[timing] Add comments

This commit is contained in:
Eddie Hung 2019-01-27 11:20:47 -08:00
parent e615627766
commit 70e37f6d27

View File

@ -644,8 +644,12 @@ struct Timing
f << "digraph T {" << std::endl; f << "digraph T {" << std::endl;
f << "\tlabel=\"clk_period=" << clk_period << "\";" << std::endl; f << "\tlabel=\"clk_period=" << clk_period << "\";" << std::endl;
f << "\tlabelloc=t;" << std::endl; f << "\tlabelloc=t;" << std::endl;
// Use the new ranking algorithm in dot to allow ranking of nodes across clusters
f << "\tnewrank=true;" << std::endl; f << "\tnewrank=true;" << std::endl;
// For each net, draw an edge from driver -> user and label middle of edge with net name, and head of edge with delay/budget
for (auto &net : ctx->nets) { for (auto &net : ctx->nets) {
// For rendering speed, ignore global nets (e.g. clocks)
if (ctx->isGlobalNet(net.second.get())) if (ctx->isGlobalNet(net.second.get()))
continue; continue;
for (auto &usr : net.second->users) { for (auto &usr : net.second->users) {
@ -654,28 +658,37 @@ struct Timing
} }
} }
// Keep track of IOBs, so they can be placed at top/bottom of graph
std::vector<std::string> startpoints, endpoints; std::vector<std::string> startpoints, endpoints;
// Temporary vector for each cell
std::vector<IdString> input_ports, output_ports; std::vector<IdString> input_ports, output_ports;
// Place all ports of cell in a subgraph/cluster with label
for (auto &cell : ctx->cells) { for (auto &cell : ctx->cells) {
f << "\tsubgraph \"cluster_" << cell.second->name.str(ctx) << "\" {" << std::endl; f << "\tsubgraph \"cluster_" << cell.second->name.str(ctx) << "\" {" << std::endl;
f << "\t\tlabel = \"" << cell.second->name.str(ctx) << "\";" << std::endl; f << "\t\tlabel = \"" << cell.second->name.str(ctx) << "\";" << std::endl;
// Collect all input/output ports
input_ports.clear(); input_ports.clear();
output_ports.clear(); output_ports.clear();
for (auto &port : cell.second->ports) { for (auto &port : cell.second->ports) {
if (!port.second.net) continue; if (!port.second.net) continue;
int port_clocks; int port_clocks;
auto portClass = ctx->getPortTimingClass(cell.second.get(), port.first, port_clocks); auto portClass = ctx->getPortTimingClass(cell.second.get(), port.first, port_clocks);
// For rendering speed, ignore clock inputs (since global nets are not drawn)
if (portClass == TMG_CLOCK_INPUT) continue; if (portClass == TMG_CLOCK_INPUT) continue;
if (port.second.type == PORT_IN) { if (port.second.type == PORT_IN) {
input_ports.push_back(port.first); input_ports.push_back(port.first);
// IOB inputs are endpoints
if (ctx->getBelIOB(cell.second->bel)) if (ctx->getBelIOB(cell.second->bel))
endpoints.emplace_back(cell.second->name.str(ctx) + "." + port.first.str(ctx)); endpoints.emplace_back(cell.second->name.str(ctx) + "." + port.first.str(ctx));
// Label port
f << "\t\t" << "\"" << cell.second->name.str(ctx) << "." << port.first.str(ctx) << "\" [label = \"" << port.first.str(ctx); f << "\t\t" << "\"" << cell.second->name.str(ctx) << "." << port.first.str(ctx) << "\" [label = \"" << port.first.str(ctx);
// Recover the PortRef from its net
for (const auto &usr : port.second.net->users) { for (const auto &usr : port.second.net->users) {
if (usr.cell != cell.second.get() || usr.port != port.first) if (usr.cell != cell.second.get() || usr.port != port.first)
continue; continue;
// And for each clock event, label node with event as well as max arrival time
for (const auto &i : net_data.at(port.second.net)) for (const auto &i : net_data.at(port.second.net))
f << "\\n" << (i.first.edge == RISING_EDGE ? "posedge" : "negedge") << " " << i.first.clock.str(ctx) << " @ " << i.second.max_arrival + ctx->getNetinfoRouteDelay(port.second.net, usr); f << "\\n" << (i.first.edge == RISING_EDGE ? "posedge" : "negedge") << " " << i.first.clock.str(ctx) << " @ " << i.second.max_arrival + ctx->getNetinfoRouteDelay(port.second.net, usr);
break; break;
@ -684,23 +697,26 @@ struct Timing
} }
else { else {
output_ports.push_back(port.first); output_ports.push_back(port.first);
// Label port
f << "\t\t" << "\"" << cell.second->name.str(ctx) << "." << port.first.str(ctx) << "\" [label = \"" << port.first.str(ctx); f << "\t\t" << "\"" << cell.second->name.str(ctx) << "." << port.first.str(ctx) << "\" [label = \"" << port.first.str(ctx);
for (const auto &i : net_data.at(port.second.net)) { for (const auto &i : net_data.at(port.second.net)) {
f << "\\n" << (i.first.edge == RISING_EDGE ? "posedge" : "negedge") << " " << i.first.clock.str(ctx) << " @ " << i.second.max_arrival; f << "\\n" << (i.first.edge == RISING_EDGE ? "posedge" : "negedge") << " " << i.first.clock.str(ctx) << " @ " << i.second.max_arrival;
} }
f << "\""; f << "\"";
// IOB outputs are startpoints
if (ctx->getBelIOB(cell.second->bel)) if (ctx->getBelIOB(cell.second->bel))
startpoints.emplace_back(cell.second->name.str(ctx) + "." + port.first.str(ctx)); startpoints.emplace_back(cell.second->name.str(ctx) + "." + port.first.str(ctx));
else if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT) { else if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT) {
// Otherwise, draw other timing points differently
f << "; shape=parallelogram; style=filled"; f << "; shape=parallelogram; style=filled";
if (portClass == TMG_STARTPOINT)
startpoints.emplace_back(cell.second->name.str(ctx) + "." + port.first.str(ctx));
} }
f << "];" << std::endl; f << "];" << std::endl;
} }
// Place port inside subgraph
f << "\t\t" << "\"" << cell.second->name.str(ctx) << "." << port.first.str(ctx) << "\";" << std::endl; f << "\t\t" << "\"" << cell.second->name.str(ctx) << "." << port.first.str(ctx) << "\";" << std::endl;
} }
// Mark all input ports of cells with minimum rank, to appear above all output ports
f << "\t\t{rank=min"; f << "\t\t{rank=min";
for (auto i : input_ports) for (auto i : input_ports)
f << "; \"" << cell.second->name.str(ctx) << "." << i.str(ctx) << "\""; f << "; \"" << cell.second->name.str(ctx) << "." << i.str(ctx) << "\"";
@ -710,11 +726,18 @@ struct Timing
f << "; \"" << cell.second->name.str(ctx) << "." << o.str(ctx) << "\""; f << "; \"" << cell.second->name.str(ctx) << "." << o.str(ctx) << "\"";
f << ";}" << std::endl; f << ";}" << std::endl;
// Now enumerate all input -> output ports
for (auto i : input_ports) { for (auto i : input_ports) {
for (auto o : output_ports) { for (auto o : output_ports) {
// Look for combinatorial delay paths
DelayInfo comb_delay; DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(cell.second.get(), i, o, comb_delay); bool is_path = ctx->getCellDelay(cell.second.get(), i, o, comb_delay);
if (!is_path) { if (is_path) {
// And add an edge to reflect that, annotated with its delay
f << "\t\t" << "\"" << cell.second->name.str(ctx) << "." << i.str(ctx) << "\" -> \"" << cell.second->name.str(ctx) << "." << o.str(ctx) << "\" [style=dotted; label=" << comb_delay.maxDelay() << "];" << std::endl;
}
else {
// Otherwise, look for setup time
int port_clocks; int port_clocks;
auto portClass = ctx->getPortTimingClass(cell.second.get(), i, port_clocks); auto portClass = ctx->getPortTimingClass(cell.second.get(), i, port_clocks);
if (portClass == TMG_REGISTER_INPUT) { if (portClass == TMG_REGISTER_INPUT) {
@ -725,14 +748,12 @@ struct Timing
} }
} }
else {
f << "\t\t" << "\"" << cell.second->name.str(ctx) << "." << i.str(ctx) << "\" -> \"" << cell.second->name.str(ctx) << "." << o.str(ctx) << "\" [style=dotted; label=" << comb_delay.maxDelay() << "];" << std::endl;
}
} }
} }
f << "\t}" << std::endl; f << "\t}" << std::endl;
} }
// Now force all start points to have minimum rank (i.e. appear at top of graph), and end points to have maximum rank
f << "\t{rank=min"; f << "\t{rank=min";
for (auto i : startpoints) for (auto i : startpoints)
f << "; \"" << i << "\""; f << "; \"" << i << "\"";