mistral: improve timing calculation

This commit is contained in:
Lofty 2023-05-16 16:39:44 +01:00 committed by myrtle
parent ea925f39fb
commit 7a827b1c78
4 changed files with 169 additions and 23 deletions

View File

@ -462,6 +462,10 @@ bool Arch::place()
cfg.cellGroups.back().insert({id_MISTRAL_COMB});
cfg.cellGroups.back().insert({id_MISTRAL_FF});
// The Cyclone V is asymmetrical enough that it's somewhat beneficial to prefer connecting things horizontally.
cfg.hpwl_scale_x = 1;
cfg.hpwl_scale_y = 2;
cfg.beta = 0.5; // TODO: find a good value of beta for sensible ALM spreading
cfg.criticalityExponent = 7;
if (!placer_heap(getCtx(), cfg))

View File

@ -289,6 +289,9 @@ struct Arch : BaseArch<ArchRanges>
ArchArgs args;
mistral::CycloneV *cyclonev;
// Mistral needs the bitstream configuring before it can use the simulator.
bool bitstream_configured = false;
Arch(ArchArgs args);
ArchArgs archArgs() const override { return args; }
@ -434,6 +437,7 @@ struct Arch : BaseArch<ArchRanges>
bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort,
DelayQuad &delay) const override; // delay.cc
DelayQuad getPipDelay(PipId pip) const override; // delay.cc
bool getArcDelayOverride(const NetInfo *net_info, const PortRef &sink, DelayQuad &delay) const override; // delay.cc
// -------------------------------------------------

View File

@ -20,6 +20,7 @@
#include "log.h"
#include "nextpnr.h"
#include "util.h"
#include "timing.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
@ -379,6 +380,7 @@ struct MistralBitgen
write_routing();
write_cells();
write_labs();
ctx->bitstream_configured = true;
}
};
} // namespace
@ -387,6 +389,16 @@ void Arch::build_bitstream()
{
MistralBitgen gen(getCtx());
gen.run();
// This is a hack to run timing analysis yet again after the bitstream is
// configured in Mistral, because the analogue simulator won't work until
// it has a bitstream in the library.
//
// A better solution would be to move a lot of this bitstream code to
// {un,}bind{Bel, Pip} and friends, but we're not there yet.
log_info("Running signoff timing analysis...\n");
timing_analysis(getCtx(), true, true, true, true, true);
}
NEXTPNR_NAMESPACE_END

View File

@ -246,43 +246,167 @@ bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort
DelayQuad Arch::getPipDelay(PipId pip) const
{
WireId src = getPipSrcWire(pip), dst = getPipDstWire(pip);
if ((src.is_nextpnr_created() && dst.is_nextpnr_created()) || dst.is_nextpnr_created())
if (src.is_nextpnr_created() || dst.is_nextpnr_created())
return DelayQuad{20};
// This is guesswork based on average of (interconnect delay / number of pips)
auto dst_type = CycloneV::rn2t(dst.node);
auto src_type = CycloneV::rn2t(src.node);
switch (dst_type) {
case CycloneV::rnode_type_t::H14:
return DelayQuad{254};
case CycloneV::rnode_type_t::H3:
return DelayQuad{214};
case CycloneV::rnode_type_t::H6:
return DelayQuad{298};
case CycloneV::rnode_type_t::V2:
return DelayQuad{210};
case CycloneV::rnode_type_t::V4:
return DelayQuad{262};
case CycloneV::rnode_type_t::DCMUX:
return DelayQuad{0};
switch (src_type) {
case CycloneV::rnode_type_t::SCLK:
return DelayQuad{136, 136, 139, 139};
case CycloneV::rnode_type_t::SCLKB1:
return DelayQuad{296, 296, 370, 370};
case CycloneV::rnode_type_t::SCLKB2:
return DelayQuad{71, 71, 83, 83};
case CycloneV::rnode_type_t::HCLK:
return DelayQuad{183, 183, 239, 239};
case CycloneV::rnode_type_t::HCLKB:
return DelayQuad{165, 165, 244, 244};
case CycloneV::rnode_type_t::XCLKB1:
return DelayQuad{97, 97, 125, 125};
case CycloneV::rnode_type_t::GIN:
return DelayQuad{83}; // need to check with Sarayan
case CycloneV::rnode_type_t::GOUT:
return DelayQuad{123};
case CycloneV::rnode_type_t::TCLK:
return DelayQuad{46};
return DelayQuad{100};
case CycloneV::rnode_type_t::H14:
return DelayQuad{273, 286, 288, 291};
case CycloneV::rnode_type_t::H3:
return DelayQuad{196, 226, 163, 173};
case CycloneV::rnode_type_t::H6:
return DelayQuad{220, 275, 199, 217};
case CycloneV::rnode_type_t::V12:
return DelayQuad{361, 374, 337, 340};
case CycloneV::rnode_type_t::V2:
return DelayQuad{214, 231, 163, 175};
case CycloneV::rnode_type_t::V4:
return DelayQuad{290, 294, 243, 245};
case CycloneV::rnode_type_t::WM:
// WM explicitly has zero delay.
return DelayQuad{0};
case CycloneV::rnode_type_t::TD:
return DelayQuad{208, 208, 177, 177};
default:
return DelayQuad{308};
return DelayQuad{0};
}
}
bool Arch::getArcDelayOverride(const NetInfo *net_info, const PortRef &sink, DelayQuad &delay) const
{
if (!this->bitstream_configured)
return false;
WireId src_wire = getCtx()->getNetinfoSourceWire(net_info);
WireId dst_wire = getCtx()->getNetinfoSinkWire(net_info, sink, 0);
NPNR_ASSERT(src_wire != WireId());
bool inverted = false;
mistral::AnalogSim::wave input_wave[2], output_wave[2];
mistral::AnalogSim::time_interval output_delays[2];
mistral::AnalogSim::time_interval output_delay_sum[2];
std::vector<std::pair<mistral::CycloneV::rnode_t, int>> outputs;
auto temp = mistral::CycloneV::T_100;
auto est = mistral::CycloneV::EST_SLOW;
output_delay_sum[0].mi = 0;
output_delay_sum[0].mx = 0;
output_delay_sum[1].mi = 0;
output_delay_sum[1].mx = 0;
// Mistral's analogue simulator propagates from source to destination,
// but nextpnr finds paths from destination to source, so some slight
// contortions are necessary.
std::vector<PipId> pips;
WireId cursor = dst_wire;
while (cursor != WireId() && cursor != src_wire) {
auto it = net_info->wires.find(cursor);
if (it == net_info->wires.end())
break;
PipId pip = it->second.pip;
if (pip == PipId())
break;
pips.push_back(pip);
cursor = getPipSrcWire(pip);
}
for (auto it = pips.rbegin(); it != pips.rend(); it++) {
PipId pip = *it;
auto src = getPipSrcWire(pip);
auto dst = getPipDstWire(pip);
if (src.is_nextpnr_created())
continue;
if (dst.is_nextpnr_created())
dst.node = 0;
auto mode = cyclonev->rnode_timing_get_mode(src.node);
NPNR_ASSERT(mode != mistral::CycloneV::RTM_UNSUPPORTED);
auto inverting = cyclonev->rnode_is_inverting(src.node);
if (mode == mistral::CycloneV::RTM_P2P) {
if (inverting == mistral::CycloneV::INV_YES || inverting == mistral::CycloneV::INV_PROGRAMMABLE)
inverted = !inverted;
continue;
}
if (mode == mistral::CycloneV::RTM_NO_DELAY) {
if (inverting)
inverted = !inverted;
continue;
}
if (input_wave[0].empty()) {
cyclonev->rnode_timing_build_input_wave(src.node, temp, CycloneV::DELAY_MAX, inverted ? mistral::CycloneV::RF_FALL : mistral::CycloneV::RF_RISE, est, input_wave[0]);
cyclonev->rnode_timing_build_input_wave(src.node, temp, CycloneV::DELAY_MAX, inverted ? mistral::CycloneV::RF_RISE : mistral::CycloneV::RF_FALL, est, input_wave[1]);
NPNR_ASSERT(!input_wave[mistral::CycloneV::RF_RISE].empty() && !input_wave[mistral::CycloneV::RF_FALL].empty());
}
for (int edge = 0; edge != 2; edge++) {
auto actual_edge = edge ? inverted ? mistral::CycloneV::RF_RISE : mistral::CycloneV::RF_FALL : inverted ? mistral::CycloneV::RF_FALL : mistral::CycloneV::RF_RISE;
mistral::AnalogSim sim;
int input = -1;
std::vector<std::pair<mistral::CycloneV::rnode_t, int>> outputs;
cyclonev->rnode_timing_build_circuit(src.node, temp, CycloneV::DELAY_MAX, actual_edge, sim, input, outputs);
sim.set_input_wave(input, input_wave[edge]);
auto o = std::find_if(outputs.begin(), outputs.end(), [&](std::pair<mistral::CycloneV::rnode_t, int> output) {
return output.first == dst.node;
});
NPNR_ASSERT(o != outputs.end());
output_wave[edge].clear();
sim.set_output_wave(o->second, output_wave[edge], output_delays[edge]);
sim.run();
cyclonev->rnode_timing_trim_wave(temp, CycloneV::DELAY_MAX, output_wave[edge], input_wave[edge]);
output_delay_sum[edge].mi += output_delays[edge].mi;
output_delay_sum[edge].mx += output_delays[edge].mx;
}
if (inverting == mistral::CycloneV::INV_YES || inverting == mistral::CycloneV::INV_PROGRAMMABLE)
inverted = !inverted;
}
delay = DelayQuad{delay_t(output_delay_sum[0].mi*1e12), delay_t(output_delay_sum[0].mx*1e12), delay_t(output_delay_sum[1].mi*1e12), delay_t(output_delay_sum[1].mx*1e12)};
return true;
}
delay_t Arch::predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const
{
NPNR_UNUSED(src_pin);
NPNR_UNUSED(dst_pin);
Loc src_loc = getBelLocation(src_bel);
Loc dst_loc = getBelLocation(dst_bel);
return std::abs(dst_loc.y - src_loc.y) * 100 + std::abs(dst_loc.x - src_loc.x) * 100 + 100;
int x_diff = std::abs(dst_loc.x - src_loc.x);
int y_diff = std::abs(dst_loc.y - src_loc.y);
return 43*x_diff + 114*y_diff + 470;
}
delay_t Arch::estimateDelay(WireId src, WireId dst) const
@ -291,7 +415,9 @@ delay_t Arch::estimateDelay(WireId src, WireId dst) const
int y0 = CycloneV::rn2y(src.node);
int x1 = CycloneV::rn2x(dst.node);
int y1 = CycloneV::rn2y(dst.node);
return 300 * std::abs(y1 - y0) + 300 * std::abs(x1 - x0) + 300;
int x_diff = std::abs(x1 - x0);
int y_diff = std::abs(y1 - y0);
return 43*x_diff + 114*y_diff + 470;
}
NEXTPNR_NAMESPACE_END