|
||||
@ -252,11 +249,6 @@ void CommandHandler::setupContext(Context *ctx)
|
||||
ctx->settings[ctx->id("timing/allowFail")] = true;
|
||||
}
|
||||
|
||||
if (vm.count("timing-report")) {
|
||||
std::string filename = vm["timing-report"].as<std::string>();
|
||||
ctx->settings[ctx->id("timing/reportFile")] = filename;
|
||||
}
|
||||
|
||||
if (vm.count("placer")) {
|
||||
std::string placer = vm["placer"].as<std::string>();
|
||||
if (std::find(Arch::availablePlacers.begin(), Arch::availablePlacers.end(), placer) ==
|
||||
|
@ -223,10 +223,81 @@ struct ClockFmax
|
||||
float constraint;
|
||||
};
|
||||
|
||||
struct ClockEvent
|
||||
{
|
||||
IdString clock;
|
||||
ClockEdge edge;
|
||||
|
||||
bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; }
|
||||
unsigned int hash() const { return mkhash(clock.hash(), int(edge)); }
|
||||
};
|
||||
|
||||
struct ClockPair
|
||||
{
|
||||
ClockEvent start, end;
|
||||
|
||||
bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; }
|
||||
unsigned int hash() const { return mkhash(start.hash(), end.hash()); }
|
||||
};
|
||||
|
||||
struct CriticalPath
|
||||
{
|
||||
struct Segment {
|
||||
|
||||
// Segment type
|
||||
enum class Type {
|
||||
LOGIC,
|
||||
ROUTING
|
||||
};
|
||||
|
||||
// Type
|
||||
Type type;
|
||||
// Net name (routing only)
|
||||
IdString net;
|
||||
// From cell.port
|
||||
std::pair<IdString, IdString> from;
|
||||
// To cell.port
|
||||
std::pair<IdString, IdString> to;
|
||||
// Segment delay
|
||||
delay_t delay;
|
||||
// Segment budget (routing only)
|
||||
delay_t budget;
|
||||
};
|
||||
|
||||
// Clock pair
|
||||
ClockPair clock_pair;
|
||||
// Total path delay
|
||||
delay_t delay;
|
||||
// Period (max allowed delay)
|
||||
delay_t period;
|
||||
// Individual path segments
|
||||
std::vector<Segment> segments;
|
||||
};
|
||||
|
||||
// Holds timing information of a single source to sink path of a net
|
||||
struct NetSinkTiming
|
||||
{
|
||||
// Clock event pair
|
||||
ClockPair clock_pair;
|
||||
// Cell and port (the sink)
|
||||
std::pair<IdString, IdString> cell_port;
|
||||
// Delay
|
||||
delay_t delay;
|
||||
// Delay budget
|
||||
delay_t budget;
|
||||
};
|
||||
|
||||
struct TimingResult
|
||||
{
|
||||
// Achieved and target Fmax for all clock domains
|
||||
dict<IdString, ClockFmax> clock_fmax;
|
||||
// Single domain critical paths
|
||||
dict<IdString, CriticalPath> clock_paths;
|
||||
// Cross-domain critical paths
|
||||
std::vector<CriticalPath> xclock_paths;
|
||||
|
||||
// Detailed net timing data
|
||||
dict<IdString, std::vector<NetSinkTiming>> detailed_net_timings;
|
||||
};
|
||||
|
||||
// Represents the contents of a non-leaf cell in a design
|
||||
|
123
common/report.cc
123
common/report.cc
@ -40,6 +40,127 @@ dict<IdString, std::pair<int, int>> get_utilization(const Context *ctx)
|
||||
return result;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
static std::string clock_event_name (const Context* ctx, const ClockEvent& e) {
|
||||
std::string value;
|
||||
if (e.clock == ctx->id("$async$"))
|
||||
value = std::string("<async>");
|
||||
else
|
||||
value = (e.edge == FALLING_EDGE ? std::string("negedge ") :
|
||||
std::string("posedge ")) + e.clock.str(ctx);
|
||||
return value;
|
||||
};
|
||||
|
||||
static Json::array report_critical_paths (const Context* ctx) {
|
||||
|
||||
auto report_critical_path = [ctx](const CriticalPath& report) {
|
||||
Json::array pathJson;
|
||||
|
||||
for (const auto& segment : report.segments) {
|
||||
|
||||
const auto& driver = ctx->cells.at(segment.from.first);
|
||||
const auto& sink = ctx->cells.at(segment.to.first);
|
||||
|
||||
auto fromLoc = ctx->getBelLocation(driver->bel);
|
||||
auto toLoc = ctx->getBelLocation(sink->bel);
|
||||
|
||||
auto fromJson = Json::object({
|
||||
{"cell", segment.from.first.c_str(ctx)},
|
||||
{"port", segment.from.second.c_str(ctx)},
|
||||
{"loc", Json::array({fromLoc.x, fromLoc.y})}
|
||||
});
|
||||
|
||||
auto toJson = Json::object({
|
||||
{"cell", segment.to.first.c_str(ctx)},
|
||||
{"port", segment.to.second.c_str(ctx)},
|
||||
{"loc", Json::array({toLoc.x, toLoc.y})}
|
||||
});
|
||||
|
||||
auto segmentJson = Json::object({
|
||||
{"delay", ctx->getDelayNS(segment.delay)},
|
||||
{"from", fromJson},
|
||||
{"to", toJson},
|
||||
});
|
||||
|
||||
if (segment.type == CriticalPath::Segment::Type::LOGIC) {
|
||||
segmentJson["type"] = "logic";
|
||||
}
|
||||
else if (segment.type == CriticalPath::Segment::Type::ROUTING) {
|
||||
segmentJson["type"] = "routing";
|
||||
segmentJson["net"] = segment.net.c_str(ctx);
|
||||
segmentJson["budget"] = ctx->getDelayNS(segment.budget);
|
||||
}
|
||||
|
||||
pathJson.push_back(segmentJson);
|
||||
}
|
||||
|
||||
return pathJson;
|
||||
};
|
||||
|
||||
auto critPathsJson = Json::array();
|
||||
|
||||
// Critical paths
|
||||
for (auto &report : ctx->timing_result.clock_paths) {
|
||||
|
||||
critPathsJson.push_back(Json::object({
|
||||
{"from", clock_event_name(ctx, report.second.clock_pair.start)},
|
||||
{"to", clock_event_name(ctx, report.second.clock_pair.end)},
|
||||
{"path", report_critical_path(report.second)}
|
||||
}));
|
||||
}
|
||||
|
||||
// Cross-domain paths
|
||||
for (auto &report : ctx->timing_result.xclock_paths) {
|
||||
critPathsJson.push_back(Json::object({
|
||||
{"from", clock_event_name(ctx, report.clock_pair.start)},
|
||||
{"to", clock_event_name(ctx, report.clock_pair.end)},
|
||||
{"path", report_critical_path(report)}
|
||||
}));
|
||||
}
|
||||
|
||||
return critPathsJson;
|
||||
}
|
||||
|
||||
static Json::array report_detailed_net_timings (const Context* ctx) {
|
||||
auto detailedNetTimingsJson = Json::array();
|
||||
|
||||
// Detailed per-net timing analysis
|
||||
for (const auto& it : ctx->timing_result.detailed_net_timings) {
|
||||
|
||||
const NetInfo* net = ctx->nets.at(it.first).get();
|
||||
ClockEvent start = it.second[0].clock_pair.start;
|
||||
|
||||
Json::array endpointsJson;
|
||||
for (const auto& sink_timing : it.second) {
|
||||
|
||||
// FIXME: Is it possible that there are multiple different start
|
||||
// events for a single net? It has a single driver
|
||||
NPNR_ASSERT(sink_timing.clock_pair.start == start);
|
||||
|
||||
auto endpointJson = Json::object({
|
||||
{"cell", sink_timing.cell_port.first.c_str(ctx)},
|
||||
{"port", sink_timing.cell_port.second.c_str(ctx)},
|
||||
{"event", clock_event_name(ctx, sink_timing.clock_pair.end)},
|
||||
{"delay", ctx->getDelayNS(sink_timing.delay)},
|
||||
{"budget", ctx->getDelayNS(sink_timing.budget)}
|
||||
});
|
||||
endpointsJson.push_back(endpointJson);
|
||||
}
|
||||
|
||||
auto netTimingJson = Json::object({
|
||||
{"net", net->name.c_str(ctx)},
|
||||
{"driver", net->driver.cell->name.c_str(ctx)},
|
||||
{"port", net->driver.port.c_str(ctx)},
|
||||
{"event", clock_event_name(ctx, start)},
|
||||
{"endpoints", endpointsJson}
|
||||
});
|
||||
|
||||
detailedNetTimingsJson.push_back(netTimingJson);
|
||||
}
|
||||
|
||||
return detailedNetTimingsJson;
|
||||
}
|
||||
|
||||
void Context::writeReport(std::ostream &out) const
|
||||
{
|
||||
auto util = get_utilization(this);
|
||||
@ -60,6 +181,8 @@ void Context::writeReport(std::ostream &out) const
|
||||
out << Json(Json::object{
|
||||
{"utilization", util_json},
|
||||
{"fmax", fmax_json},
|
||||
{"critical_paths", report_critical_paths(this)},
|
||||
{"detailed_net_timings", report_detailed_net_timings(this)}
|
||||
})
|
||||
.dump()
|
||||
<< std::endl;
|
||||
|
@ -874,7 +874,7 @@ bool router1(Context *ctx, const Router1Cfg &cfg)
|
||||
|
||||
log_info("Checksum: 0x%08x\n", ctx->checksum());
|
||||
timing_analysis(ctx, true /* slack_histogram */, true /* print_fmax */, true /* print_path */,
|
||||
true /* warn_on_failure */, true /* write_report */);
|
||||
true /* warn_on_failure */, true /* update_results */);
|
||||
|
||||
return true;
|
||||
} catch (log_execution_error_exception) {
|
||||
|
355
common/timing.cc
355
common/timing.cc
@ -26,12 +26,9 @@
|
||||
#include <utility>
|
||||
#include "log.h"
|
||||
#include "util.h"
|
||||
#include "json11.hpp"
|
||||
|
||||
NEXTPNR_NAMESPACE_BEGIN
|
||||
|
||||
using namespace json11;
|
||||
|
||||
void TimingAnalyser::setup()
|
||||
{
|
||||
init_ports();
|
||||
@ -609,70 +606,19 @@ PortInfo &TimingAnalyser::port_info(const CellPortKey &key) { return ctx->cells.
|
||||
|
||||
/** LEGACY CODE BEGIN **/
|
||||
|
||||
namespace {
|
||||
struct ClockEvent
|
||||
{
|
||||
IdString clock;
|
||||
ClockEdge edge;
|
||||
|
||||
bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; }
|
||||
unsigned int hash() const { return mkhash(clock.hash(), int(edge)); }
|
||||
};
|
||||
|
||||
struct ClockPair
|
||||
{
|
||||
ClockEvent start, end;
|
||||
|
||||
bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; }
|
||||
unsigned int hash() const { return mkhash(start.hash(), end.hash()); }
|
||||
};
|
||||
} // namespace
|
||||
|
||||
typedef std::vector<const PortRef *> PortRefVector;
|
||||
typedef std::map<int, unsigned> DelayFrequency;
|
||||
|
||||
struct CriticalPath
|
||||
struct CriticalPathData
|
||||
{
|
||||
PortRefVector ports;
|
||||
delay_t path_delay;
|
||||
delay_t path_period;
|
||||
};
|
||||
|
||||
typedef dict<ClockPair, CriticalPath> CriticalPathMap;
|
||||
typedef dict<ClockPair, CriticalPathData> CriticalPathDataMap;
|
||||
|
||||
struct CriticalPathSegment
|
||||
{
|
||||
enum class Type {
|
||||
LOGIC,
|
||||
ROUTING
|
||||
};
|
||||
|
||||
std::pair<CellInfo*,IdString> from;
|
||||
std::pair<CellInfo*,IdString> to;
|
||||
Type type;
|
||||
const NetInfo* net;
|
||||
delay_t delay;
|
||||
delay_t budget;
|
||||
};
|
||||
typedef std::vector<CriticalPathSegment> CriticalPathSegments;
|
||||
|
||||
struct CriticalPathReport
|
||||
{
|
||||
ClockPair clock_pair;
|
||||
CriticalPathSegments segments;
|
||||
delay_t period;
|
||||
};
|
||||
typedef dict<ClockPair, CriticalPathReport> CriticalPathReportMap;
|
||||
|
||||
struct NetSinkTiming
|
||||
{
|
||||
ClockPair clock_pair;
|
||||
PortRef sink;
|
||||
delay_t delay;
|
||||
delay_t budget;
|
||||
};
|
||||
|
||||
typedef dict<const NetInfo*, std::vector<NetSinkTiming>, hash_ptr_ops> DetailedNetTimings;
|
||||
typedef dict<IdString, std::vector<NetSinkTiming>> DetailedNetTimings;
|
||||
|
||||
struct Timing
|
||||
{
|
||||
@ -680,7 +626,7 @@ struct Timing
|
||||
bool net_delays;
|
||||
bool update;
|
||||
delay_t min_slack;
|
||||
CriticalPathMap *crit_path;
|
||||
CriticalPathDataMap *crit_path;
|
||||
DelayFrequency *slack_histogram;
|
||||
DetailedNetTimings *detailed_net_timings;
|
||||
IdString async_clock;
|
||||
@ -697,7 +643,7 @@ struct Timing
|
||||
dict<ClockEvent, delay_t> arrival_time;
|
||||
};
|
||||
|
||||
Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr,
|
||||
Timing(Context *ctx, bool net_delays, bool update, CriticalPathDataMap *crit_path = nullptr,
|
||||
DelayFrequency *slack_histogram = nullptr,
|
||||
DetailedNetTimings *detailed_net_timings = nullptr)
|
||||
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->setting<float>("target_freq")),
|
||||
@ -992,11 +938,11 @@ struct Timing
|
||||
if (detailed_net_timings) {
|
||||
NetSinkTiming sink_timing;
|
||||
sink_timing.clock_pair = clockPair;
|
||||
sink_timing.sink = usr;
|
||||
sink_timing.cell_port = std::make_pair(usr.cell->name, usr.port);
|
||||
sink_timing.delay = endpoint_arrival;
|
||||
sink_timing.budget = period;
|
||||
|
||||
(*detailed_net_timings)[net].push_back(sink_timing);
|
||||
(*detailed_net_timings)[net->name].push_back(sink_timing);
|
||||
}
|
||||
|
||||
if (crit_path) {
|
||||
@ -1162,17 +1108,9 @@ void assign_budget(Context *ctx, bool quiet)
|
||||
log_info("Checksum: 0x%08x\n", ctx->checksum());
|
||||
}
|
||||
|
||||
void write_timing_report(
|
||||
Context* ctx,
|
||||
const std::string& file_name,
|
||||
const std::map<IdString, CriticalPathReport> clock_reports,
|
||||
const std::vector<CriticalPathReport> xclock_reports,
|
||||
const DetailedNetTimings& detailed_net_timings
|
||||
);
|
||||
CriticalPath build_critical_path_report(Context* ctx, ClockPair &clocks, const PortRefVector &crit_path) {
|
||||
|
||||
CriticalPathReport build_critical_path_report(Context* ctx, ClockPair &clocks, const PortRefVector &crit_path) {
|
||||
|
||||
CriticalPathReport report;
|
||||
CriticalPath report;
|
||||
report.clock_pair = clocks;
|
||||
|
||||
auto &front = crit_path.front();
|
||||
@ -1217,24 +1155,24 @@ CriticalPathReport build_critical_path_report(Context* ctx, ClockPair &clocks, c
|
||||
ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
|
||||
}
|
||||
|
||||
CriticalPathSegment seg_logic;
|
||||
seg_logic.type = CriticalPathSegment::Type::LOGIC;
|
||||
CriticalPath::Segment seg_logic;
|
||||
seg_logic.type = CriticalPath::Segment::Type::LOGIC;
|
||||
seg_logic.delay = comb_delay.maxDelay();
|
||||
seg_logic.budget = 0;
|
||||
seg_logic.from = std::make_pair(const_cast<CellInfo*>(last_cell), last_port);
|
||||
seg_logic.to = std::make_pair(driver_cell, driver.port);
|
||||
seg_logic.net = nullptr;
|
||||
seg_logic.from = std::make_pair(last_cell->name, last_port);
|
||||
seg_logic.to = std::make_pair(driver_cell->name, driver.port);
|
||||
seg_logic.net = IdString();
|
||||
report.segments.push_back(seg_logic);
|
||||
|
||||
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
|
||||
|
||||
CriticalPathSegment seg_route;
|
||||
seg_route.type = CriticalPathSegment::Type::ROUTING;
|
||||
CriticalPath::Segment seg_route;
|
||||
seg_route.type = CriticalPath::Segment::Type::ROUTING;
|
||||
seg_route.delay = net_delay;
|
||||
seg_route.budget = sink->budget;
|
||||
seg_route.from = std::make_pair(driver_cell, driver.port);
|
||||
seg_route.to = std::make_pair(sink_cell, sink->port);
|
||||
seg_route.net = net;
|
||||
seg_route.from = std::make_pair(driver_cell->name, driver.port);
|
||||
seg_route.to = std::make_pair(sink_cell->name, sink->port);
|
||||
seg_route.net = net->name;
|
||||
report.segments.push_back(seg_route);
|
||||
|
||||
last_cell = sink_cell;
|
||||
@ -1247,20 +1185,20 @@ CriticalPathReport build_critical_path_report(Context* ctx, ClockPair &clocks, c
|
||||
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
|
||||
delay_t setup = sinkClockInfo.setup.maxDelay();
|
||||
|
||||
CriticalPathSegment seg_logic;
|
||||
seg_logic.type = CriticalPathSegment::Type::LOGIC;
|
||||
CriticalPath::Segment seg_logic;
|
||||
seg_logic.type = CriticalPath::Segment::Type::LOGIC;
|
||||
seg_logic.delay = setup;
|
||||
seg_logic.budget = 0;
|
||||
seg_logic.from = std::make_pair(const_cast<CellInfo*>(last_cell), last_port);
|
||||
seg_logic.from = std::make_pair(last_cell->name, last_port);
|
||||
seg_logic.to = seg_logic.from;
|
||||
seg_logic.net = nullptr;
|
||||
seg_logic.net = IdString();
|
||||
report.segments.push_back(seg_logic);
|
||||
}
|
||||
|
||||
return report;
|
||||
}
|
||||
|
||||
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure, bool write_report)
|
||||
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure, bool update_results)
|
||||
{
|
||||
auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
|
||||
std::string value;
|
||||
@ -1273,20 +1211,19 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
|
||||
return value;
|
||||
};
|
||||
|
||||
CriticalPathMap crit_paths;
|
||||
CriticalPathDataMap crit_paths;
|
||||
DelayFrequency slack_histogram;
|
||||
DetailedNetTimings detailed_net_timings;
|
||||
|
||||
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
|
||||
print_histogram ? &slack_histogram : nullptr, write_report ? &detailed_net_timings : nullptr);
|
||||
print_histogram ? &slack_histogram : nullptr, update_results ? &detailed_net_timings : nullptr);
|
||||
timing.walk_paths();
|
||||
|
||||
bool report_critical_paths = print_path || print_fmax || write_report;
|
||||
bool report_critical_paths = print_path || print_fmax || update_results;
|
||||
|
||||
std::map<IdString, CriticalPathReport> clock_reports;
|
||||
std::vector<CriticalPathReport> xclock_reports;
|
||||
|
||||
std::map<IdString, double> clock_fmax;
|
||||
dict<IdString, CriticalPath> clock_reports;
|
||||
std::vector<CriticalPath> xclock_reports;
|
||||
dict<IdString, ClockFmax> clock_fmax;
|
||||
std::set<IdString> empty_clocks; // set of clocks with no interior paths
|
||||
|
||||
if (report_critical_paths) {
|
||||
@ -1308,8 +1245,9 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
|
||||
Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
|
||||
else
|
||||
Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
|
||||
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) {
|
||||
clock_fmax[a.clock] = Fmax;
|
||||
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock).achieved) {
|
||||
clock_fmax[a.clock].achieved = Fmax;
|
||||
clock_fmax[a.clock].constraint = 0.0f; // Will be filled later
|
||||
clock_reports[a.clock] = build_critical_path_report(ctx, path.first, path.second.ports);
|
||||
clock_reports[a.clock].period = path.second.path_period;
|
||||
}
|
||||
@ -1330,7 +1268,7 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
|
||||
log_info("No Fmax available; no interior timing paths found in design.\n");
|
||||
}
|
||||
|
||||
std::sort(xclock_reports.begin(), xclock_reports.end(), [ctx](const CriticalPathReport &ra, const CriticalPathReport &rb) {
|
||||
std::sort(xclock_reports.begin(), xclock_reports.end(), [ctx](const CriticalPath &ra, const CriticalPath &rb) {
|
||||
|
||||
const auto& a = ra.clock_pair;
|
||||
const auto& b = rb.clock_pair;
|
||||
@ -1351,26 +1289,45 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
|
||||
return true;
|
||||
return false;
|
||||
});
|
||||
|
||||
for (auto &clock : clock_reports) {
|
||||
float target = ctx->setting<float>("target_freq") / 1e6;
|
||||
if (ctx->nets.at(clock.first)->clkconstr)
|
||||
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
|
||||
clock_fmax[clock.first].constraint = target;
|
||||
}
|
||||
}
|
||||
|
||||
// Update timing results in the context
|
||||
if (update_results) {
|
||||
auto& results = ctx->timing_result;
|
||||
|
||||
results.clock_fmax = std::move(clock_fmax);
|
||||
results.clock_paths = std::move(clock_reports);
|
||||
results.xclock_paths = std::move(xclock_reports);
|
||||
|
||||
results.detailed_net_timings = std::move(detailed_net_timings);
|
||||
}
|
||||
|
||||
// Print critical paths
|
||||
if (print_path) {
|
||||
|
||||
auto print_path_report = [ctx](const CriticalPathReport& report) {
|
||||
// A helper function for reporting one critical path
|
||||
auto print_path_report = [ctx](const CriticalPath& path) {
|
||||
delay_t total = 0, logic_total = 0, route_total = 0;
|
||||
|
||||
log_info("curr total\n");
|
||||
for (const auto& segment : report.segments) {
|
||||
for (const auto& segment : path.segments) {
|
||||
|
||||
total += segment.delay;
|
||||
|
||||
if (segment.type == CriticalPathSegment::Type::LOGIC) {
|
||||
if (segment.type == CriticalPath::Segment::Type::LOGIC) {
|
||||
logic_total += segment.delay;
|
||||
if (segment.from != segment.to) {
|
||||
log_info("%4.1f %4.1f Source %s.%s\n",
|
||||
ctx->getDelayNS(segment.delay),
|
||||
ctx->getDelayNS(total),
|
||||
segment.from.first->name.c_str(ctx),
|
||||
segment.from.first.c_str(ctx),
|
||||
segment.from.second.c_str(ctx)
|
||||
);
|
||||
}
|
||||
@ -1378,43 +1335,46 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
|
||||
log_info("%4.1f %4.1f Setup %s.%s\n",
|
||||
ctx->getDelayNS(segment.delay),
|
||||
ctx->getDelayNS(total),
|
||||
segment.to.first->name.c_str(ctx),
|
||||
segment.to.first.c_str(ctx),
|
||||
segment.to.second.c_str(ctx)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
if (segment.type == CriticalPathSegment::Type::ROUTING) {
|
||||
if (segment.type == CriticalPath::Segment::Type::ROUTING) {
|
||||
route_total += segment.delay;
|
||||
|
||||
auto driver_loc = ctx->getBelLocation(segment.from.first->bel);
|
||||
auto sink_loc = ctx->getBelLocation(segment.to.first->bel);
|
||||
const auto& driver = ctx->cells.at(segment.from.first);
|
||||
const auto& sink = ctx->cells.at(segment.to.first);
|
||||
|
||||
auto driver_loc = ctx->getBelLocation(driver->bel);
|
||||
auto sink_loc = ctx->getBelLocation(sink->bel);
|
||||
|
||||
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n",
|
||||
ctx->getDelayNS(segment.delay),
|
||||
ctx->getDelayNS(total),
|
||||
segment.net->name.c_str(ctx),
|
||||
segment.net.c_str(ctx),
|
||||
ctx->getDelayNS(segment.budget),
|
||||
driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y
|
||||
);
|
||||
log_info(" Sink %s.%s\n",
|
||||
segment.to.first->name.c_str(ctx),
|
||||
segment.to.first.c_str(ctx),
|
||||
segment.to.second.c_str(ctx)
|
||||
);
|
||||
|
||||
if (ctx->verbose) {
|
||||
|
||||
PortRef sink;
|
||||
sink.cell = segment.to.first;
|
||||
sink.port = segment.to.second;
|
||||
sink.budget = segment.budget;
|
||||
PortRef sink_ref;
|
||||
sink_ref.cell = sink.get();
|
||||
sink_ref.port = segment.to.second;
|
||||
sink_ref.budget = segment.budget;
|
||||
|
||||
auto net = segment.net;
|
||||
const NetInfo* net = ctx->nets.at(segment.net).get();
|
||||
|
||||
auto driver_wire = ctx->getNetinfoSourceWire(net);
|
||||
auto sink_wire = ctx->getNetinfoSinkWire(net, sink, 0);
|
||||
auto sink_wire = ctx->getNetinfoSinkWire(net, sink_ref, 0);
|
||||
log_info(" prediction: %f ns estimate: %f ns\n",
|
||||
ctx->getDelayNS(ctx->predictDelay(net, sink)),
|
||||
ctx->getDelayNS(ctx->predictDelay(net, sink_ref)),
|
||||
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
|
||||
auto cursor = sink_wire;
|
||||
delay_t delay;
|
||||
@ -1437,6 +1397,7 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
|
||||
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
|
||||
};
|
||||
|
||||
// Single domain paths
|
||||
for (auto &clock : clock_reports) {
|
||||
log_break();
|
||||
std::string start =
|
||||
@ -1449,6 +1410,7 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
|
||||
print_path_report(report);
|
||||
}
|
||||
|
||||
// Cross-domain paths
|
||||
for (auto &report : xclock_reports) {
|
||||
log_break();
|
||||
std::string start = format_event(report.clock_pair.start);
|
||||
@ -1460,31 +1422,28 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
|
||||
|
||||
if (print_fmax) {
|
||||
log_break();
|
||||
|
||||
unsigned max_width = 0;
|
||||
auto &result = ctx->timing_result;
|
||||
result.clock_fmax.clear();
|
||||
for (auto &clock : clock_reports)
|
||||
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
|
||||
|
||||
for (auto &clock : clock_reports) {
|
||||
const auto &clock_name = clock.first.str(ctx);
|
||||
const int width = max_width - clock_name.size();
|
||||
float target = ctx->setting<float>("target_freq") / 1e6;
|
||||
if (ctx->nets.at(clock.first)->clkconstr)
|
||||
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
|
||||
|
||||
result.clock_fmax[clock.first].achieved = clock_fmax[clock.first];
|
||||
result.clock_fmax[clock.first].constraint = target;
|
||||
float fmax = clock_fmax[clock.first].achieved;
|
||||
float target = clock_fmax[clock.first].constraint;
|
||||
bool passed = target < fmax;
|
||||
|
||||
bool passed = target < clock_fmax[clock.first];
|
||||
if (!warn_on_failure || passed)
|
||||
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
||||
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
|
||||
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
|
||||
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false))
|
||||
log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
||||
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
|
||||
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
|
||||
else
|
||||
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
|
||||
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
|
||||
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
|
||||
}
|
||||
for (auto &eclock : empty_clocks) {
|
||||
if (eclock != ctx->id("$async$"))
|
||||
@ -1540,154 +1499,6 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
|
||||
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
|
||||
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
|
||||
}
|
||||
|
||||
// Write detailed timing analysis report to file
|
||||
std::string report_file;
|
||||
if (write_report) {
|
||||
if (ctx->settings.count(ctx->id("timing/reportFile"))) {
|
||||
report_file = ctx->settings[ctx->id("timing/reportFile")].as_string();
|
||||
}
|
||||
}
|
||||
|
||||
if (!report_file.empty()) {
|
||||
log_break();
|
||||
log_info("Writing timing analysis report...\n");
|
||||
write_timing_report(ctx, report_file,
|
||||
clock_reports,
|
||||
xclock_reports,
|
||||
detailed_net_timings);
|
||||
}
|
||||
}
|
||||
|
||||
void write_timing_report(
|
||||
Context* ctx,
|
||||
const std::string& file_name,
|
||||
const std::map<IdString, CriticalPathReport> clock_reports,
|
||||
const std::vector<CriticalPathReport> xclock_reports,
|
||||
const DetailedNetTimings& detailed_net_timings
|
||||
)
|
||||
{
|
||||
auto event_name = [ctx](const ClockEvent &e) {
|
||||
std::string value;
|
||||
if (e.clock == ctx->id("$async$"))
|
||||
value = std::string("<async>");
|
||||
else
|
||||
value = (e.edge == FALLING_EDGE ? std::string("negedge ") :
|
||||
std::string("posedge ")) + e.clock.str(ctx);
|
||||
return value;
|
||||
};
|
||||
|
||||
auto report_critical_path = [ctx](const CriticalPathReport& report) {
|
||||
Json::array pathJson;
|
||||
|
||||
for (const auto& segment : report.segments) {
|
||||
|
||||
auto fromLoc = ctx->getBelLocation(segment.from.first->bel);
|
||||
auto toLoc = ctx->getBelLocation(segment.to.first->bel);
|
||||
|
||||
auto fromJson = Json::object({
|
||||
{"cell", segment.from.first->name.c_str(ctx)},
|
||||
{"port", segment.from.second.c_str(ctx)},
|
||||
{"loc", Json::array({fromLoc.x, fromLoc.y})}
|
||||
});
|
||||
|
||||
auto toJson = Json::object({
|
||||
{"cell", segment.to.first->name.c_str(ctx)},
|
||||
{"port", segment.to.second.c_str(ctx)},
|
||||
{"loc", Json::array({toLoc.x, toLoc.y})}
|
||||
});
|
||||
|
||||
auto segmentJson = Json::object({
|
||||
{"delay", ctx->getDelayNS(segment.delay)},
|
||||
{"from", fromJson},
|
||||
{"to", toJson},
|
||||
});
|
||||
|
||||
if (segment.type == CriticalPathSegment::Type::LOGIC) {
|
||||
segmentJson["type"] = "logic";
|
||||
}
|
||||
else if (segment.type == CriticalPathSegment::Type::ROUTING) {
|
||||
segmentJson["type"] = "routing";
|
||||
segmentJson["net"] = segment.net->name.c_str(ctx);
|
||||
segmentJson["budget"] = ctx->getDelayNS(segment.budget);
|
||||
}
|
||||
|
||||
pathJson.push_back(segmentJson);
|
||||
}
|
||||
|
||||
return pathJson;
|
||||
};
|
||||
|
||||
// Open the file
|
||||
FILE* fp = fopen(file_name.c_str(), "w");
|
||||
NPNR_ASSERT(fp != nullptr);
|
||||
|
||||
// Critical paths
|
||||
auto critPathsJson = Json::array();
|
||||
for (auto &report : clock_reports) {
|
||||
|
||||
critPathsJson.push_back(Json::object({
|
||||
{"from", event_name(report.second.clock_pair.start)},
|
||||
{"to", event_name(report.second.clock_pair.end)},
|
||||
{"path", report_critical_path(report.second)}
|
||||
}));
|
||||
}
|
||||
|
||||
// Cross-domain paths
|
||||
for (auto &report : xclock_reports) {
|
||||
critPathsJson.push_back(Json::object({
|
||||
{"from", event_name(report.clock_pair.start)},
|
||||
{"to", event_name(report.clock_pair.end)},
|
||||
{"path", report_critical_path(report)}
|
||||
}));
|
||||
}
|
||||
|
||||
// Detailed per-net timing analysis
|
||||
auto detailedNetTimingsJson = Json::array();
|
||||
for (const auto& it : detailed_net_timings) {
|
||||
const NetInfo* net = it.first;
|
||||
|
||||
ClockEvent start = it.second[0].clock_pair.start;
|
||||
|
||||
Json::array endpointsJson;
|
||||
for (const auto& sink_timing : it.second) {
|
||||
|
||||
// FIXME: Is it possible that there are multiple different start
|
||||
// events for a single net? It has a single driver
|
||||
NPNR_ASSERT(sink_timing.clock_pair.start == start);
|
||||
|
||||
auto endpointJson = Json::object({
|
||||
{"cell", sink_timing.sink.cell->name.c_str(ctx)},
|
||||
{"port", sink_timing.sink.port.c_str(ctx)},
|
||||
{"event", event_name(sink_timing.clock_pair.end)},
|
||||
{"delay", ctx->getDelayNS(sink_timing.delay)},
|
||||
{"budget", ctx->getDelayNS(sink_timing.budget)}
|
||||
});
|
||||
endpointsJson.push_back(endpointJson);
|
||||
}
|
||||
|
||||
auto netTimingJson = Json::object({
|
||||
{"net", net->name.c_str(ctx)},
|
||||
{"driver", net->driver.cell->name.c_str(ctx)},
|
||||
{"port", net->driver.port.c_str(ctx)},
|
||||
{"event", event_name(start)},
|
||||
{"endpoints", endpointsJson}
|
||||
});
|
||||
detailedNetTimingsJson.push_back(netTimingJson);
|
||||
}
|
||||
|
||||
auto analysisJson = Json::object({
|
||||
{"critical_paths", Json(critPathsJson)},
|
||||
{"detailed_net_timings", Json(detailedNetTimingsJson)}
|
||||
});
|
||||
|
||||
// Assemble and serialize the final Json
|
||||
auto jsonRoot = Json(Json::object({
|
||||
{"timing_analysis", Json(analysisJson)}
|
||||
}));
|
||||
|
||||
fputs(jsonRoot.dump().c_str(), fp);
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
NEXTPNR_NAMESPACE_END
|
||||
|
@ -252,7 +252,7 @@ void assign_budget(Context *ctx, bool quiet = false);
|
||||
// Perform timing analysis and print out the fmax, and optionally the
|
||||
// critical path
|
||||
void timing_analysis(Context *ctx, bool slack_histogram = true, bool print_fmax = true, bool print_path = false,
|
||||
bool warn_on_failure = false, bool write_report = false);
|
||||
bool warn_on_failure = false, bool update_results = false);
|
||||
|
||||
NEXTPNR_NAMESPACE_END
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user