Add critical path report to modern timing engine

This commit is contained in:
rowanG077 2023-05-25 23:03:16 +02:00 committed by myrtle
parent d9f009b570
commit 8b51674a6b
3 changed files with 608 additions and 31 deletions

View File

@ -640,10 +640,9 @@ void TimingAnalyser::walk_backward()
} }
} }
void TimingAnalyser::print_fmax() dict<domain_id_t, delay_t> TimingAnalyser::max_delay_by_domain()
{ {
// Temporary testing code for comparison only dict<domain_id_t, delay_t> domain_delay;
dict<int, double> domain_fmax;
for (auto p : topological_order) { for (auto p : topological_order) {
auto &pd = ports.at(p); auto &pd = ports.at(p);
for (auto &req : pd.required) { for (auto &req : pd.required) {
@ -651,15 +650,14 @@ void TimingAnalyser::print_fmax()
if (domains.at(req.first).key.is_async()) if (domains.at(req.first).key.is_async())
continue; continue;
auto &arr = pd.arrival.at(req.first); auto &arr = pd.arrival.at(req.first);
double fmax = 1000.0 / ctx->getDelayNS(arr.value.maxDelay() - req.second.value.minDelay()); delay_t delay = arr.value.maxDelay() - req.second.value.minDelay();
if (!domain_fmax.count(req.first) || domain_fmax.at(req.first) > fmax) if (!domain_delay.count(req.first) || domain_delay.at(req.first) < delay)
domain_fmax[req.first] = fmax; domain_delay[req.first] = delay;
} }
} }
} }
for (auto &fm : domain_fmax) {
log_info("Domain %s Worst Fmax %.02f\n", ctx->nameOf(domains.at(fm.first).key.clock), fm.second); return domain_delay;
}
} }
void TimingAnalyser::compute_slack() void TimingAnalyser::compute_slack()
@ -748,41 +746,570 @@ std::vector<CellPortKey> TimingAnalyser::get_failing_eps(domain_id_t domain_pair
return failing_eps; return failing_eps;
} }
void TimingAnalyser::print_critical_path(CellPortKey endpoint, domain_id_t domain_pair) std::string tgp_to_string2(TimingPortClass c) {
switch (c) {
case TMG_CLOCK_INPUT:
return "TMG_CLOCK_INPUT";
case TMG_GEN_CLOCK:
return "TMG_GEN_CLOCK";
case TMG_REGISTER_INPUT:
return "TMG_REGISTER_INPUT";
case TMG_REGISTER_OUTPUT:
return "TMG_REGISTER_OUTPUT";
case TMG_COMB_INPUT:
return "TMG_COMB_INPUT";
case TMG_COMB_OUTPUT:
return "TMG_COMB_OUTPUT";
case TMG_STARTPOINT:
return "TMG_STARTPOINT";
case TMG_ENDPOINT:
return "TMG_ENDPOINT";
case TMG_IGNORE:
return "TMG_IGNORE";
}
return "UNKNOWN";
}
CriticalPath TimingAnalyser::build_critical_path_report(domain_id_t domain_pair, CellPortKey endpoint)
{ {
CellPortKey cursor = endpoint; CriticalPath report;
auto &dp = domain_pairs.at(domain_pair); auto &dp = domain_pairs.at(domain_pair);
log(" endpoint %s.%s (slack %.02fns):\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port), auto &launch = domains.at(dp.key.launch).key;
ctx->getDelayNS(ports.at(cursor).domain_pairs.at(domain_pair).setup_slack)); auto &capture = domains.at(dp.key.capture).key;
report.clock_pair = ClockPair {
.start = ClockEvent {
.clock = launch.clock,
.edge = launch.edge
},
.end = ClockEvent {
.clock = capture.clock,
.edge = capture.edge
}
};
report.period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq"));
if (launch.edge != capture.edge) {
report.period = report.period / 2;
}
if (!launch.is_async() && ctx->nets.at(launch.clock)->clkconstr) {
if (launch.edge == capture.edge) {
report.period = ctx->nets.at(launch.clock)->clkconstr->period.minDelay();
} else if (capture.edge == RISING_EDGE) {
report.period = ctx->nets.at(launch.clock)->clkconstr->low.minDelay();
} else if (capture.edge == FALLING_EDGE) {
report.period = ctx->nets.at(launch.clock)->clkconstr->high.minDelay();
}
}
std::vector<PortRef> crit_path_rev;
auto cursor = endpoint;
while (cursor != CellPortKey()) { while (cursor != CellPortKey()) {
log(" %s.%s (net %s)\n", ctx->nameOf(cursor.cell), ctx->nameOf(cursor.port), auto cell = cell_info(cursor);
ctx->nameOf(ctx->cells.at(cursor.cell)->getPort(cursor.port))); auto& port = port_info(cursor);
int port_clocks;
auto portClass = ctx->getPortTimingClass(cell, port.name, port_clocks);
if (portClass != TMG_CLOCK_INPUT &&
portClass != TMG_ENDPOINT &&
portClass != TMG_IGNORE &&
port.type == PortType::PORT_IN)
{
crit_path_rev.emplace_back(PortRef { cell, port.name });
}
if (!ports.at(cursor).arrival.count(dp.key.launch)) if (!ports.at(cursor).arrival.count(dp.key.launch))
break; break;
cursor = ports.at(cursor).arrival.at(dp.key.launch).bwd_max; cursor = ports.at(cursor).arrival.at(dp.key.launch).bwd_max;
} }
auto crit_path = boost::adaptors::reverse(crit_path_rev);
auto &front = crit_path.front();
auto &front_port = front.cell->ports.at(front.port);
auto &front_driver = front_port.net->driver;
int port_clocks;
auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);
const CellInfo *last_cell = front.cell;
IdString last_port = front_driver.port;
int clock_start = -1;
if (portClass == TMG_REGISTER_OUTPUT) {
for (int i = 0; i < port_clocks; i++) {
TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
const NetInfo *clknet = front_driver.cell->getPort(clockInfo.clock_port);
if (clknet != nullptr && clknet->name == launch.clock && clockInfo.edge == launch.edge) {
last_port = clockInfo.clock_port;
clock_start = i;
break;
}
}
}
log_info("building critical path report for clocks: %s -> %s\n", launch.clock.c_str(ctx), capture.clock.c_str(ctx));
for (auto sink : crit_path) {
auto sink_cell = sink.cell;
auto &port = sink_cell->ports.at(sink.port);
auto net = port.net;
auto &driver = net->driver;
auto driver_cell = driver.cell;
auto clockInfo0 = ctx->getPortTimingClass(driver_cell, driver.port, clock_start);
log_info("\t%s.%s, tmgPortClass: %s\n", sink_cell->name.c_str(ctx), port.name.c_str(ctx), tgp_to_string2(clockInfo0).c_str());
CriticalPath::Segment seg_logic;
DelayQuad comb_delay;
if (clock_start != -1) {
auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start);
comb_delay = clockInfo.clockToQ;
clock_start = -1;
seg_logic.type = CriticalPath::Segment::Type::CLK_TO_Q;
} else if (last_port == driver.port) {
// Case where we start with a STARTPOINT etc
comb_delay = DelayQuad(0);
seg_logic.type = CriticalPath::Segment::Type::SOURCE;
} else {
ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
seg_logic.type = CriticalPath::Segment::Type::LOGIC;
}
seg_logic.delay = comb_delay.maxDelay();
seg_logic.from = std::make_pair(last_cell->name, last_port);
seg_logic.to = std::make_pair(driver_cell->name, driver.port);
seg_logic.net = IdString();
report.segments.push_back(seg_logic);
auto net_delay = ctx->getNetinfoRouteDelay(net, sink);
CriticalPath::Segment seg_route;
seg_route.type = CriticalPath::Segment::Type::ROUTING;
seg_route.delay = net_delay;
seg_route.from = std::make_pair(driver_cell->name, driver.port);
seg_route.to = std::make_pair(sink_cell->name, sink.port);
seg_route.net = net->name;
report.segments.push_back(seg_route);
last_cell = sink_cell;
last_port = sink.port;
}
int clockCount = 0;
auto sinkClass = ctx->getPortTimingClass(crit_path.back().cell, crit_path.back().port, clockCount);
if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back().cell, crit_path.back().port, 0);
delay_t setup = sinkClockInfo.setup.maxDelay();
CriticalPath::Segment seg_logic;
seg_logic.type = CriticalPath::Segment::Type::SETUP;
seg_logic.delay = setup;
seg_logic.from = std::make_pair(last_cell->name, last_port);
seg_logic.to = seg_logic.from;
seg_logic.net = IdString();
report.segments.push_back(seg_logic);
}
return report;
} }
void TimingAnalyser::print_report() void TimingAnalyser::print_report()
{ {
dict<IdString, CriticalPath> clock_reports;
std::vector<CriticalPath> xclock_reports;
dict<IdString, ClockFmax> clock_fmax;
std::set<IdString> empty_clocks;
auto delay_by_domain = max_delay_by_domain();
for (int i = 0; i < int(domain_pairs.size()); i++) { for (int i = 0; i < int(domain_pairs.size()); i++) {
auto &dp = domain_pairs.at(i); auto &dp = domain_pairs.at(i);
auto &launch = domains.at(dp.key.launch); auto &launch = domains.at(dp.key.launch).key;
auto &capture = domains.at(dp.key.capture); auto &capture = domains.at(dp.key.capture).key;
log("Worst endpoints for %s -> %s\n", clock_event_name(ctx, launch.key).c_str(), empty_clocks.insert(launch.clock);
clock_event_name(ctx, capture.key).c_str()); empty_clocks.insert(capture.clock);
auto failing_eps = get_failing_eps(i, 5);
for (auto &ep : failing_eps)
print_critical_path(ep, i);
log_break();
} }
print_fmax(); for (int i = 0; i < int(domain_pairs.size()); i++) {
auto &dp = domain_pairs.at(i);
auto &launch = domains.at(dp.key.launch).key;
auto &capture = domains.at(dp.key.capture).key;
for (const auto &it : clock_delays) { if (launch.clock != capture.clock || launch.clock == ctx->id("$async$"))
log_info("Clock-to-clock %s -> %s: %0.02f ns\n", it.first.first.str(ctx).c_str(), continue;
it.first.second.str(ctx).c_str(), ctx->getDelayNS(it.second));
auto path_delay = delay_by_domain.at(dp.key.launch);
double Fmax;
empty_clocks.erase(launch.clock);
if (launch.edge == capture.edge)
Fmax = 1000 / ctx->getDelayNS(path_delay);
else
Fmax = 500 / ctx->getDelayNS(path_delay);
if (!clock_fmax.count(launch.clock) || Fmax < clock_fmax.at(launch.clock).achieved) {
clock_fmax[launch.clock].achieved = Fmax;
clock_fmax[launch.clock].constraint = 0.0f; // Will be filled later
auto worst_endpoint = get_failing_eps(i, 1).at(0);
clock_reports[launch.clock] = build_critical_path_report(i, worst_endpoint);
}
}
for (int i = 0; i < int(domain_pairs.size()); i++) {
auto &dp = domain_pairs.at(i);
auto &launch = domains.at(dp.key.launch).key;
auto &capture = domains.at(dp.key.capture).key;
if (launch.clock == capture.clock && launch.clock == ctx->id("$async$"))
continue;
auto worst_endpoint = get_failing_eps(i, 1).at(0);
xclock_reports.emplace_back(build_critical_path_report(i, worst_endpoint));
}
if (clock_reports.empty() && xclock_reports.empty()) {
log_info("No Fmax available; no interior timing paths found in design.\n");
}
std::sort(xclock_reports.begin(), xclock_reports.end(), [&](const CriticalPath &ra, const CriticalPath &rb) {
const auto &a = ra.clock_pair;
const auto &b = rb.clock_pair;
if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
return true;
if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
return false;
if (a.start.edge < b.start.edge)
return true;
if (a.start.edge > b.start.edge)
return false;
if (a.end.clock.str(ctx) < b.end.clock.str(ctx))
return true;
if (a.end.clock.str(ctx) > b.end.clock.str(ctx))
return false;
if (a.end.edge < b.end.edge)
return true;
return false;
});
for (auto &clock : clock_reports) {
float target = ctx->setting<float>("target_freq") / 1e6;
if (ctx->nets.at(clock.first)->clkconstr)
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
clock_fmax[clock.first].constraint = target;
}
auto print_path = true;
auto print_fmax =true;
auto format_event = [&](const ClockEvent &e, int field_width = 0) {
std::string value;
if (e.clock == ctx->id("$async$"))
value = std::string("<async>");
else
value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
if (int(value.length()) < field_width)
value.insert(value.length(), field_width - int(value.length()), ' ');
return value;
};
// Print critical paths
if (print_path) {
if (ctx->idstring_str_to_idx == nullptr) {
log_info("global: ctx->idstring_str_to_idx is nullptr\n");
} else {
for (const auto& kv : *ctx->idstring_str_to_idx) {
log_info("global: %s -> %d\n", kv.first.c_str(), kv.second);
}
}
static auto print_net_source = [](Context* ctx, const NetInfo *net) {
// Check if this net is annotated with a source list
auto sources = net->attrs.find(ctx->id("src"));
if (sources == net->attrs.end()) {
// No sources for this net, can't print anything
return;
}
// Sources are separated by pipe characters.
// There is no guaranteed ordering on sources, so we just print all
auto sourcelist = sources->second.as_string();
std::vector<std::string> source_entries;
size_t current = 0, prev = 0;
while ((current = sourcelist.find("|", prev)) != std::string::npos) {
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
prev = current + 1;
}
// Ensure we emplace the final entry
source_entries.emplace_back(sourcelist.substr(prev, current - prev));
// Iterate and print our source list at the correct indentation level
log_info(" Defined in:\n");
for (auto entry : source_entries) {
log_info(" %s\n", entry.c_str());
}
};
// A helper function for reporting one critical path
auto print_path_report = [](Context* ctx, const CriticalPath &path) {
delay_t total = 0, logic_total = 0, route_total = 0;
log_info("curr total\n");
for (const auto &segment : path.segments) {
// log_info("processing segment %s\n", segment.net.c_str(ctx));
total += segment.delay;
if (segment.type == CriticalPath::Segment::Type::CLK_TO_Q ||
segment.type == CriticalPath::Segment::Type::SOURCE ||
segment.type == CriticalPath::Segment::Type::LOGIC ||
segment.type == CriticalPath::Segment::Type::SETUP) {
logic_total += segment.delay;
const std::string type_name =
(segment.type == CriticalPath::Segment::Type::SETUP) ? "Setup" : "Source";
log_info("%4.1f %4.1f %s %s.%s\n", ctx->getDelayNS(segment.delay), ctx->getDelayNS(total),
type_name.c_str(), segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
} else if (segment.type == CriticalPath::Segment::Type::ROUTING) {
route_total += segment.delay;
const auto &driver = ctx->cells.at(segment.from.first);
const auto &sink = ctx->cells.at(segment.to.first);
auto driver_loc = ctx->getBelLocation(driver->bel);
auto sink_loc = ctx->getBelLocation(sink->bel);
log_info("%4.1f %4.1f Net %s (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(segment.delay),
ctx->getDelayNS(total), segment.net.c_str(ctx),
driver_loc.x, driver_loc.y, sink_loc.x, sink_loc.y);
log_info(" Sink %s.%s\n", segment.to.first.c_str(ctx), segment.to.second.c_str(ctx));
const NetInfo *net = ctx->nets.at(segment.net).get();
if (ctx->verbose) {
PortRef sink_ref;
sink_ref.cell = sink.get();
sink_ref.port = segment.to.second;
auto driver_wire = ctx->getNetinfoSourceWire(net);
auto sink_wire = ctx->getNetinfoSinkWire(net, sink_ref, 0);
log_info(" prediction: %f ns estimate: %f ns\n",
ctx->getDelayNS(ctx->predictArcDelay(net, sink_ref)),
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
auto cursor = sink_wire;
delay_t delay;
while (driver_wire != cursor) {
#ifdef ARCH_ECP5
if (net->is_global)
break;
#endif
auto it = net->wires.find(cursor);
assert(it != net->wires.end());
auto pip = it->second.pip;
NPNR_ASSERT(pip != PipId());
delay = ctx->getPipDelay(pip).maxDelay();
log_info(" %1.3f %s\n", ctx->getDelayNS(delay), ctx->nameOfPip(pip));
cursor = ctx->getPipSrcWire(pip);
}
}
if (!ctx->disable_critical_path_source_print) {
print_net_source(ctx, net);
}
}
}
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
};
// Single domain paths
for (auto &clock : clock_reports) {
log_break();
std::string start = clock.second.clock_pair.start.edge == FALLING_EDGE ? std::string("negedge")
: std::string("posedge");
std::string end =
clock.second.clock_pair.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
end.c_str());
auto &report = clock.second;
print_path_report(ctx, report);
}
// Cross-domain paths
for (auto &report : xclock_reports) {
log_break();
std::string start = format_event(report.clock_pair.start);
std::string end = format_event(report.clock_pair.end);
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
print_path_report(ctx, report);
}
}
if (print_fmax) {
log_break();
unsigned max_width = 0;
for (auto &clock : clock_reports)
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
for (auto &clock : clock_reports) {
const auto &clock_name = clock.first.str(ctx);
const int width = max_width - clock_name.size();
float fmax = clock_fmax[clock.first].achieved;
float target = clock_fmax[clock.first].constraint;
bool passed = target < fmax;
if (passed)
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false))
log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), fmax, passed ? "PASS" : "FAIL", target);
}
log_break();
// All clock to clock delays
const auto &clock_delays = get_clock_delays();
// Clock to clock delays for xpaths
dict<ClockPair, delay_t> xclock_delays;
for (auto &report : xclock_reports) {
const auto &clock1_name = report.clock_pair.start.clock;
const auto &clock2_name = report.clock_pair.end.clock;
const auto key = std::make_pair(clock1_name, clock2_name);
if (clock_delays.count(key)) {
xclock_delays[report.clock_pair] = clock_delays.at(key);
}
}
unsigned max_width_xca = 0;
unsigned max_width_xcb = 0;
for (auto &report : xclock_reports) {
max_width_xca = std::max((unsigned)format_event(report.clock_pair.start).length(), max_width_xca);
max_width_xcb = std::max((unsigned)format_event(report.clock_pair.end).length(), max_width_xcb);
}
// Check and report xpath delays for related clocks
if (!xclock_reports.empty()) {
for (auto &report : xclock_reports) {
const auto &clock_a = report.clock_pair.start.clock;
const auto &clock_b = report.clock_pair.end.clock;
const auto key = std::make_pair(clock_a, clock_b);
if (!clock_delays.count(key)) {
continue;
}
delay_t path_delay = 0;
for (const auto &segment : report.segments) {
path_delay += segment.delay;
}
// Compensate path delay for clock-to-clock delay. If the
// result is negative then only the latter matters. Otherwise
// the compensated path delay is taken.
auto clock_delay = clock_delays.at(key);
path_delay -= clock_delay;
float fmax = std::numeric_limits<float>::infinity();
if (path_delay < 0) {
fmax = 1e3f / ctx->getDelayNS(clock_delay);
} else if (path_delay > 0) {
fmax = 1e3f / ctx->getDelayNS(path_delay);
}
// Both clocks are related so they should have the same
// frequency. However, they may get different constraints from
// user input. In case of only one constraint preset take it,
// otherwise get the worst case (min.)
float target;
if (clock_fmax.count(clock_a) && !clock_fmax.count(clock_b)) {
target = clock_fmax.at(clock_a).constraint;
} else if (!clock_fmax.count(clock_a) && clock_fmax.count(clock_b)) {
target = clock_fmax.at(clock_b).constraint;
} else {
target = std::min(clock_fmax.at(clock_a).constraint, clock_fmax.at(clock_b).constraint);
}
bool passed = target < fmax;
auto ev_a = format_event(report.clock_pair.start, max_width_xca);
auto ev_b = format_event(report.clock_pair.end, max_width_xcb);
if (passed)
log_info("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(), ev_b.c_str(),
fmax, passed ? "PASS" : "FAIL", target);
else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false) ||
bool_or_default(ctx->settings, ctx->id("timing/ignoreRelClk"), false))
log_warning("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(),
ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for %s -> %s: %.02f MHz (%s at %.02f MHz)\n", ev_a.c_str(),
ev_b.c_str(), fmax, passed ? "PASS" : "FAIL", target);
}
log_break();
}
// Report clock delays for xpaths
if (!clock_delays.empty()) {
for (auto &pair : xclock_delays) {
auto ev_a = format_event(pair.first.start, max_width_xca);
auto ev_b = format_event(pair.first.end, max_width_xcb);
delay_t delay = pair.second;
if (pair.first.start.edge != pair.first.end.edge) {
delay /= 2;
}
log_info("Clock to clock delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(),
ctx->getDelayNS(delay));
}
log_break();
}
for (auto &eclock : empty_clocks) {
if (eclock != ctx->id("$async$"))
log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx));
}
log_break();
int start_field_width = 0, end_field_width = 0;
for (auto &report : xclock_reports) {
start_field_width = std::max((int)format_event(report.clock_pair.start).length(), start_field_width);
end_field_width = std::max((int)format_event(report.clock_pair.end).length(), end_field_width);
}
for (auto &report : xclock_reports) {
const ClockEvent &a = report.clock_pair.start;
const ClockEvent &b = report.clock_pair.end;
delay_t path_delay = 0;
for (const auto &segment : report.segments) {
path_delay += segment.delay;
}
auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width);
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path_delay));
}
log_break();
} }
} }

View File

@ -115,12 +115,17 @@ struct TimingAnalyser
void compute_slack(); void compute_slack();
void compute_criticality(); void compute_criticality();
void print_fmax(); dict<domain_id_t, delay_t> max_delay_by_domain();
// get the N most failing endpoints for a given domain pair // get the N most failing endpoints for a given domain pair
std::vector<CellPortKey> get_failing_eps(domain_id_t domain_pair, int count); std::vector<CellPortKey> get_failing_eps(domain_id_t domain_pair, int count);
// print the critical path for an endpoint and domain pair // print the critical path for an endpoint and domain pair
void print_critical_path(CellPortKey endpoint, domain_id_t domain_pair); void print_critical_path(CellPortKey endpoint, domain_id_t domain_pair);
// Build up CriticalPathData
// Build critical path report
CriticalPath build_critical_path_report(domain_id_t domain_pair, CellPortKey endpoint);
const DelayPair init_delay{std::numeric_limits<delay_t>::max(), std::numeric_limits<delay_t>::lowest()}; const DelayPair init_delay{std::numeric_limits<delay_t>::max(), std::numeric_limits<delay_t>::lowest()};
// Set arrival/required times if more/less than the current value // Set arrival/required times if more/less than the current value

View File

@ -18,13 +18,13 @@
* *
*/ */
#include "timing.h"
#include <algorithm> #include <algorithm>
#include <boost/range/adaptor/reversed.hpp> #include <boost/range/adaptor/reversed.hpp>
#include <deque> #include <deque>
#include <map> #include <map>
#include <utility> #include <utility>
#include "log.h" #include "log.h"
#include "timing.h"
#include "util.h" #include "util.h"
NEXTPNR_NAMESPACE_BEGIN NEXTPNR_NAMESPACE_BEGIN
@ -409,6 +409,8 @@ struct Timing
for (auto crit_pair : crit_nets) { for (auto crit_pair : crit_nets) {
NetInfo *crit_net = crit_pair.second.second; NetInfo *crit_net = crit_pair.second.second;
auto &cp_ports = (*crit_path)[crit_pair.first].ports; auto &cp_ports = (*crit_path)[crit_pair.first].ports;
log_info("// Walk backwards from the most critical net, start point: %s.%s\n",
cp_ports.at(0)->cell->name.c_str(ctx), cp_ports.at(0)->port.c_str(ctx));
while (crit_net) { while (crit_net) {
const PortInfo *crit_ipin = nullptr; const PortInfo *crit_ipin = nullptr;
delay_t max_arrival = std::numeric_limits<delay_t>::min(); delay_t max_arrival = std::numeric_limits<delay_t>::min();
@ -450,7 +452,9 @@ struct Timing
break; break;
// Now convert PortInfo* into a PortRef* // Now convert PortInfo* into a PortRef*
for (auto &usr : crit_ipin->net->users) { for (auto &usr : crit_ipin->net->users) {
log_info("critical pin user: %s.%s\n", usr.cell->name.c_str(ctx), usr.port.c_str(ctx));
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) { if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
log_info("Adding %s.%s to critical path\n", usr.cell->name.c_str(ctx), usr.port.c_str(ctx));
cp_ports.push_back(&usr); cp_ports.push_back(&usr);
break; break;
} }
@ -464,9 +468,34 @@ struct Timing
} }
}; };
std::string tgp_to_string(TimingPortClass c)
{
switch (c) {
case TMG_CLOCK_INPUT:
return "TMG_CLOCK_INPUT";
case TMG_GEN_CLOCK:
return "TMG_GEN_CLOCK";
case TMG_REGISTER_INPUT:
return "TMG_REGISTER_INPUT";
case TMG_REGISTER_OUTPUT:
return "TMG_REGISTER_OUTPUT";
case TMG_COMB_INPUT:
return "TMG_COMB_INPUT";
case TMG_COMB_OUTPUT:
return "TMG_COMB_OUTPUT";
case TMG_STARTPOINT:
return "TMG_STARTPOINT";
case TMG_ENDPOINT:
return "TMG_ENDPOINT";
case TMG_IGNORE:
return "TMG_IGNORE";
}
return "UNKNOWN";
}
CriticalPath build_critical_path_report(Context *ctx, ClockPair &clocks, const PortRefVector &crit_path) CriticalPath build_critical_path_report(Context *ctx, ClockPair &clocks, const PortRefVector &crit_path)
{ {
CriticalPath report; CriticalPath report;
report.clock_pair = clocks; report.clock_pair = clocks;
@ -493,7 +522,11 @@ CriticalPath build_critical_path_report(Context *ctx, ClockPair &clocks, const P
} }
} }
log_info("building critical path report for clocks: %s -> %s\n", clocks.start.clock.c_str(ctx),
clocks.end.clock.c_str(ctx));
for (auto sink : crit_path) { for (auto sink : crit_path) {
auto sink_cell = sink->cell; auto sink_cell = sink->cell;
auto &port = sink_cell->ports.at(sink->port); auto &port = sink_cell->ports.at(sink->port);
auto net = port.net; auto net = port.net;
@ -582,6 +615,10 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
TimingAnalyser timingAnalyser(ctx); TimingAnalyser timingAnalyser(ctx);
timingAnalyser.setup(); timingAnalyser.setup();
log("start timingAnalyser.print_report();\n\n");
timingAnalyser.print_report();
log("end timingAnalyser.print_report();\n\n");
bool report_critical_paths = print_path || print_fmax || update_results; bool report_critical_paths = print_path || print_fmax || update_results;
dict<IdString, CriticalPath> clock_reports; dict<IdString, CriticalPath> clock_reports;
@ -968,6 +1005,14 @@ void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool p
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' '); (bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
} }
log_info("segments");
for (auto &r : clock_reports) {
log_info("clock: %s\n", r.first.c_str(ctx));
for (const auto &segment : r.second.segments) {
log_info("processing segment %s\n", segment.net.c_str(ctx));
}
}
// Update timing results in the context // Update timing results in the context
if (update_results) { if (update_results) {
auto &results = ctx->timing_result; auto &results = ctx->timing_result;